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Overview 
This document gives an introduction to using OpenEMS with the IHP SG13G2 technology, using the 

Python scripting interface. 

OpenEMS is an Open Source EM simulation tool based on FDTD method. It can be used to analyze 

layout structures, e.g. inductors, and calculate the corresponding S-parameters.  

The vertical stackup of the simulation model is independent of the user layout, it depends on the 

SG13G2 layer stackup and comes as a predefined technology template. The actual user layout from 

polygons and vias is then inserted into that template, referencing the SG13G2 material definitions 

and stackup positions. 

Layout import 
To simplify building that layout part of the model, a Python script is provided that reads a GDSII file 

and creates the corresponding layout object in OpenEMS syntax. This layout file can then be 

combined with the (fixed) technology template. 

Layout import using the script can also do via array merging, which combines arrays of closely spaced 

vias into one large via covering the bounding box. 

Meshing 
One important aspect of EM simulation is meshing: how to divide the analysis volume into small 3D 

boxes for the field solver. Reality is continuous, but in simulation we need to reduce complexity and 

use only a limited number of 3D boxes for solving the actual EM field equations. The finer the mesh, 

the closer we get to reality, but the price to pay is simulation time and memory requirement.  

In this initial version, meshing in the layout region is homogeneous with a fixed mesh size defined by 

the user. This mesh size must be small enough to resolve relevant details such as line width and gap 

size, and it must also be small enough to capture skin effect inside conductors.  

In many cases, the simulation model includes a margin (empty area) between layout and simulation 

model boundaries. The mesh in that empty region is created automatically, with less mesh density 

than the active layout region. 

Ports 
Similar to other EM solvers used in RFIC EM simulation, ports must be defined where the layout 

connects to external circuitry.  

In openEMS, we use lumped ports that can be located in-plane (between polygons on the same 

layer) or vertical (from one layer up or down). Ports should be electrically small compared to the 

layout itself, so that we don’t introduce parasitic inductance due to port dimensions.  

Ports must be added manually into the model by the user, there is no automation to create ports. 

For the inductor example discussed here, a single port is used. This gives frequency-dependent series 

impedance (effective L and R). One easy way of using that data is to simply model R and L at the 

frequency of interest in circuit simulation. 

  



 

SG13G2 stackup cross section 
The cross section below shows the EM stackup used for simulation at 300µm total chip thickness. 

 

Passivation and SiO2 above TopMetal2 are not planarized in reality, the planar representation is an 

approximation for EM modelling only. 

 



 

Stackup cross section for openEMS model 
In openEMS, the stackup is represented by script lines as shown below (not complete): 

 

# silicon substrate 

Sub = CSX.AddMaterial('Sub', epsilon=11.9, kappa=2) 

Sub_thick = 280 

Sub_zmin = 0 

Sub_zmax = Sub_zmin + Sub_thick 

 

# EPI 

EPI = CSX.AddMaterial('EPI', epsilon=11.9, kappa=5) 

EPI_thick = 3.75 

EPI_zmin = Sub_zmax 

EPI_zmax = EPI_zmin + EPI_thick 

 

# SiO2 

SiO2 = CSX.AddMaterial('SiO2', epsilon=4.1) 

SiO2_thick = 17.73 

SiO2_zmin = EPI_zmax 

SiO2_zmax = SiO2_zmin + SiO2_thick 

 

(…) 

 

# TopMetal2 

TopMetal2_sigma = 3.0300E7 

TopMetal2_thick = 3 

TopMetal2_zmin  = SiO2_zmin + 11.23 

TopMetal2_zmax  = TopMetal2_zmin + TopMetal2_thick 

TopMetal2 = CSX.AddMaterial('TopMetal2', kappa=TopMetal2_sigma) 

 

# TopMetal1 

TopMetal1_sigma = 2.7800E7 

TopMetal1_thick = 2 

TopMetal1_zmin  = SiO2_zmin + 6.43 

TopMetal1_zmax  = TopMetal1_zmin + TopMetal1_thick 

TopMetal1 = CSX.AddMaterial('TopMetal1', kappa=TopMetal1_sigma) 

 

(…) 

 

These material definitions are identical for all models using SG13G2 technology, independent of the 

user drawn layout. 

