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1 Overview

This document gives an overview of the MANOR package, which is devoted to the normalization
of Array Comparative Genomic Hybridization (array-CGH) data(9; 7; 8; 4; 3). Normalization is
a crucial step of microarray analysis which aims at separating biologically relevant signal from
experimental artifacts. Typical input data is a file generated by an image analysis software such
as Genepix or SPOT (5), containing several measurements for each biological variable of interest,
i.e. several replicated spots for each clone; this spot-level data is filtered with various statistical
criteria (including a spatial bias detection step which is described in (6)), and aggregated into
clean clone-level data.

Using the arrayCGH framework developped in the package GLAD, which is available under
Bioconductor. We propose the formalism of flags to handle clone and spot filtering: the core
of the normalization process consists in applying to an arrayCGH object a list of flags that
successively exclude from the data all irrelevant spots or clones.

We also define quality scores (qscores) allowing to evaluate the quality of an array after
normalization: these scores can be used directly to compare the quality of different arrays after
the same normalization process, or to compare the efficiency of different normalization processes
on a given array or on a given batch of arrays.

This document is organized as follows: after a short description of optional items we add to
arrayCGH objects (section 2, we introduce the classes flag (section 3) and qscore (section 4)
with their attributes and dedicated methods; then we describe two useful graphical representa-
tion functions (section 6), namely genome.plot and report.plot; Afterwards we give a short
description of the array-CGH datasets we provide (section 5); finally we illustrate the usage of
MANOR by a sample R script (section 7).

[1] "Have fun with GLAD"
[1] "Now entering MANOR..."

Due to space limitations, figures are not included in this vignette. A full html version of this
document is available on Institut Curie Bioinformatics Group web page:
http://bioinfo.curie.fr/projects/manor
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2 arrayCGH class

For the purpose of normalization we have added several optional items to the arrayCGH objects
defined in the R package GLAD , including:

cloneValues a data frame with aggregated (clone-level) information, quite similar to pro-
fileCGH objects of GLAD

id.rep the name of a variable common to cloneValues and arrayValues, that can be used as
an identifier for the replicates.

3 flag class

We view the process of filtering microarray data, and especially array-CGH data, as a succession
of steps consisting in excluding from the data unreliable spots or clones (according to criteria
such as signal to noise ratio or replicate consistency), and correcting signal values from various
non-biologically relevant sources of variations (such as spotting effects, spatial effects, or intensity
effects).

We introduce the formalism of flags to deal with this filtering issue: in the two following
subsections, we describe the attributes and methods devoted to flag objects.

3.1 Attributes

A flag object f is a list whose most important items are a function (f$FUN) that has to be applied
to an object of class arrayCGH , and a character value (f$char) that will allow us to identify
the flagged spots. Optionally further arguments can be passed to f$FUN via f$args, and a label
can be added via f$label. The examples of this subsection use the function to.flag, which is
explained in subsection 3.2.

3.1.1 Exclusion and correction flags

As stated above, we make the distinction between flags that exclude spots from further analysis
and flags that correct signal values:

exclusion flags If f is an exclusion flag, f$FUN returns a list of spots to exclude and f$char is
a non NULL value that quickly identifies the flag. In the following example, we define SNR.flag,
a flag objects that excludes spots whose signal to noise ratio lower than the threshold snr.thr.

> SNR.FUN <- function(arrayCGH, var.FG, var.BG, snr.thr) {

+ which(arrayCGH$arrayValues[[var.FG]] < arrayCGH$arrayValues[[var.BG]] *

+ snr.thr)

+ }

> SNR.char <- "B"

> SNR.label <- "Low signal to noise ratio"

> SNR.flag <- to.flag(SNR.FUN, SNR.char, args = alist(var.FG = "REF_F_MEAN",

+ var.BG = "REF_B_MEAN", snr.thr = 3))
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correction flags If f is a correction flag, f$FUN returns an object of type arrayCGH and
f$char is NULL. In the following example, global.spatial.flag computes a spatial trend on
the array, and corrects the signal log-ratios from this spatial trend:

> global.spatial.FUN <- function(arrayCGH, var) {

+ if (!is.null(arrayCGH$arrayValues$Flag))

