

Using OpenEMS with IHP SG13
(Python Interface)

Author: Volker Mühlhaus

Document version: 1.0 of 21 April 2023

Contents
Overview.. 2

Layout import .. 2

Meshing ... 2

Ports .. 2

SG13G2 stackup cross section ... 3

Stackup cross section for openEMS model ... 4

Simulation frequency, meshing, boundaries ... 5

Geometries from GDSII ... 6

Ports .. 7

Running the model file in Python .. 7

Plotting results and creating S-parameter output .. 8

Testcase: Octagon Inductor L3_2n0 .. 10

Via arrays –effect of via array merging ... 11

Mesh size ... 11

Inductance simulation vs. measured ... 12

Resistance simulation vs. measured ... 13

Q factor simulation vs. measured ... 13

Simulation time ... 14

Memory required for simulation ... 14

Number of ports .. 14

Number of simulation frequencies.. 14

Overview
This document gives an introduction to using OpenEMS with the IHP SG13G2 technology, using the

Python scripting interface.

OpenEMS is an Open Source EM simulation tool based on FDTD method. It can be used to analyze

layout structures, e.g. inductors, and calculate the corresponding S-parameters.

The vertical stackup of the simulation model is independent of the user layout, it depends on the

SG13G2 layer stackup and comes as a predefined technology template. The actual user layout from

polygons and vias is then inserted into that template, referencing the SG13G2 material definitions

and stackup positions.

Layout import
To simplify building that layout part of the model, a Python script is provided that reads a GDSII file

and creates the corresponding layout object in OpenEMS syntax. This layout file can then be

combined with the (fixed) technology template.

Layout import using the script can also do via array merging, which combines arrays of closely spaced

vias into one large via covering the bounding box.

Meshing
One important aspect of EM simulation is meshing: how to divide the analysis volume into small 3D

boxes for the field solver. Reality is continuous, but in simulation we need to reduce complexity and

use only a limited number of 3D boxes for solving the actual EM field equations. The finer the mesh,

the closer we get to reality, but the price to pay is simulation time and memory requirement.

In this initial version, meshing in the layout region is homogeneous with a fixed mesh size defined by

the user. This mesh size must be small enough to resolve relevant details such as line width and gap

size, and it must also be small enough to capture skin effect inside conductors.

In many cases, the simulation model includes a margin (empty area) between layout and simulation

model boundaries. The mesh in that empty region is created automatically, with less mesh density

than the active layout region.

Ports
Similar to other EM solvers used in RFIC EM simulation, ports must be defined where the layout

connects to external circuitry.

In openEMS, we use lumped ports that can be located in-plane (between polygons on the same

layer) or vertical (from one layer up or down). Ports should be electrically small compared to the

layout itself, so that we don’t introduce parasitic inductance due to port dimensions.

Ports must be added manually into the model by the user, there is no automation to create ports.

For the inductor example discussed here, a single port is used. This gives frequency-dependent series

impedance (effective L and R). One easy way of using that data is to simply model R and L at the

frequency of interest in circuit simulation.

SG13G2 stackup cross section
The cross section below shows the EM stackup used for simulation at 300µm total chip thickness.

Passivation and SiO2 above TopMetal2 are not planarized in reality, the planar representation is an

approximation for EM modelling only.

Stackup cross section for openEMS model
In openEMS, the stackup is represented by script lines as shown below (not complete):

silicon substrate

Sub = CSX.AddMaterial('Sub', epsilon=11.9, kappa=2)

Sub_thick = 280

Sub_zmin = 0

Sub_zmax = Sub_zmin + Sub_thick

EPI

EPI = CSX.AddMaterial('EPI', epsilon=11.9, kappa=5)

EPI_thick = 3.75

EPI_zmin = Sub_zmax

EPI_zmax = EPI_zmin + EPI_thick

SiO2

SiO2 = CSX.AddMaterial('SiO2', epsilon=4.1)

SiO2_thick = 17.73

SiO2_zmin = EPI_zmax

SiO2_zmax = SiO2_zmin + SiO2_thick

(…)

TopMetal2

TopMetal2_sigma = 3.0300E7

TopMetal2_thick = 3

TopMetal2_zmin = SiO2_zmin + 11.23

TopMetal2_zmax = TopMetal2_zmin + TopMetal2_thick

TopMetal2 = CSX.AddMaterial('TopMetal2', kappa=TopMetal2_sigma)

TopMetal1

TopMetal1_sigma = 2.7800E7

TopMetal1_thick = 2

TopMetal1_zmin = SiO2_zmin + 6.43

TopMetal1_zmax = TopMetal1_zmin + TopMetal1_thick

TopMetal1 = CSX.AddMaterial('TopMetal1', kappa=TopMetal1_sigma)

(…)

These material definitions are identical for all models using SG13G2 technology, independent of the

user drawn layout.

