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1 Introduction

This vignette demonstrates the utility and flexibility of the R-package safe in conducting
tests of functional categories for gene expression studies. SAFE is a resampling-based
method of testing that is applicable to many different experimental designs and sets of
functional categories. SAFE extends and builds on an approach employed in Virtaneva et
al. (2001), and defined more rigorously in recent publications from Barry et al. (2005 and
2008). It is suggested that all users refer to these publications in order to understand the
SAFE terminology and principles in greater detail. We also ask that Barry et al. (2008) be
cited in publications that use the updated version of safe.

Several of the extensions to the safe package are itemized below, and relate to added
functionality discussed in Barry et al. (2008). Further, more functions and arguments are
provided which improve the input and output capabilities of the package. Manuscripts for
the citations mentioned above, and additional tutorials and examples are available at the
following URL.

http://www.duke.edu/~dinbarry/SAFE/

2 Changes in version 2.0

The following list describes the extended capability of safe version 2.0. Examples of their
implementation and the changes to functional arguments are illustrated in subsequent sec-
tions and detailed in help documents.

� Gene categories can be automatically generated within safe using the platform and
annotate arguments. This can build categories from GO ontologies, KEGG pathways
or PFAM domain, if a suitable Bioconductor annotation package exists for the array
type.

� The sparse matrix package SparseM is incorporated to ease the memory constraints
in working with large datasets and/or many hundreds of categories.

� Local statistics are added for analyses of paired data (local = "t.paired"), and a
Cox proportional hazard model for censored survival data (local = "z.COXPH").

� Global statistics are added for doing resampling-based tests of genelist-type analy-
ses (global = "Fisher") or (global = "Pearson") or mean difference (global =
"AveDiff"). See Barry et al. (2008) for further explanation of these global statistics.
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� Non-resampling based error estimates are available including a Bonferroni correction
or Holm’s step-down procedure for the family-wise error rate (error = "FWER.Bonf")
or (error = "FWER.Holm"), and the Benjamini-Hochberg step-up procedure to control
the false discovery rate (error = "FDR.BH").

� The gene-specific results within a given category can be displayed using gene.results.

� SAFE results can be plotted across the directed graph of Gene Ontology using safedag.

� A bootstrap-based test is included which we have shown to be more powerful, require
fewer resamples, and extendable to more complicated experimental designs with co-
variate information; see Barry et al. (2008) for more discussion of bootstrap-based
tests.

3 SAFE implementation and output

Here, we implement safe using the datasets and annotations in Bioconductor packages
listed below.

> library(safe)

> library(multtest)

> library(hu6800)

Every SAFE analysis requires three elements from a dataset: (1) gene expression data,
(2) a response vector associated with the samples, and (3) a matrix containing category
assignments that is either user-defined or built from annotation packages for the array
platform.

The expression data should be in the form of an m × n matrix, where appropriate
normalization and other pre-processing steps have been taken. It should be noted that in
the current version of safe, missing values are not allowed in the expression data, and must
be imputed prior to analysis. In this vignette, we will use the AML/ALL dataset from
Golub et al. (1999) as illustration.

> data(golub)

> dimnames(golub)[[1]] <- golub.gnames[, 3]

golub is a matrix of normalized expression estimates for 3,051 genes across 38 samples.
Row-names of Affymetrix hu6800 probeset IDs are added to golub. The row names are
necessary for building gene categories on the subset of probesets retained in golub. The
comparison of interest is between AML and ALL tumors subtypes. Tumor classification of
samples is provided in golub.cl ( AML = 1, ALL = 0 ). Section 4 will discuss the valid
forms of response vectors for the experimental designs allowed in safe.

> table(golub.cl)

golub.cl
0 1
27 11
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For the primary example in this vignette, the functional categories of interest will be
KEGG pathways. Pathway annotation for the Affymetrix array is available from the hu6800
package. For the sake of parsimony, we will only consider pathways that have at minimum
of 10 probeset members among the 3,051 in the golub dataset.