+ arrayCGH$arrayValues$LogRatio[which(arrayCGH$arrayValues$Flag !=

+ "")] <- NA

+ Trend <- arrayTrend(arrayCGH, var, span = 0.03, degree = 1,

+ iterations = 3)

+ arrayCGH$arrayValues[[var]] <- Trend$arrayValues[[var]] -

+ Trend$arrayValues$Trend

+ arrayCGH

+ }

> global.spatial.flag <- to.flag(global.spatial.FUN, args = alist(var = "LogRatio"))

3.1.2 Permanent and temporary flags

We introduce an additional distinction between permanent and temporary flags in order to deal
with the case of spots or clone that are known to be biologically relevant, but that have not to
be taken into account for the computation of a scaling normalization coefficient. For example in
breast cancer, when the reference DNA comes from a male, we expect a gain of the X chromosome
and a loss of the Y chromosome in the tumoral sample, and we do not want log-ratio values for
X and Y chromosome to bias the estimation of a scaling normalization coefficient.

Any flag object therefore contains an argument called type, which defaults to "perm" (per-
manent) but can be set to "temp" in the case of a temporary flag. In the following example,
chromosome.flag is a temporary flag that identifies clones correcponding to X and Y chromo-
some:

> chromosome.FUN <- function(arrayCGH, var) {

+ var.rep <- arrayCGH$id.rep

+ w <- which(!is.na(match(as.character(arrayCGH$cloneValues[[var]]),

+ c("X", "Y"))))

+ l <- arrayCGH$cloneValues[w, var.rep]

+ which(!is.na(match(arrayCGH$arrayValues[[var.rep]], as.character(l))))

+ }

> chromosome.char <- "X"

> chromosome.label <- "Sexual chromosome"

> chromosome.flag <- to.flag(chromosome.FUN, chromosome.char, type = "temp.flag",

+ args = alist(var = "Chromosome"), label = chromosome.label)

3.2 Methods

3.2.1 to.flag

The function to.flag is used of the creation of flag objects, with the specificities described in
subsection 3.1.

> args(to.flag)
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3.2.2 flag.arrayCGH

Function flag.arrayCGH simply applies function flag$FUN to a flag object for filtering, and
returns:

� a filtered array with field arrayCGH$arrayValues$Flag filled with the value of flag$char
for each spot to be excluded from further analysis in the case of an exclusion flag;

� an array with corrected signal value in the case of a correction flag.

> args(flag.arrayCGH)

3.2.3 flag.summary

Function flag.summary computes spot-level information about normalization (including the
number of flagged spots and numeric normalization parameters), and displays it in a convenient
way. This function can either be applied to an object of type arrayCGH :

> args(flag.summary.arrayCGH)

or to plain spot-level information, by using the default method:

> args(flag.summary.default)

4 qscore class

As we point out in the introduction of this document, evaluating the quality of an array-CGH
after normalization is of major importance, since it helps answering the following questions:

- which is the best normalization process ?

- which array is of best quality ?

- what is the quality of a given array ?

To this purpose we define quality scores (qscores), which attributes and methods are expli-
aned in the two following subsections.

4.1 Attributes

A qscore object qs is a list which contains a function (qs$FUN), a name (qs$name), and option-
nally a label (qs$label) and arguments to be passed to qs$FUN (qs$args). In the following
example, the quality score pct.spot.qscore evaluates the percentage of spots that have passed
the filtering steps of normalization; it provides an evaluation of the array quality for a given
normalization process. The function to.qscore is explained in subsection 4.2.

> pct.spot.FUN <- function(arrayCGH, var) {

+ 100 * sum(!is.na(arrayCGH$arrayValues[[var]]))/dim(arrayCGH$arrayValues)[1]

+ }

> pct.spot.name <- "SPOT_PCT"

> pct.spot.label <- "Proportion of spots after normalization"

> pct.spot.qscore <- to.qscore(pct.spot.FUN, name = pct.spot.name,

+ args = alist(var = "LogRatioNorm"), label = pct.spot.label)
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4.2 Methods

4.2.1 to.qscore

The function to.qscore is used of the creation of qscore objects, with the specificities described
in subsection 4.1.