For metal and via layers, the user drawn layout will reference these definitions. For dielectric and 

semiconductor layers, a box made from these materials will be added in the model code, with 

dimensions calculated from the bounding box of user drawn layout.  

  



 

Simulation frequency, meshing, boundaries  
The simulation frequency range must be entered into the simulation model as needed.  

In addition, the simulation boundaries around the analysis volume must be defined. For non-

radiating structures we can use PEC boundaries, that are perfect electric conductor walls. To avoid an 

interaction between metal side walls and the device under test, we add some spacing at the sides 

and above. For inductor simulations, that spacing on the sides is +/- one inductor diameter, so that 

the total box size in xy-plane is 3 inductor diameters. The bottom of the substrate is usually placed on 

a metal boundary (PEC) with no extra spacing. 

 

############ simulation settings ############ 

 

unit = 1e-6 # specify everything in um 

refined_cellsize = 1  # mesh resolution in area with polygons from GDSII 

 

fstart = 0 

fstop  = 30e9 

numfreq = 401  # number of frequency points (has no effect on simulation time!) 

 

energy_limit = -50    # end criteria for residual energy 

Boundaries   = ['PEC', 'PEC', 'PEC', 'PEC', 'PEC', 'PEC']  # xmin xmax ymin ymax zmin zmax 

 

eps_max = 11.9 # maximum permittivity in model, used for calculating max cellsize 

 

wavelength_air = (3e8/unit)/fstop 

max_cellsize = wavelength_air/(sqrt(eps_max)*20) # max cellsize is lambda/20 in medium 

 

Variable refined_cellsize defines the mesh size in xy-plane for user-drawn layout parts, value in 

microns. This must be small enough to resolve relevant details such as line width and gap size, and it 

must also be small enough to capture skin effect inside conductors. Simulation of thick metal 

conductors in openEMS uses a general material definition that has no built-in skin effect model, so 

the meshing must be small enough that the field solver can “see” the effect of field decay inside 

conductors. 

Variable max_cellsize is the maximum mesh size to be used in xyz-direction, it is automatically 

calculated from frequency range assuming a maximum mesh size of 1/20 wavelength in Silicon. 

Variable energy_limit is the limit when FDTD simulation is finished because results are considered 

accurate enough. The default of -50dB means that residual energy inside the analysis volume is down 

by 50dB from the initial port input signal, because signals have either been dissipated by lossy 

materials or left the analysis volume at the ports (transmitted or reflected). 

  



 

Geometries from GDSII 
Geometries can be converted from GDSII format to openEMS syntax using script gds2pythonpoly.py  

The script is run from the command line, the only parameter is the GDSII filename. For example,  

python3 pythonpoly.py L2n0.gds 

 

will create an output file L2n0_polygons.py which can then be inserted into the model template. The 

layer table inside the script defines what GDSII layer numbers and purposes are evaluated, and map 

the corresponding material names for the output file. 

Below is an excerpt from L2n0_polygons.py to show what the geometries in openEMS Python syntax 

look like: 

# Cell ('L_2n0_simplify", 10 polygons, 0 paths, 2 labels, 0 references) 

 

pts_x = np.array([]) 

pts_y = np.array([]) 

pts_x = r_[pts_x, 22.200] 

pts_y = r_[pts_y, 0.000] 

pts_x = r_[pts_x, 34.200] 

pts_y = r_[pts_y, 0.000] 

pts_x = r_[pts_x, 34.200] 

pts_y = r_[pts_y, 57.000] 

pts_x = r_[pts_x, 22.200] 

pts_y = r_[pts_y, 57.000] 

pts = np.array([pts_x, pts_y]) 

TopMetal1.AddLinPoly(priority=200, points=pts, norm_dir ='z', elevation=TopMetal1_zmin, 

length=TopMetal1_thick) 

 

pts_x = np.array([]) 

pts_y = np.array([]) 

pts_x = r_[pts_x, -23.230] 

pts_y = r_[pts_y, 272.000] 

pts_x = r_[pts_x, -9.985] 

pts_y = r_[pts_y, 272.000] 

pts_x = r_[pts_x, 5.015] 

pts_y = r_[pts_y, 257.000] 

pts_x = r_[pts_x, 23.230] 

pts_y = r_[pts_y, 257.000] 

pts_x = r_[pts_x, 23.230] 

pts_y = r_[pts_y, 269.000] 

pts_x = r_[pts_x, 9.985] 

pts_y = r_[pts_y, 269.000] 

pts_x = r_[pts_x, -5.015] 

pts_y = r_[pts_y, 284.000] 

pts_x = r_[pts_x, -23.230] 

pts_y = r_[pts_y, 284.000] 

pts = np.array([pts_x, pts_y]) 

TopMetal1.AddLinPoly(priority=200, points=pts, norm_dir ='z', elevation=TopMetal1_zmin, 

length=TopMetal1_thick) 

 

(...) 

