
Biobase development and the new eSet

Martin T. Morgan∗

7 August, 2006

Revised 4 September, 2006 – featureData slot

1 Introduction

These notes help developers who are interested in using and extending the eSet class hierarchy, and
using features recently added to Biobase. The information here is not useful to regular users of Biobase.

Recent changes (see the date in the title of this document!) to Biobase introduce new structure and
approaches to eSet. The changes make it easy for developers to creatively use and extend the eSet
class hierarchy. This document outlines recent changes, and illustrates how developers can exploit the
new structure to efficiently use and extend eSet.

The document starts with a brief description of the motivation for change, and a comparison of the
old and new eSets and related functionality (e.g.,the Versioned class and updateObject methods). We
then illustrate how eSet can be extended to handle additional types of data, and how new methods
can exploit the eSet class hierarchy. We conclude with a brief summary of lessons learned, useful
developer-related side-effects of efforts to revise eSet, and possible directions for future development.

2 Comparing old and new

What is an eSet?

� Coordinate high through-put (e.g., gene expression) and phenotype data.

� Provide common data container for diverse Bioconductor packages.

Motivation for change.

� What was broken? Complex data structure. Inconsistent object validity. No straight-forward way
to extend eSet to new data types.

� What forward-looking design goals did we have? Flexible storage model. Class hierarchy to
promote code reuse and facilitate extension to new data objects. Methods for updating serialized
instances.

Key features in the redesign.

� Simplified data content.

� Structured class hierarchy .

� Alternative storage modes.
∗mailto:mtmorgan@fhcrc.org

1

mailto:mtmorgan@fhcrc.org

� More validity checking.

� Conversion of example data in Biobase, and many other data sets elsewhere in Bioconductor, to
ExpressionSet .

� Versioned class information (in the development branch).

� updateObject methods (in the development branch).

3 A quick tour

3.1 The eSet object: high-throughput experiments

Purpose.

� Coordinate and contain high-throughput genomic data.

Structure: virtual base class.

> getClass("eSet")

Virtual Class

Slots:

Name: assayData phenoData featureData
Class: AssayData AnnotatedDataFrame AnnotatedDataFrame

Name: experimentData annotation .__classVersion__
Class: MIAME character Versions

Extends:
Class "VersionedBiobase", directly
Class "Versioned", by class "VersionedBiobase", distance 2

Known Subclasses: "ExpressionSet", "NChannelSet", "MultiSet", "SnpSet"

� assayData: high-throughput data.

� phenoData: sample covariates.

� featureData: feature covariates.

� experimentData: experimental description.

� annotation: assay description.

� See below, and ?"eSet-class"

3.1.1 assayData: high-throughput data

Purpose.

� Efficiently and flexibly contain high-volume data.

Structure: list , environment , or lockEnvironment class union.

2

� Each element of list / environment / lockEnvironment is a matrix

� Rows: features, e.g., gene names.

� Columns: samples represented on each chip.

� All matricies must have the same dimensions, row names, and column names.

� Subclasses determine which matricies must be present.

� See ?"AssayData-class"

3.1.2 phenoData: sample covariates

Purpose.

� Contain and document sample covariates.

Structure: AnnotatedDataFrame.

� data: data.frame.

– Rows: sample identifiers.

– Columns: measured covariates.

� varMetadata: data.frame.

– Rows: measured covariate labels.

– Columns: covariate descriptors.

� See ?"AnnotatedDataFrame-class"

3.1.3 featureData: feature covariates

Purpose.

� Contain and document feature covariates specific to the experiment; use the annotation slot for
chip-level descriptions.

Structure: AnnotatedDataFrame.

� data: data.frame.

– Rows: feature identifiers. These match row names of assayData.

– Columns: measured covariates.

� varMetadata: data.frame.

– Rows: measured covariate labels.

– Columns: covariate descriptors.

� See ?"AnnotatedDataFrame-class"

3

3.1.4 experimentData: experiment description

Purpose.