> args(to.qscore)

4.2.2 qscore.arrayCGH

Function qscore.arrayCGH simply computes and returns the value of qscore for arrayCGH :

> args(qscore.arrayCGH)

4.2.3 qscore.summary.arrayCGH

Function qscore.summary.arrayCGH computes all quality scores of a list (using function qs-
core.arrayCGH), and displays the results in a convenient way.

> args(qscore.summary.arrayCGH)

5 Data

We provide examples of array-CGH data coming from two different platforms. These data
illustrate the need for appropriate within-array normalization methods, and especially the need
for methods that handle spatial effects.

> data(spatial)

For each array we provide raw data (generated by Genepix or SPOT (5)), as well as the
corresponding arrayCGH object before and after normalization.

These arrays illustrate the main source of non biological variability of these data sets, namely
spatial effects. We classify these effects into two non exclusive types: local bias and global
gradients. In the case of local bias, entire areas of the array show lower or higher signal values
than the rest of the array, with no biological explanation (array edge); to our experience, this
particular type of artifact roughly affects an array out of two. In the case of global gradients, the
array shows an obvious signal gradient from one side of the slide to the other (array gradient).

5.1 edge

Bladder cancer tumors were collected at Henri Mondor Hospital (Créteil, France) (1) and hy-
bridized on arrays CGH composed of 2464 Bacterian Artificial Chromosomes (F. Radvanyi, D.
Pinkel et al., unpublished results); each of these BAC is spotted three times on the array, and
the three replicates are neighbors on the array. We give the example of an arrayCGH with local
spatial effects : high log-ratios cluster in the upper-right corner of the array.

> data(spatial)

> arrayPlot(edge, "LogRatio", main = "Local spatial effects", zlim = c(-1,

+ 1), mediancenter = TRUE, bar = "h")
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5.2 gradient

We give the example of two arrays from a breast cancer data set from Institut Curie (O. Delattre,
A. Aurias et al., unpublished results). These arrays consist of 3342 clones, organized as a 4× 4
superblock that is replicated three times. This data set is affected by the two types of spatial
effects: local bias areas (as for the previous data set), and spatial gradients from one side of the
array to the other. The array gradient illustrates this second type of spatial effect.

> data(spatial)

> arrayPlot(gradient, "LogRatio", main = "Spatial gradient", zlim = c(-2,

+ 2), mediancenter = TRUE, bar = "h")

6 Graphical representations

As for any type of data analysis, appropriate graphical representations are of major importance
for data understanding. Array-CGH data are typically ratios or log-ratios, that correspond to
locations on the array (spots) and to locations on the genome (clones). Therefore in the case of
array-CGH data normalization, two complementary types of representations are necessary:

- a dotplot of the array, that takes into account the array design. This is a crucial tool in
the case of array-CGH data normalization for two reasons: first it provides an easy way to
identify spatial artifacts such as row, column, print-tip group effects, as well as spatial bias
and spatial gradients on the array; then it allows a post-normalization control, to ensure
that the normalization procedure reached its goals, i.e. significantly reduced the observed
effects.

- a plot of the signal values along the genome, which gives a visual impression of the array
quality on the edge of biological relevance; comparing the signal shape before and after
normalization provides a qualitative idea of the imrpovement in data quality provided by
the normalization method.

The arrayPlot method provided by the GLAD package and based on maImage (2) addresses
the first point; we add two methods to this toolbox:

- the genome.plot method displays a plot of any signal value (e.g. log-ratios) along the
genome;

- the report.plot method successively calls arrayPlot and genome.plot in order to pro-
vide a simultaneous vision of the data using the two relevant metrics (array and genome),
with approproate color scales.

6.1 genome.plot

This method provides a convenient way to plot a given signal along the genome; the signal values
can be colored according to their level (which is the default comportment of the function) or to
the level of any other variable, in the following way:

- if the variable is numeric (e.g. signal to noise ratio), the function assumes that it is a
quantitative variable and adapts a color palette to its values
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> data(spatial)

> genome.plot(edge.norm, chrLim = "LimitChr")

- if the variable is not numeric (e.g. the copy number variation as estimated by GLAD , or
a character variable making the disitnction between flagged and un-flagged clones), the
function counts the number of modalities of the variable and defines an appropriate color
scale using the rainbow function.