 

pts_x = np.array([]) 

pts_y = np.array([]) 

pts_x = r_[pts_x, 11.850] 

pts_y = r_[pts_y, 257.620] 

pts_x = r_[pts_x, 22.600] 

pts_y = r_[pts_y, 257.620] 

pts_x = r_[pts_x, 22.600] 

pts_y = r_[pts_y, 268.370] 

pts_x = r_[pts_x, 11.850] 

pts_y = r_[pts_y, 268.370] 

pts = np.array([pts_x, pts_y]) 

TopVia2.AddLinPoly(priority=200, points=pts, norm_dir ='z', elevation=TopVia2_zmin, 

length=TopVia2_thick) 

 

These polygon calls reference layer/material names and vertical stackup positions defined earlier in 

the stackup section.  



 

Geometry bounding box information is found at the end of the file, this data is later used to create a 

uniform fine mesh in the active layout part.  

Ports 
There is no port information included in the GDSII file, all ports must be added manually in the 

openEMS model code. For the inductor example shown later in this document, a single port is 

defined between the two terminals, resulting in 1-port data (*.s1p).  

Impedance measured into the port can be converted to equivalent series resistance and series 

inductance. The example Python script prints out that data at one user defined frequency. 

Running the model file in Python 
For the octagon inductor example discussed in this document, run python3 <modelname. py>  

from the command line. This will first start the model viewer so that you can check the model and 

mesh. When the model viewer is closed, simulation starts. 

 

 

The actual simulation model for openEMS is an XML file that is created by the Python code after all 

material and geometries and simulation settings are defined.  



 

The code snippet shown below shows that part of the *.py model file: 

 

Variables preview_only and postprocess_only are defined at the beginning of the script. By setting 

one of these values to True, you can preview the model and mesh withoutout starting the simulator, 

or you can postprocess existing simulation results (for plotting) without re-running the full 

EMsimulation. 

 

 

Plotting results and creating S-parameter output 
When simulation is finished (which can take 60 minutes for the exampel shown here, depending on 

mesh size and computer speed), postprocessing will read results and the plots defined in the script 

are created. Also, the script calculates some inductor parameters for information.  

 



 

At the end of the script, S11 results are saved in Touchstone *.s1p format. 

Simulation model and resulting data, including S-parameters (here: *.s1p) are created in a 

directory “data” below the model file. If simulation data already exists, you can created additional 

plots by changing the script and re-running with variable “postprocessing_only = True” 

 

  



 

Testcase: Octagon Inductor L3_2n0 
To verify the simulation flow and accuracy of results, a 2nH octagon inductor in SG13G2 technology 

was modelled for which reliable measurements are available. 

Geometry parameters: N=2, w=12µm, s=3µm, Di=200µm, feedline spacing (center to center): 56.4µm 

At only 3µm spacing between the turns, capacitance between the thick conductor metals will have 

an impact on self resonance frequency.  

 

Measurements are de-embedded using GSGSG calibration standards to remove the feed structure, 

so that the inductor model contains only the inductor itself (pink boundary in screenshot above).  

For simulation, an in-plane port is added between the feed lines on TopMetal1. In the AppCSXCAD 

preview of the simulation model below, that port is shown in green.  

 

From this 1-port simulation we get the impedance (series L, R and Q factor) for differential operation. 

To compare that with measurements, 2-port measurement results are also converted to differential 

1-port data between the inductor terminals. 



 

Via arrays –effect of via array merging 
Vias in the GDSII file had already been merged prior to GDSII export, so that we simulate the 

bounding box of via arrays instead of all individual vias. Note that merging vias is usually not required 

for simulation time in FDTD method, if the mesh size is on the order of via size anyway. 