� Summarize where and how the experiment was performed.

Structure: MIAME

� title: experiment title.

� name: experimenter name(s).

� preprocessing: list of pre-processing steps.

� Additional slots.

� See ?"MIAME-class".

3.1.5 annotation: assay description

Purpose.

� Link experiment to annotation package.

Structure: character

� Label identifying annotation package.

3.2 Important eSet methods

Initialization.

� eSet is VIRTUAL, initialize via subclass callNextMethod

Accessors (get, set).

� assayData(obj); assayData(obj) <- value: access or assign assayData

� phenoData(obj); phenoData(obj) <- value: access or assign phenoData

� experimentData(obj); experimentData(obj) <- value: access or assign experimentData

� annotation(obj); annotation(obj) <- value: access or assign annotation

Subsetting.

� obj[i, j]: select genes i and samples j.

� obj$name; obj$name <- value: retrieve or assign covariate name in phenoData

3.2.1 Additional eSet methods

� show.

� storageMode: influence how assayData is stored.

� updateObject: update eSet objects to their current version.

� validObject: ensure that eSet is valid.

4

The validObject method is particularly important to eSet, ensuring that eSet contains consistent
structure to data.

> getValidity(getClass("eSet"))

function (object)
{

msg <- validMsg(NULL, isValidVersion(object, "eSet"))
dims <- dims(object)
if (!is.na(dims[[1]])) {

if (any(dims[1,] != dims[1, 1]))
msg <- validMsg(msg, "row numbers differ for assayData members")

if (any(dims[2,] != dims[2, 1]))
msg <- validMsg(msg, "sample numbers differ for assayData members")

msg <- validMsg(msg, assayDataValidMembers(assayData(object)))
if (dims[1, 1] != dim(featureData(object))[[1]])

msg <- validMsg(msg, "feature numbers differ between assayData and featureData")
if (!all(featureNames(assayData(object)) == featureNames(featureData(object))))

msg <- validMsg(msg, "featureNames differ between assayData and featureData")
if (dims[2, 1] != dim(phenoData(object))[[1]])

msg <- validMsg(msg, "sample numbers differ between assayData and phenoData")
if (!all(sampleNames(assayData(object)) == sampleNames(phenoData(object))))

msg <- validMsg(msg, "sampleNames differ between assayData and phenoData")
}
if (is.null(msg))

TRUE
else msg

}
<environment: namespace:Biobase>

The validity methods for eSet reflect our design goals. All assayData members must have identical
row and column dimensions and featureNames. The names and numbers of samples must be the same
in assayData and phenoData slots. Validity methods are defined for the classes underlying each slot as
well. For instance, the validity methods for AnnotatedDataFrame check that variables used in pData
are at least minimally described in varMetadata.

3.3 Subclasses of eSet

Biobase defines three classes that extend eSet. ExpressionSet (discussed further below) is meant to
contain microarray gene expression data. SnpSet is a preliminary class to contain SNP data; other
classes in development (e.g., in oligo) may provide alternative implementations for SNP data. MultiSet
is an ExpressionSet-like class, but without restriction on the names (though not structure) of elements
in the assayData slot.

3.3.1 ExpressionSet

Purpose:

� Contain gene expression data.

Required assayData members.

� exprs, a matrix of expression values.

5

Important methods.

� Initialization (additional details below):

> obj <- new("eSet", phenoData = new("AnnotatedDataFrame"),

+ experimentData = new("MIAME"), annotation = character(),

+ exprs = new("matrix"))

� exprs(obj), exprs(obj) <- value: get or set exprs; methods defined for ExpressionSet , As-
sayData.

3.3.2 MultiSet and SnpSet

MultiSet .

� Purpose: flexibly contain a collection of expression data matricies.

� Required assayData members: none.

SnpSet .

� Purpose: contain genomic SNP calls.

� Required assayData members: call, callProbability.