> data(spatial)

> edge.norm$cloneValues$ZoneGNL <- as.factor(edge.norm$cloneValues$ZoneGNL)

> genome.plot(edge.norm, col.var = "ZoneGNL", chrLim = "LimitChr")

6.2 report.plot

This method successively calls arrayPlot and genome.plot; it checks for color scale consistency
between plots, and can automatically set the plot layout.

> data(spatial)

> report.plot(edge.norm, chrLim = "LimitChr", zlim = c(-1, 1))

7 Sample MANOR sessions

In this section we illustrate the use of MANOR on two CGH arrays. Our examples contain
several steps, including data preparation, flag definition, array normalization, quality criteria
definition, and quality assessment of the array, and highlights of the normalization process.

7.1 array edge

7.1.1 Data preparation: import

> dir.in <- system.file("data", package = "MANOR")

> spot.names <- c("LogRatio", "RefFore", "RefBack", "DapiFore",

+ "DapiBack", "SpotFlag", "ScaledLogRatio")

> clone.names <- c("PosOrder", "Chromosome")

> edge <- import(paste(dir.in, "/edge.txt", sep = ""), type = "spot",

+ spot.names = spot.names, clone.names = clone.names, add.lines = TRUE)

7.1.2 Normalization: norm.arrayCGH

> data(flags)

> data(spatial)

> local.spatial.flag$args <- alist(var = "ScaledLogRatio", by.var = NULL,

+ nk = 5, prop = 0.25, thr = 0.15, beta = 1, family = "gaussian")

> flag.list <- list(spatial = local.spatial.flag, spot = spot.corr.flag,

+ ref.snr = ref.snr.flag, dapi.snr = dapi.snr.flag, rep = rep.flag,

+ unique = unique.flag)

> edge.norm <- norm.arrayCGH(edge, flag.list = flag.list, FUN = median,
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+ na.rm = TRUE)

> edge.norm <- sort.arrayCGH(edge.norm, position.var = "PosOrder")

> report.plot(edge.norm, chrLim = "LimitChr", zlim = c(-1, 1))

7.1.3 Quality assessment: qscore.summary.arrayCGH

> profileCGH <- as.profileCGH(edge.norm$cloneValues)

> profileCGH <- daglad(profileCGH, smoothfunc = "lawsglad", lkern = "Exponential",

+ model = "Gaussian", qlambda = 0.999, bandwidth = 10, base = FALSE,

+ round = 2, lambdabreak = 6, lambdaclusterGen = 20, param = c(d = 6),

+ alpha = 0.001, msize = 5, method = "centroid", nmin = 1,

+ nmax = 8, amplicon = 1, deletion = -5, deltaN = 0.1, forceGL = c(-0.15,

+ 0.15), nbsigma = 3, MinBkpWeight = 0.35, verbose = FALSE)

> edge.norm$cloneValues <- as.data.frame(profileCGH)

> edge.norm$cloneValues$ZoneGNL <- as.factor(edge.norm$cloneValues$ZoneGNL)

> data(qscores)

> qscore.list <- list(smoothness = smoothness.qscore, var.replicate = var.replicate.qscore,

+ dynamics = dynamics.qscore)

> edge.norm$quality <- qscore.summary.arrayCGH(edge.norm, qscore.list)

> edge.norm$quality

7.1.4 Highlights of the normalization process: html.report

Function html.report generates an HTML file with key features of the normalization process:
array image and genomic profile before and after normalization, spot-level flag report, and value
of the quality criteria.

> html.report(edge.norm, dir.out = ".", array.name = "an array with local bias",

+ chrLim = "LimitChr", light = FALSE, pch = 20, zlim = c(-2,

+ 2), file.name = "edge")

The results of the previous command can be viewed in the file edge.html.

7.2 array gradient

Here we give the example of the normalization of an array with spatial gradient.