In version 2.0, the KEGG categories can now be automatically generated by the safe
function, and is discussed is more detail in section 8.

NOTE: to be more efficient while running multiple examples, we will also generate a
matrix of indicator variables for KEGG category membership externally from safe for
repeated use. When working with user-defined category matrices, it is strongly suggested
that appropriate names are given to all objects so the rows in the data and C.matrix
correspond, and the output from safe is properly labeled.

> C.mat <- getCmatrix(gene.list = as.list(hu6800PATH), as.matrix = TRUE,

+ present.genes = golub.gnames[, 3], min.size = 10)

Categories completed:20% 40% 60% 80% 100%
109 catgories formed

> dimnames(C.mat)[[2]] <- paste("KEGG:", dimnames(C.mat)[[2]],

+ sep = "")

> set.seed(12345)

> results <- safe(golub, golub.cl, platform = "hu6800", annotate = "KEGG",

+ min.size = 10)

The SAFE framework for testing gene categories is a two-stage process, where “local”
statistics assess the association between expression and the response of interest in a gene-
by-gene manner, and a“global” statistic measures the extent of association in genes assigned
to a category relative to their complement. As indicated, the default local statistic for the
2-sample comparison of AML and ALL is the Student’s t-statistic. An increased amount of
differential expression within a KEGG pathway is determined using a global Wilcoxon rank
sum statistic by default. Inference on each type of statistic is achieved through permutation.

> results

SAFE results:
Local: t.Student
Global: Wilcoxon
Method: permutation

Size Mean.Rank Emp.pvalue
KEGG:00860 15 2350.9 0.006
KEGG:04110 51 1943.8 0.01
KEGG:00970 16 2133.1 0.022
KEGG:00240 32 1858.6 0.024
KEGG:04640 69 1811.1 0.046

The basic output from safe is an object of class SAFE. Showing objects of class SAFE
will print details on the type of analysis and the results for categories that attain a certain

3



level of significance. Here, significant results are printed for the 6 categories that have
empirical p-values ≤ 0.05. For each category, the number of annotated genes in the dataset
is displayed along with the Wilcoxon global statistic and its empirical p-value. NOTE:
as in standard gene-by-gene analyses, it is of critical importance to account for multiple
comparisons when considering a number of categories simultaneously. Several options for
adjusted p-values are provided in safe, and discussed in detail in Section 6.

Gene-specific results within a category are now made more readily accessible through
the gene.results function. We believe this is very useful for investigators interested in
seeing which category members are contributing to its significance. The following example
demonstrates how the direction and magnitude of differential expression are displayed by
default. A list of two data.frames can also be returned with the argument print.it =
FALSE.

> gene.results(results, cat.name = "KEGG:00860")

Category gene-specific results:
Local: t.Student
Method: permutation

KEGG:00860 consists of 15 genes

Upregulated Genes
-----------------

Local.Stat Emp.pvalue
D26308_at 5.498 0.001
M14016_at 4.338 0.001
X06985_at 4.206 0.001
D00726_at 3.800 0.001
L20941_at 3.706 0.002
Y00451_s_at 3.837 0.003
Z83821_cds2_at 2.856 0.003
M60891_s_at 2.705 0.018
M95623_cds1_at 2.372 0.022
M15182_at 1.781 0.072
X63359_at 1.793 0.077
U34877_at 1.717 0.094
X89267_at 0.663 0.563

Downregulated Genes
-------------------

Local.Stat Emp.pvalue
X54326_at -4.322 0.001
U82010_rna1_at -2.125 0.041

4 Experimental Designs and Local Statistics

The basic 2-sample comparison in the example above is one of several experimental designs
that safe can automatically accommodate. The following examples illustrate the arguments
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needed for the variety of designs and statistics allowed. In addition to the internal local
statistics for generic comparisons, one can also employ user-defined functions in safe to
extend its utility.