For metal and via layers, the user drawn layout will reference these definitions. For dielectric and

semiconductor layers, a box made from these materials will be added in the model code, with

dimensions calculated from the bounding box of user drawn layout.

Simulation frequency, meshing, boundaries
The simulation frequency range must be entered into the simulation model as needed.

In addition, the simulation boundaries around the analysis volume must be defined. For non-

radiating structures we can use PEC boundaries, that are perfect electric conductor walls. To avoid an

interaction between metal side walls and the device under test, we add some spacing at the sides

and above. For inductor simulations, that spacing on the sides is +/- one inductor diameter, so that

the total box size in xy-plane is 3 inductor diameters. The bottom of the substrate is usually placed on

a metal boundary (PEC) with no extra spacing.

############ simulation settings ############

unit = 1e-6 # specify everything in um

refined_cellsize = 1 # mesh resolution in area with polygons from GDSII

fstart = 0

fstop = 30e9

numfreq = 401 # number of frequency points (has no effect on simulation time!)

energy_limit = -50 # end criteria for residual energy

Boundaries = ['PEC', 'PEC', 'PEC', 'PEC', 'PEC', 'PEC'] # xmin xmax ymin ymax zmin zmax

eps_max = 11.9 # maximum permittivity in model, used for calculating max cellsize

wavelength_air = (3e8/unit)/fstop

max_cellsize = wavelength_air/(sqrt(eps_max)*20) # max cellsize is lambda/20 in medium

Variable refined_cellsize defines the mesh size in xy-plane for user-drawn layout parts, value in

microns. This must be small enough to resolve relevant details such as line width and gap size, and it

must also be small enough to capture skin effect inside conductors. Simulation of thick metal

conductors in openEMS uses a general material definition that has no built-in skin effect model, so

the meshing must be small enough that the field solver can “see” the effect of field decay inside

conductors.

Variable max_cellsize is the maximum mesh size to be used in xyz-direction, it is automatically

calculated from frequency range assuming a maximum mesh size of 1/20 wavelength in Silicon.

Variable energy_limit is the limit when FDTD simulation is finished because results are considered

accurate enough. The default of -50dB means that residual energy inside the analysis volume is down

by 50dB from the initial port input signal, because signals have either been dissipated by lossy

materials or left the analysis volume at the ports (transmitted or reflected).

Geometries from GDSII
Geometries can be converted from GDSII format to openEMS syntax using script gds2pythonpoly.py

The script is run from the command line, the only parameter is the GDSII filename. For example,

python3 pythonpoly.py L2n0.gds

will create an output file L2n0_polygons.py which can then be inserted into the model template. The

layer table inside the script defines what GDSII layer numbers and purposes are evaluated, and map

the corresponding material names for the output file.

Below is an excerpt from L2n0_polygons.py to show what the geometries in openEMS Python syntax

look like:

Cell ('L_2n0_simplify", 10 polygons, 0 paths, 2 labels, 0 references)

pts_x = np.array([])

pts_y = np.array([])

pts_x = r_[pts_x, 22.200]

pts_y = r_[pts_y, 0.000]

pts_x = r_[pts_x, 34.200]

pts_y = r_[pts_y, 0.000]

pts_x = r_[pts_x, 34.200]

pts_y = r_[pts_y, 57.000]

pts_x = r_[pts_x, 22.200]

pts_y = r_[pts_y, 57.000]

pts = np.array([pts_x, pts_y])