4 Comments on assayData: high-throughput data storage

The assayData slot is meant to store high-throughput data. The idea is that the slot contains identically
sized matrices containing expression or other data. All matrices in the slot must have the same dimen-
sion, and are structured so that rows represent ‘features’ and columns represent ‘samples’. Validity
methods enforce that row and column names of slot elements are identical.

For technical reasons, creating instance of AssayData is slightly different from the way this is usually
done in R. Normally, one creates an instance of a class with an expression like new("ExpressionSet",
...), with the . . . representing additional arguments. AssayData objects are created with

> assayDataNew("environment", elt)

where elt might be a matrix of expression values. For the curious, the reason for this setup stems
from our desire to have a class that is a list or environment, rather than a class that has a slot that
contains a list or environment. The is relationship is desirable to avoid unnecessary function calls to
access slots, and requires that a class contain the base type (e.g., environment . Until very recently an
R object could not contain an environment .

The assayData slot of ExpressionSet objects must contain a matrix named exprs. This is different
from the structure of an exprSet, which was expected to contain a slot for exprs and se.exprs
(containing an measure of uncertain associated with expression measure). The reason for removing
se.exprs from ExpressionSetis pragmatic: many exprSet objects did not contain an se.exprs object.
The frequent absence of a data element means that effective methods cannot be written for the class – a
developer cannot easily write methods for exprSet that anticipate an se.exprs, because many objects
the method is supposed to work on may not have the necessary data. Nonetheless, the ExpressionSet
validity method tries to be liberal – it guarantees that the object has an exprs element, but allows for
other elements too. The prudent developer wanting consistent additional data elements should derive
a class from ExpressionSet that enforces the presence of their desired elements.

The AssayData class allows for data elements to be stored in three different ways (see ?storageMode
and ?"storageMode<-" for details): as a list, environment, or lockedEnvironment. Developers

6

are probably familiar with list objects; a drawback is that exprs elements may be large, and some
operations on lists in R may trigger creation of many copies of the the exprs element. This can be
expensive in both space and time. Environments are nearly unique in R, in that they are passed by
reference rather than value. This eliminates some copying, but has the unfortunately consequence that
side-effects occur – modifications to an environment inside a function influence the value of elements
outside the function. For these reasons, environments can be useful as ‘read only’ arguments to functions,
but can have unexpected consequences when functions modify their arguments. Locked environments
implemented in Biobase try to strike a happy medium, allowing pass by reference for most operations but
triggering (whole-environment) copying when elements in the environment are modified. The locking
mechanism is enforced by only allowing known ‘safe’ operations to occur, usually by channeling user
actions through the accessor methods:

> data(sample.ExpressionSet)

> storageMode(sample.ExpressionSet)

[1] "lockedEnvironment"

> tryCatch(assayData(sample.ExpressionSet)$exprs <- log(exprs(sample.ExpressionSet)),

+ error = function(err) cat(conditionMessage(err)))

cannot change value of locked binding for 'exprs'

> exprs(sample.ExpressionSet) <- log(exprs(sample.ExpressionSet))

The setReplaceMethod for exprs (and assayData) succeeds by performing a deep copy of the entire
environment. Becaue this is very inefficient, the recommended paradigm to update an element in a
lockedEnvironment is to extract it, make many changes, and then reassign it. Developers can study
assayData methods to learn more about how to lock and unlock environment bindings. Biobase allows
the experienced user to employ (and run the risks of) environments, but the expectation is that most
user objects are construced with the default lockedEnvironment or list.

A longer term consideration in designing AssayData was to allow more flexible methods of data
storage, e.g., through database-hosted arrays. This is facilitated by using generic functions such as ex-
prs() for data access, so that classes derived from AssayData can provide implementations appropriate
for their underlying storage mode.

5 Extending eSet

A designer wanting to implement eSet for a particular type of data creates a class that ‘contains’ eSet.
The steps for doing this are described below. One example of such a class is ExpressionSet, designed
to hold a matrix of gene expression values in the assayData slot.