For 2-sample comparisons, the response vector can either be given as a (0,1) vector, or
a character vector with two unique elements. It is important to note that when a character
vector is passed to safe as the response, the assignment of the first array becomes Group
1, and is printed as a warning. Thus, the sign of the t-statistics have flipped below. NOTE:
to decrease computation time, the permutation testing is bypassed by using the argument
Pi.mat = 1.

By default, a Student’s t-statistic is employed for 2-sample comparisons, but if unequal
variances are assumed, the Welch t-statistic can be selected using local="t.Welch".

> y.vec <- c("ALL","AML")[1+golub.cl]

> results2 <- safe(golub, y.vec, C.mat, Pi.mat = 1)

Warning: y.vec is not (0,1), thus Group 1 == ALL

> results3 <- safe(golub, golub.cl, C.mat, local="t.Welch", Pi.mat = 1)

> round(cbind(Student1 = results@local.stat[1:3],

+ Student2 = results2@local.stat[1:3],

+ Welch = results3@local.stat[1:3]),3)

Student1 Student2 Welch
AFFX-HUMISGF3A/M97935_MA_at 2.502 -2.502 1.759
AFFX-HUMISGF3A/M97935_MB_at 1.156 -1.156 0.910
AFFX-HUMISGF3A/M97935_3_at -0.110 0.110 -0.098

For multi-class designs, response vectors should be character or numeric vectors with
unique values for each group. If a character vector is supplied for y.vec, an ANOVA
F-statistic is computed by default; otherwise, an ANOVA test can be specified with the
argument local = "f.ANOVA" for numeric class assignments. Simple linear regression is
performed if a numeric vector with more than two unique values is supplied, or by using
the argument local = "t.LM".

Version 2.0 of safe is extended to include the paired t-test for matched experiments. For
this, samples are identified by (+/-) pairs of integers. Internally, the permutation algorithm
changes from random sampling without replacement, to randomly flipping the signs of each
paired sample.

> y.vec <- rep(1:19, 2) * rep(c(-1, 1), each = 19)

> y.vec

[1] -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19
[20] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

> results2 <- safe(golub, y.vec, C.mat, local = "t.paired", Pi.mat = 1)

In Barry et. al. (2005), SAFE was applied to a Cox proportional hazards model for
associating tumor gene expression to the survival of lung cancer patients. To include this
functionality in safe The argument local = "z.COXPH" will conduct a univariate Wald test
for each gene, with event times given as y.vec. This requires providing censoring indicators
as a logical or numeric vector, censor, in the argument args.local:
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> y.vec <- rexp(38)

> cens <- rep(0:1, c(30, 8))

> results2 <- safe(golub, y.vec, C.mat, local = "z.COXPH", Pi.mat = 1,

+ args.local = list(censor = cens))

In addition to these predefined local statistics, safe has been structured such that the
user can specify other statistics. In creating a function for computing local statistics, it
must take as input the matrix of expression data and response information as illustrated
below; additional information can be passed as objects in the optional list, args.local.
Here, we create a function for a one-sided Wilcoxon statistic for gene-specific increases in
expression in the AML subtype (this choice of local statistic should not be confused with
the default global statistic)

> local.Wilcoxon <- function(X.mat, y.vec, ...) {

+ return(function(data, trt = (y.vec == 1)) {

+ return(as.vector(trt %*% apply(data, 1, rank)))

+ })

+ }

> results2 <- safe(golub, golub.cl, C.mat, Pi.mat = 1, local = "Wilcoxon")

> cbind(Student1 = round(results@local.stat[1:3],3),

+ Rank.Sum=results2@local.stat[1:3])

Student1 Rank.Sum
AFFX-HUMISGF3A/M97935_MA_at 2.502 269
AFFX-HUMISGF3A/M97935_MB_at 1.156 232
AFFX-HUMISGF3A/M97935_3_at -0.110 194

As a resampling-based method, safe is computationally intensive, so considerations of
efficiency should made in programming user-defined functions for local and global statistics.
The above example, while simple, is much slower than the default run of safe because of
the apply function. Likewise, for Barry et. al. (2005), a separate and faster function was
written in C for solving the iterative solution to the univariate Cox proportional hazards
model. Interfacing with C or another foreign language is highly suggested for intensive
computational settings. A complete discussion of how to design and include user-defined
functions will not be included in this vignette.