TopMetal1.AddLinPoly(priority=200, points=pts, norm_dir ='z', elevation=TopMetal1_zmin,

length=TopMetal1_thick)

pts_x = np.array([])

pts_y = np.array([])

pts_x = r_[pts_x, -23.230]

pts_y = r_[pts_y, 272.000]

pts_x = r_[pts_x, -9.985]

pts_y = r_[pts_y, 272.000]

pts_x = r_[pts_x, 5.015]

pts_y = r_[pts_y, 257.000]

pts_x = r_[pts_x, 23.230]

pts_y = r_[pts_y, 257.000]

pts_x = r_[pts_x, 23.230]

pts_y = r_[pts_y, 269.000]

pts_x = r_[pts_x, 9.985]

pts_y = r_[pts_y, 269.000]

pts_x = r_[pts_x, -5.015]

pts_y = r_[pts_y, 284.000]

pts_x = r_[pts_x, -23.230]

pts_y = r_[pts_y, 284.000]

pts = np.array([pts_x, pts_y])

TopMetal1.AddLinPoly(priority=200, points=pts, norm_dir ='z', elevation=TopMetal1_zmin,

length=TopMetal1_thick)

(...)

pts_x = np.array([])

pts_y = np.array([])

pts_x = r_[pts_x, 11.850]

pts_y = r_[pts_y, 257.620]

pts_x = r_[pts_x, 22.600]

pts_y = r_[pts_y, 257.620]

pts_x = r_[pts_x, 22.600]

pts_y = r_[pts_y, 268.370]

pts_x = r_[pts_x, 11.850]

pts_y = r_[pts_y, 268.370]

pts = np.array([pts_x, pts_y])

TopVia2.AddLinPoly(priority=200, points=pts, norm_dir ='z', elevation=TopVia2_zmin,

length=TopVia2_thick)

These polygon calls reference layer/material names and vertical stackup positions defined earlier in

the stackup section.

Geometry bounding box information is found at the end of the file, this data is later used to create a

uniform fine mesh in the active layout part.

Ports
There is no port information included in the GDSII file, all ports must be added manually in the

openEMS model code. For the inductor example shown later in this document, a single port is

defined between the two terminals, resulting in 1-port data (*.s1p).

Impedance measured into the port can be converted to equivalent series resistance and series

inductance. The example Python script prints out that data at one user defined frequency.

Running the model file in Python
For the octagon inductor example discussed in this document, run python3 <modelname. py>

from the command line. This will first start the model viewer so that you can check the model and

mesh. When the model viewer is closed, simulation starts.

The actual simulation model for openEMS is an XML file that is created by the Python code after all

material and geometries and simulation settings are defined.

The code snippet shown below shows that part of the *.py model file:

Variables preview_only and postprocess_only are defined at the beginning of the script. By setting

one of these values to True, you can preview the model and mesh withoutout starting the simulator,

or you can postprocess existing simulation results (for plotting) without re-running the full

EMsimulation.

Plotting results and creating S-parameter output
When simulation is finished (which can take 60 minutes for the exampel shown here, depending on

mesh size and computer speed), postprocessing will read results and the plots defined in the script

are created. Also, the script calculates some inductor parameters for information.

At the end of the script, S11 results are saved in Touchstone *.s1p format.

Simulation model and resulting data, including S-parameters (here: *.s1p) are created in a

directory “data” below the model file. If simulation data already exists, you can created additional

plots by changing the script and re-running with variable “postprocessing_only = True”

Testcase: Octagon Inductor L3_2n0
To verify the simulation flow and accuracy of results, a 2nH octagon inductor in SG13G2 technology

was modelled for which reliable measurements are available.

Geometry parameters: N=2, w=12µm, s=3µm, Di=200µm, feedline spacing (center to center): 56.4µm

At only 3µm spacing between the turns, capacitance between the thick conductor metals will have

an impact on self resonance frequency.

Measurements are de-embedded using GSGSG calibration standards to remove the feed structure,

so that the inductor model contains only the inductor itself (pink boundary in screenshot above).

For simulation, an in-plane port is added between the feed lines on TopMetal1. In the AppCSXCAD

preview of the simulation model below, that port is shown in green.

From this 1-port simulation we get the impedance (series L, R and Q factor) for differential operation.

To compare that with measurements, 2-port measurement results are also converted to differential

1-port data between the inductor terminals.