> getClass("ExpressionSet")

Slots:

Name: assayData phenoData featureData
Class: AssayData AnnotatedDataFrame AnnotatedDataFrame

Name: experimentData annotation .__classVersion__
Class: MIAME character Versions

Extends:
Class "eSet", directly
Class "VersionedBiobase", by class "eSet", distance 2
Class "Versioned", by class "eSet", distance 3

7

> getValidity(getClass("ExpressionSet"))

function (object)
{

msg <- validMsg(NULL, isValidVersion(object, "ExpressionSet"))
msg <- validMsg(msg, assayDataValidMembers(assayData(object),

c("exprs")))
if (is.null(msg))

TRUE
else msg

}
<environment: namespace:Biobase>

The data structure of an ExpressionSet is identical to that of eSet, and in fact is inherited (without
additional slot creation) from eSet. The main difference is that the validity methods of eSet are
augmented by a method to check that the assayData slot contains an entity named "exprs". A valid
ExpressionSet object must also satisfy all the validity requirements of eSet, but the developer does
not explicitly invoke validity checking of the parts of the data structure inherited from eSet.

5.1 Implementing a new class: a SwirlSet example

We want the Swirl data set (see the SW two color data set that motivates this class) to contain four
elements in the assayData slot: R, G, Rb, Gb. To derive a class from eSet for this data, we create a
class, and provide initializaation and validation methods.

We create a class as follows:

> setClass("SwirlSet", contains = "eSet")

[1] "SwirlSet"

Notice that there are no new data elements in SwirlSet compared with eSet. The initialize method
is written as

> setMethod("initialize", "SwirlSet", function(.Object,

+ R = new("matrix"), G = new("matrix"), Rb = new("matrix"),

+ Gb = new("matrix"), ...) {

+ callNextMethod(.Object, R = R, G = G, Rb = Rb, Gb = Gb,

+ ...)

+ })

[1] "initialize"

The structure of the initialize method is a bit different from those often seen in R. Often, ini-
tialize has only .Object as a named arguments, or, if there are other named arguments, they corre-
spond to slot names. Here our initialize method accepts four arguments, named after the assayData
elements. Inside the initialize method, the named arguments are passed to the next initialization
method in the hierarch (i.e., initialize defined for eSet). The eSet initialize method then uses
these arguments to populate the data slots in .Object. In particular, eSet places all arguments other
phenoData, experimentData, and annotation into the assayData slot. The eSet initialize method
then returns the result to the initialize method of SwirlSet , which returns a SwirlSet object to the
user:

> new("SwirlSet")

8

SwirlSet (storageMode: lockedEnvironment)
assayData: 0 features, 0 samples
element names: G, Gb, R, Rb

phenoData
sampleNames:
varLabels and varMetadata description: none

featureData
featureNames:
fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
Annotation:

General programing guidelines emerge from experience with the initialize method of eSet and
derived classes. First, an appropriate strategy is to name only those data elements that will be manip-
ulated directly by the initialize method. For instance, the definition above did not name phenoData
and other eSet slots by name. To do so is not incorrect, but would require that they be explicitly named
(e.g., phenoData=phenoData) in the callNextMethod code. Second, the arguments R, G, Rb, Rg are
present in the initialize method to provide defaults consistent with object construction; the ‘full’
form of callNextMethod, replicating the named arguments, is required in the version of R in which this
class was developed. Third, named arguments can be manipulated before callNextMethod is invoked.
Fourth, the return value of callNextMethod can be captured. . .

> setMethod("initialize", "MySet", function(.Object, ...) {

+ .Object <- callNextMethod(.Object, ...)

+ })

> .

and manipulated before being returned to the user. Finally, it is the responsbilitiy of the developer
to ensure that a valid object is created; callNextMethod is a useful way to exploit correctly designed
initialize methods for classes that the object extends, but the developer is free to use other techniques
to create valid versions of their class.