5 Alternative Global Statistics

In the above SAFE analyses, a functional category was compared to its complement set of
genes through a Wilcoxon rank sum statistic. The merits of using rank-based statistics for
functional analysis are discussed in more detail in Barry et al. (2005). However, the the
SAFE framework naturally extends to other statistics used in gene category analyses. This
way one more properly account for gene correlation in testing categories (see Barry et al.
2008).

By default, safe conducts two-sided tests, whereby one takes the absolute value of local
statistics such as a Student’s t, before ranking genes. In this way, one can identify categories
showing both consistent up-regulation, down-regulation, and also bi-directional differential
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expression. To conduct one-sided tests, one must specify args.global = list(one.sided=T)
to consider only genes in the positive direction to be significant.

One popular way of examining categories is through “gene-list enrichment” methods,
that were developed as post hoc means of testing once the genes with significant differential
expression had been identified. These methods use a global statistics that only consider the
dichotomous outcomes of gene-specific hypothesis tests, and typically use Fisher’s Exact
test, or Pearson’s test for a difference in proportions. p-values are often times extremely anti-
conservative under the false assumption of gene independence, which can lead to spurious
results. For this reason, we have extended SAFE to these global statistics such that valid
p-values can be obtained. In using the gene-list type global statistics, one must specify
either the list length, as in the example below, or a (one- or two-sided) cut-off value:

> set.seed(12345)

> results2 <- safe(golub, golub.cl, C.mat, global = "Fisher", args.global = list(one.sided = F,

+ genelist.length = 200))

> results2

SAFE results:
Local: t.Student
Global: Fisher
Method: permutation

Size Num.Reject Emp.pvalue
KEGG:04640 69 12 0.008
KEGG:04110 51 9 0.029
KEGG:05120 37 6 0.039
KEGG:00860 15 4 0.04
KEGG:00590 20 4 0.045

The following calculation demonstrates the inappropriate p-value one would get from a
naive application of Fisher’s Exact test to KEGG:04640.

> 1 - phyper(12 - 1, 70, 3051 - 12, 200)

[1] 0.001391427

Alternatively, a one-sided cutoff value for local statistics is declared by the argument
args.global = list(one.sided = TRUE, genelist.cutoff=2.0). Further, the Pearson
test for difference in proportions (which is equivalent to a Chi-squared test) can be specified
by the argument global="Pearson", and the cutoff for the gene-list is specified in the same
manners as shown above.

One can also substitute the average difference in local statistics as a measure of category-
wide increases in differential expression using the argument global="AveDiff". An alter-
native non-parametric 2-sample comparison that is also valid (albeit more computationally
intensive) is the Kolmogorov-Smirnoff test; a computationally inefficient test can be speci-
fied as global="Kolmogorov".

See http://www.duke.edu/~dinbarry/SAFE/ for further examples that use these alter-
native global statistics.
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6 Adjusting for multiple-testing in SAFE

As in standard gene-by-gene analyses, it is important to account for multiple comparisons
when considering a set of categories. Since SAFE is a resampling-based test, permutation-
based error rate methods have been incorporated into safe when applicable. Shown below
are the results from the first example once multiple testing is accounted for using the
Yekutieli-Benjamini method of estimating the false discovery rate (FDR).

> set.seed(12345)

> results <- safe(golub, golub.cl, C.mat, error = "FDR.YB", alpha = 0.25)

> results

SAFE results:
Local: t.Student
Global: Wilcoxon
Method: permutation
Error: FDR.YB

Size Mean.Rank Emp.pvalue Adj.pvalue
KEGG:00860 15 2350.9 0.004 0.2183

NOTE: By default, when correcting for multiple testing, the cutoff for display changes
from categories with empirical p-value less than 0.05 to those with adjusted p-values less
than 0.1. The cutoff for display can be changed with the alpha argument in safe