Via arrays –effect of via array merging
Vias in the GDSII file had already been merged prior to GDSII export, so that we simulate the

bounding box of via arrays instead of all individual vias. Note that merging vias is usually not required

for simulation time in FDTD method, if the mesh size is on the order of via size anyway.

For accuracy, via array merging is not critical here, because each of the via arrays has 36 vias of 1.1

Ohm each = 0.03 Ohm resistance per via array. In the inductor path we have 4 via arrays in series, for

a total of 0.12 Ohm from all via arrays. Compared to the total inductor series resistance of a few

Ohms, we will not notice the small error from via array merging when comparing results.

Mesh size
For mesh size, we have to consider two aspects: accurate geometry sampling and skin effect.

At 3µm gap width and 12µm line width, a mesh size of 1.5µm will capture the geometry without

creating incorrect gap width along the xy-axis. However for the diagonal lines, we will have some

staircasing effects that can be reduced by using a smaller mesh size.

The second aspect is skin depth: for Aluminium, skin depth is approximately 0.5µm at 25 GHz and

0.25µm at 100 GHz. To accurately capture the skin effect where fields are pushed to the outer edges

of conductor cross section, we need sufficiently fine mesh density.

Different mesh sizes in the xy-plane were used for simulation, and compared to measurements.

Mesh in z-direction was not changed here, although mesh refine for skin effect would need to cover

all directions.

Inductance simulation vs. measured
For inductance, simulation results are almost identical between 1.0µm and 0.5µm mesh size. Only at

1.5µm we see a small change in SRF towards lower frequencies, which might be explained by

staircasing effects in the diagonal lines that change capacitance between the turns.

Inductance agrees well to measurements, except for a difference in SRF:

simulated SRF at 0.5µm mesh is 22.7 GHz, compared to 25.5 GHz in measurement.

This might be explained by the planar passivation used in simulation (all gap between turns

completely filled with SiO2), whereas the true passivation in hardware is conformal, with some air

between the turns. This would explain a higher SRF in measurement, due to lower capacitance

between the turns.

At only 3µm gap between the turns, this difference in inductor sidewall capacitance is visible in this

inductor testcase.

Resistance simulation vs. measured
For effective series resistance, simulation results are very close between 1.0µm and 0.5µm mesh size,

and 1.5µm is not much different.

Measured series resistance agrees very well at low frequency, and then shows slightly less increase

towards high frequencies. Much of this can be explained by the difference in SRF discussed earlier.

Q factor simulation vs. measured
Comparing the Q factor, we see good agreement between measured and simulated data, except for

the difference in SRF discussed earlier.

The frequency of peak Q agrees very well: 8.9 GHz simulated va. 9 .0 GHz measured. Peak Q of 23.5

measured vs. 21.2 simulated @ 0.5µm mesh size is also good agreement, if we consider that very

small changes in S-parameters means significant changes in Q factor at these large Q values.

When the vertical mesh (z-direction) is also refined, at 0.5µm mesh size in xy-direction, the peak Q

value increases from 21.2 to 22.3 at 8.9 GHz. That is really close to the measured peak Q of 23.5.

SRF does not change with this refined vertical mesh, as expected.

Simulation time
Using a fine mesh for simulation is more accurate, but requires more simulation time.

One reason is the larger total number of mesh cells, but there is one other influence in FDTD: this

method calculates the propagation of signals through the model in time domain, and the timestep

used for calculation must be small enough to capture propagation in the smallest mesh cell. If one

mesh cell in the model is really small, that determines the time step used for the entire calculation

of all cells.

If the mesh is very dense in one place (even if that is only one small mesh cell) that determines the

time step for the entire model, regardless of mesh density anywhere else in the model.

Memory required for simulation
Memory size is usually not a problem, because FDTD method is very memory efficient and required

RAM scales linear with total number of mesh cells.

Number of ports
For FDTD, we usually excite only one port at a time, so we need multiple simulation runs to get the

full S-matrix of a multi-port device. In this case, multiple XML files must be created by the script, each

with a different excited port and all other ports not excited.

See example openEMS\matlab\examples\transmission_lines\directional_coupler.m

Number of simulation frequencies
The number of simulation frequencies does not have an effect on simulation time or memory. This is

because the EM simulation in time domain (FDTD) is the same, and only FFT in postprocessing

changes.