For accuracy, via array merging is not critical here, because each of the via arrays has 36 vias of 1.1 

Ohm each = 0.03 Ohm resistance per via array. In the inductor path we have 4 via arrays in series, for 

a total of 0.12 Ohm from all via arrays. Compared to the total inductor series resistance of a few 

Ohms, we will not notice the small error from via array merging when comparing results. 

Mesh size  
For mesh size, we have to consider two aspects: accurate geometry sampling and skin effect. 

At 3µm gap width and 12µm line width, a mesh size of 1.5µm will capture the geometry without 

creating incorrect gap width along the xy-axis. However for the diagonal lines, we will have some 

staircasing effects that can be reduced by using a smaller mesh size. 

 

The second aspect is skin depth: for Aluminium, skin depth is approximately 0.5µm at 25 GHz and 

0.25µm at 100 GHz. To accurately capture the skin effect where fields are pushed to the outer edges 

of conductor cross section, we need sufficiently fine mesh density. 

Different mesh sizes in the xy-plane were used for simulation, and compared to measurements. 

Mesh in z-direction was not changed here, although mesh refine for skin effect would need to cover 

all directions.  

 



 

Inductance simulation vs. measured  
For inductance, simulation results are almost identical between 1.0µm and 0.5µm mesh size. Only at 

1.5µm we see a small change in SRF towards lower frequencies, which might be explained by 

staircasing effects in the diagonal lines that change capacitance between the turns. 

Inductance agrees well to measurements, except for a difference in SRF:  

simulated SRF at 0.5µm mesh is 22.7 GHz, compared to 25.5 GHz in measurement.  

 

 

This might be explained by the planar passivation used in simulation (all gap between turns 

completely filled with SiO2), whereas the true passivation in hardware is conformal, with some air 

between the turns. This would explain a higher SRF in measurement, due to lower capacitance 

between the turns.  

 

 

At only 3µm gap between the turns, this difference in inductor sidewall capacitance is visible in this 

inductor testcase. 

  



 

Resistance simulation vs. measured  
For effective series resistance, simulation results are very close between 1.0µm and 0.5µm mesh size, 

and 1.5µm is not much different.  

Measured series resistance agrees very well at low frequency, and then shows slightly less increase 

towards high frequencies. Much of this can be explained by the difference in SRF discussed earlier. 

 

 

Q factor simulation vs. measured  
Comparing the Q factor, we see good agreement between measured and simulated data, except for 

the difference in SRF discussed earlier.  

 

The frequency of peak Q agrees very well: 8.9 GHz simulated va. 9 .0 GHz measured. Peak Q of 23.5 

measured vs. 21.2 simulated @ 0.5µm mesh size is also good agreement, if we consider that very 

small changes in S-parameters means significant changes in Q factor at these large Q values. 



 

When the vertical mesh (z-direction) is also refined, at 0.5µm mesh size in xy-direction, the peak Q 

value increases from 21.2 to 22.3 at 8.9 GHz. That is really close to the measured peak Q of 23.5. 

SRF does not change with this refined vertical mesh, as expected. 

 

Simulation time 
Using a fine mesh for simulation is more accurate, but requires more simulation time.  

One reason is the larger total number of mesh cells, but there is one other influence in FDTD: this 

method calculates the propagation of signals through the model in time domain, and the timestep 

used for calculation must be small enough to capture propagation in the smallest mesh cell. If one 

mesh cell in the model is really small, that determines the time step used for the entire calculation 

of all cells. 

If the mesh is very dense in one place (even if that is only one small mesh cell) that determines the 

time step for the entire model, regardless of mesh density anywhere else in the model.  

Memory required for simulation 
Memory size is usually not a problem, because FDTD method is very memory efficient and required 

RAM scales linear with total number of mesh cells. 

Number of ports 
For FDTD, we usually excite only one port at a time, so we need multiple simulation runs to get the 

full S-matrix of a multi-port device. In this case, multiple XML files must be created by the script, each 

with a different excited port and all other ports not excited. 

See example openEMS\matlab\examples\transmission_lines\directional_coupler.m 

Number of simulation frequencies 
The number of simulation frequencies does not have an effect on simulation time or memory. This is 

because the EM simulation in time domain (FDTD) is the same, and only FFT in postprocessing 

changes. 