As shown above, the most significant KEGG pathways are only marginally significant
in their association to leukemia subtype after accounting for multiple comparisons through
the FDR. In addition to the Yekutieli-Benjamini FDR estimate, safe can use the permu-
tation algorithm to estimate the family-wise error rate with the Westfall-Young method
(error = "FWER.WY"). Although we feel these two permutation-based procedures for con-
trolling error are superior by empirically accounting for correlation among tests, one can
also apply tradition methods including a Bonferroni correction or Holm’s step-down pro-
cedure for the family-wise error rate (error = "FWER.Bonf") or (error ="FWER.Holm"),
and the Benjamini-Hochberg step-up procedure to control the false discovery rate (error
= "FDR.BH"). These may be useful when comparing results from SAFE with other non-
resampling-based procedures, or when using the bootstrap algorithms discussed in the fol-
lowing section.

7 Bootstrap-based tests in SAFE

In Barry et al. (2008), a bootstrap-based version of SAFE is proposed that is shown to
generally be more powerful, and applicable to a wider set of experimental designs. Two
basic methods of hypothesis testing are available: 1) The argument (method="bootstrap")
or (method="bootstrap.t"), will invoke pivot tests to look for the exclusion of a null value
from Gaussian confidence intervals based on resampled estimates of the mean and variance
of the global statistic; 2) alternatively (method="bootstrap.q"), will invoke tests based
on the exclusion of a null value from the alpha-quantile interval of the resampled global
statistic.
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The following illustrates that more categories are identified as marginally significant
under bootstrap-resampling version of SAFE.

> set.seed(12345)

> results2 <- safe(golub, golub.cl, C.mat, method = "bootstrap",

+ error = "FDR.BH")

> results2

SAFE results:
Local: t.Student
Global: Wilcoxon
Method: bootstrap
Error: FDR.BH

Size Mean.Rank Emp.pvalue Adj.pvalue
KEGG:00970 16 2133.1 3e-04 0.0216
KEGG:04110 51 1943.8 5e-04 0.0216
KEGG:04920 30 1822.1 6e-04 0.0216
KEGG:04640 69 1811.1 0.0014 0.039
KEGG:00860 15 2350.9 0.0027 0.0584

Based on the requirements for bootstrap-based hypothesis testing (see Barry et al. 2008
for explanation), they can only be performed using (global %in% c("Wilcoxon", "AveD-
iff", "Pearson")). Further the permutation-based error rate estimates are no longer
applicable, so that the options available are (error %in% c("FDR.BH", "FWER.Bonf",
"FWER.Holm", "none")).

By default, the data are resampled 1000 times when selecting method %in% c("permutation",
"bootstrap.q") though often times > 10-fold more resamples are suggested if there are
several hundred categories being investigated. The Gaussian bootstrap-based test has the
added advantage that empirical p-values are not bounded by the total number of resam-
ples taken. Thus, small p-values can be obtained without intensive computational effort;
this is of particular importance when overcoming stringent correction for high degrees of
multiple-testing. As such, 200 resamples are taken for (method = "bootstrap"), and have
been demonstrated to provide sufficient error control.

Also, permutation-based p-values for local statistics are no longer obtained under boot-
strap resampling. Instead, empirical p-values can be obtained using the exclusion of 0 from
quantile intervals with (args.local = list(boot.test = "q")) and Gaussian intervals
with (args.local = list(boot.test = "t")). A null value of 0 relates to no differen-
tial expression in the supplied local statistics, however this must be reasonable for any
user-defined statistics (e.g. it does not apply for a Kolmogorov-Smirnov test statistic).