A validity method might complete our new class. A validity method is essential to ensure that the
unique features of SwirlSet – our reason for designing the new class – are indeed present. We define our
validity method to ensure that the assayData slot contains our four types of expression elements:

> setValidity("SwirlSet", function(object) {

+ assayDataValidMembers(assayData(object), c("R",

+ "G", "Rb", "Gb"))

+ })

Slots:

Name: assayData phenoData featureData
Class: AssayData AnnotatedDataFrame AnnotatedDataFrame

Name: experimentData annotation .__classVersion__
Class: MIAME character Versions

Extends:
Class "eSet", directly
Class "VersionedBiobase", by class "eSet", distance 2
Class "Versioned", by class "eSet", distance 3

9

Notice that we do not have to explicitly request that the validity of other parts of the SwirlSet object
are valid; this is done for us automatically. Objects are checked for validity when they are created, but
not when modified. This is partly for efficiency reasons, and partly because object updates might
transiently make them invalid. So a good programing practice is to ensure validity after modification,
e.g.,

> myFancyFunction <- function(obj) {

+ assayData(obj) <- fancyAssaydData

+ phenoData(obj) <- justAsFancyPhenoData

+ validObject(obj)

+ obj

+ }

Assigning fancyAssaydData might invalidate the object, but justAsFancyPhenoData restores validity.

6 Versioned

One problem encountered in the Bioconductor project is that data objects stored to disk become invalid
as the underlying class definition changes. For instance, earlier releases of Biobase contain a sample
eSet object. But under the changes discussed here, eSet is virtual and the stored object is no longer
valid. The challenge is to easily identify invalid objects, and to provide a mechanism for updating old
objects to their new representation.

Biobase introduces the Versioned and VersionedBiobase classes to facilitate this. These classes
are incorporated into key Biobaseclass definitions.Biobasealso defines the updateObject generic and
methods for conveniently updating old objects to their new representation.

> data(sample.ExpressionSet)

> classVersion(sample.ExpressionSet)

R Biobase eSet ExpressionSet
"2.4.0" "1.11.34" "1.1.0" "1.0.0"

> obj <- updateObject(sample.ExpressionSet)

The version information for this object is a named list. The first two elements indicate the version of
R and Biobase used to create the object. The latter two elements are contained in the class prototype,
and the class prototype is consulted to see if the instance of an object is ’current’. These lists can be
subsetted in the usual way, e.g.,

> isCurrent(sample.ExpressionSet)[c("eSet", "ExpressionSet")]

eSet ExpressionSet
TRUE TRUE

Versioned classes, updateObject and related methods simplify the long-term maintenance of data
objects. Take the fictious MySet as an example.

> setClass("MySet", contains = "eSet", prototype = prototype(new("VersionedBiobase",

+ versions = c(classVersion("eSet"), MySet = "1.0.0"))))

[1] "MySet"

> obj <- new("MySet")

> classVersion(obj)

10

R Biobase eSet MySet
"2.6.1" "1.16.3" "1.1.0" "1.0.0"

This is a new class, and might undergo changes in its structure at some point in the future. When these
changes are introduced, the developer will change the version number of the class in its prototype (the
last line, below):

> setClass("MySet", contains = "eSet", prototype = prototype(new("VersionedBiobase",

+ versions = c(classVersion("eSet"), MySet = "1.0.1"))))

[1] "MySet"

> isCurrent(obj)

S4 R Biobase eSet MySet
TRUE TRUE TRUE TRUE FALSE

and add code to update to the new version

> setMethod("updateObject", signature(object = "MySet"),

+ function(object, ..., verbose = FALSE) {

+ if (verbose)

+ message("updateObject(object = 'MySet')")

+ object <- callNextMethod()

+ if (isCurrent(object)["MySet"])

+ return(object)

+ if (!isVersioned(object))