7.2.1 Data preparation: import

> spot.names <- c("Clone", "FLAG", "TEST_B_MEAN", "REF_B_MEAN",

+ "TEST_F_MEAN", "REF_F_MEAN", "ChromosomeArm")

> clone.names <- c("Clone", "Chromosome", "Position", "Validation")

> ac <- import(paste(dir.in, "/gradient.gpr", sep = ""), type = "gpr",

+ spot.names = spot.names, clone.names = clone.names, sep = "\t",

+ comment.char = "@", add.lines = TRUE)

> ac$arrayValues$F1 <- log(ac$arrayValues[["TEST_F_MEAN"]], 2)

> ac$arrayValues$F2 <- log(ac$arrayValues[["REF_F_MEAN"]], 2)
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> ac$arrayValues$B1 <- log(ac$arrayValues[["TEST_B_MEAN"]], 2)

> ac$arrayValues$B2 <- log(ac$arrayValues[["REF_B_MEAN"]], 2)

> Ratio <- (ac$arrayValues[["TEST_F_MEAN"]] - ac$arrayValues[["TEST_B_MEAN"]])/(ac$arrayValues[["REF_F_MEAN"]] -

+ ac$arrayValues[["REF_B_MEAN"]])

> Ratio[(Ratio <= 0) | (abs(Ratio) == Inf)] <- NA

> ac$arrayValues$LogRatio <- log(Ratio, 2)

> gradient <- ac

7.2.2 Normalization: norm.arrayCGH

> data(spatial)

> data(flags)

> flag.list <- list(local.spatial = local.spatial.flag, spot = spot.flag,

+ SNR = SNR.flag, global.spatial = global.spatial.flag, val.mark = val.mark.flag,

+ position = position.flag, unique = unique.flag, amplicon = amplicon.flag,

+ chromosome = chromosome.flag, replicate = replicate.flag)

> gradient.norm <- norm.arrayCGH(gradient, flag.list = flag.list,

+ FUN = median, na.rm = TRUE)

> gradient.norm <- sort.arrayCGH(gradient.norm)

> genome.plot(gradient.norm, chrLim = "LimitChr")

7.2.3 Quality assessment: qscore.summary.arrayCGH

> profileCGH <- as.profileCGH(gradient.norm$cloneValues)

> profileCGH <- daglad(profileCGH, smoothfunc = "lawsglad", lkern = "Exponential",

+ model = "Gaussian", qlambda = 0.999, bandwidth = 10, base = FALSE,

+ round = 2, lambdabreak = 6, lambdaclusterGen = 20, param = c(d = 6),

+ alpha = 0.001, msize = 5, method = "centroid", nmin = 1,

+ nmax = 8, amplicon = 1, deletion = -5, deltaN = 0.1, forceGL = c(-0.15,

+ 0.15), nbsigma = 3, MinBkpWeight = 0.35, verbose = FALSE)

> gradient.norm$cloneValues <- as.data.frame(profileCGH)

> gradient.norm$cloneValues$ZoneGNL <- as.factor(gradient.norm$cloneValues$ZoneGNL)

> data(qscores)

> qscore.list <- list(smoothness = smoothness.qscore, var.replicate = var.replicate.qscore,

+ dynamics = dynamics.qscore)

> gradient.norm$quality <- qscore.summary.arrayCGH(gradient.norm,

+ qscore.list)

> gradient.norm$quality

7.2.4 Highlights of the normalization process: html.report

Function html.report generates an HTML file with key features of the normalization process:
array image and genomic profile before and after normalization, spot-level flag report, and value
of the quality criteria.
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> html.report(gradient.norm, dir.out = ".", array.name = "an array with spatial gradient",

+ chrLim = "LimitChr", light = FALSE, pch = 20, zlim = c(-2,

+ 2), file.name = "gradient")

The results of the previous command can be viewed in the file gradient.html.

8 Session information

The version number of R and packages loaded for generating this document are:

> sessionInfo()

R version 2.6.0 (2007-10-03)
i386-pc-mingw32

locale:
LC_COLLATE=English_United States.1252;LC_CTYPE=English_United States.1252;LC_MONETARY=English_United States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252

attached base packages:
[1] tcltk tools stats graphics grDevices utils datasets
[8] methods base

other attached packages:
[1] MANOR_1.10.0 GLAD_1.12.0 aws_1.3-3.1
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