8 Sources of Functional Categories

In the above sections, functional categories were derived from KEGG pathways as provided
in the package hu6800. Functional categories can also be derived from other sources of
information in the same package. The Protein Families database can also be used to generate
categories of genes that share homologous domains:
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> results2 <- safe(golub, golub.cl, platform = "hu6800", annotate = "PFAM",

+ min.size = 10, method = "bootstrap")

Building PFAM categories from hu6800PFAM
Categories completed:20% 40% 60% 80% 100%
79 catgories formed

100 bootstrap resamples completed
200 bootstrap resamples completed

> results2

SAFE results:
Local: t.Student
Global: Wilcoxon
Method: bootstrap

Size Mean.Rank Emp.pvalue
PFAM:02985 13 2113.8 4e-04
PFAM:00227 12 2201.0 0.0015
PFAM:00048 20 1988.5 0.0031
PFAM:01833 11 2231.2 0.0035
PFAM:00307 20 2121.8 0.0037
PFAM:00533 10 1880.5 0.0057
PFAM:00089 24 1753.0 0.017
PFAM:00036 37 1815.2 0.0179
PFAM:00271 19 1873.1 0.0399
PFAM:00433 19 1808.3 0.0452

Gene Ontology is also available from hu6800 and other Bioconductor metadata pack-
ages. annotate = "GO.ALL" will form categories from all three ontologies, while “GO.CC”,
“GO.BP”, and “GO.MF” will work with Cellular Compartment, Biological Process and
Molecular Function respectively. It is important to note that in the hierarchical structure
of the GO vocabularies, a gene category is generally thought of as containing the set of
genes directly annotated to a term, and also to any terms beneath it in the ontology. The
C.matrix of each can be externally built with the getCmatrix function as follows (in a much
more efficient manner than in SAFE 1.0).

> GO.list <- as.list(hu6800GO2ALLPROBES)

> C.mat.CC <- getCmatrix(keyword.list = GO.list, GO.ont = "CC",

+ present.genes = dimnames(golub)[[1]], min.size = 10, max.size = 200)

Categories completed:20% 40% 60% 80% 100%
155 catgories formed

> results2 <- safe(golub, golub.cl, C.mat.CC, method = "bootstrap")

100 bootstrap resamples completed
200 bootstrap resamples completed
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9 Plotting SAFE results

For a single category, we have proposed that the differential expression of genes be plotted
as a SAFE-plot (Barry et al., 2005). Shown below is the SAFE-plot for the most significant
KEGG pathway, which is the default output of safeplot when a object of class SAFE is
provided.

> safeplot(results)
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SAFE-plots of other categories can be generated with the argument cat.name, as shown
below for a non-significant category.

> safeplot(results, cat.name = "KEGG:00010")
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SAFE-plots show the cumulative distribution function (CDF) for the ranked local statis-
tics from a given category (solid line). A significant category will have more extreme as-
sociations to the response of interest than its complement, resulting in either a right-ward,
left-ward, or bidirectional shift in the CDF away from the unit line (dashed line). The
shaded regions of the plot correspond to the genes that pass a nominal level of significance
(empirical p-values ≤ 0.05 by default). Also, the genes in the category are shown as tick
marks along the top of the graph, and depending on the category size, either all genes in
the category are labeled, or only ones in the shaded region of the graph. Thus SAFE-plots
show that the KEGG pathways 00860 and 00590 show upregulation in AML on average,
while 00970 shows downregulation in AML on average, and 00010 shows no consistent trend
of differential expression.

Finally, Gene Ontology is a unique structured vocabulary where genes are annotated
from broad to narrow levels of classification in a directed acyclic graph (DAG). As such,
many categories are highly related in their gene membership, and visualizing results across
the ontology can be useful in ascertaining the relationship among multiply significant cate-
gories. The following function interacts with the GOstats and Rgraphviz packages in order
to overlay SAFE results onto the DAG structure in a color-metric manner. By default,
nodes with unadjusted p-values less than 0.001 are drawn in blue; less than 0.01 are drawn
in green; and less than 0.1 are drawn in red. User-defined cutoffs for the three colors can be
specified using the argument color.cutoffs. Further illustrations are provided in example
scripts available at http://www.duke.edu/~dinbarry/SAFE/
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> safedag(results2, filter = 1)
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And one can also zoom in on parts of the DAG by specifying a node to be the top of
the graph.

> safedag(results2, filter = 1, top = "GO:0044428")
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