+ new("MySet", assayData = updateObject(assayData(object)),

+ phenoData = updateObject(phenoData(object)),

+ experimentData = updateObject(experimentData(object)),

+ annotation = updateObject(annotation(object)))

+ else {

+ classVersion(object)["MySet"] <- classVersion("MySet")["MySet"]

+ object

+ }

+ })

[1] "updateObject"

The code after if(!isVersioned) illustrates one way of performing ‘radical surgery, creating a new up-
to-date instance by updating all slots. The else clause represents more modest changes, using methods
to update stale information. updateObject then returns a new, enhanced object:

> classVersion(updateObject(obj))

R Biobase eSet MySet
"2.6.1" "1.16.3" "1.1.0" "1.0.1"

As in the example, versioning helps in choosing which modifications to perform – minor changes for
a slightly out-of-date object, radical surgery for something more ancient. Version information might
also be used in methods, where changing class representation might facilitate more efficient routines.

11

6.1 Versioned versus VersionedBiobase

The information on R and Biobase versions is present in eSet derived classes because eSet contains
VersionedBiobase. On the other hand, phenoData contains Versioned , and has only information about
its own class version.

> classVersion(new("phenoData"))

phenoData
"1.0.0"

The rationale for this is that phenoData is and will likely remain relatively simple, and details about
R and Biobase are probably irrelevant to its use. On the other hand, some aspects of eSet and the
algorithms that operate on them are more cutting edge and subject to changes in R or Biobase. Knowing
the version of R and Biobase used to create an instance might provide valuable debugging information.

6.2 Adding Versioned information to your own classes

The key to versioning your own classes is to define your class to contain Versioned or VersionedBiobase,
and to add the version information in the prototype. For instance, to add a class-specific version stamp
to SwirlSet we would modify the class defintion to

> setClass("SwirlSet", contains = "eSet", prototype = prototype(new("VersionedBiobase",

+ versions = c(classVersion("eSet"), SwirlSet = "1.0.0"))))

[1] "SwirlSet"

> classVersion(new("SwirlSet"))

R Biobase eSet SwirlSet
"2.6.1" "1.16.3" "1.1.0" "1.0.0"

See additional examples in the Versioned help page.
It is also possible to add arbitrary information to particular instances.

> obj <- new("SwirlSet")

> classVersion(obj)["MyID"] <- "0.0.1"

> classVersion(obj)

R Biobase eSet SwirlSet MyID
"2.6.1" "1.16.3" "1.1.0" "1.0.0" "0.0.1"

> classVersion(updateObject(obj))

R Biobase eSet SwirlSet MyID
"2.6.1" "1.16.3" "1.1.0" "1.0.0" "0.0.1"

There is additional documentation about these classes and methods in Biobase.

7 Summary

This document summarizes recent changes to Biobase, outlining strategies that developers using Biobase
may find useful. The main points are to introduce the eSet class hierarchy, to illustrate how developers
can effectively extend this class, and to introduce class versions as a way of tracking and easily updating
objects. It is anticipated that eSet-derived classes will play an increasingly important role in Biobase
development.

12

8 Session Information

The version number of R and packages loaded for generating the vignette were:

� R version 2.6.1 (2007-11-26), i386-pc-mingw32

� Locale: LC_COLLATE=English_United States.1252;LC_CTYPE=English_United States.1252;LC_MONETARY=English_United States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252

� Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

� Other packages: Biobase 1.16.3

13

	Introduction
	Comparing old and new
	A quick tour
	The eSet object: high-throughput experiments
	assayData: high-throughput data
	phenoData: sample covariates
	featureData: feature covariates
	experimentData: experiment description
	annotation: assay description

	Important eSet methods
	Additional eSet methods

	Subclasses of eSet
	ExpressionSet
	MultiSet and SnpSet

	Comments on assayData: high-throughput data storage
	Extending eSet
	Implementing a new class: a SwirlSet example

	Versioned
	Versioned versus VersionedBiobase
	Adding Versioned information to your own classes

	Summary
	Session Information

