
the biocViews package

VJ Carey

October 12, 2005

Contents

1 Overview 1

2 A vocabulary graph and some manipulations 2

3 Associating packages with vocabulary terms 3

4 Building ctv documents 5

5 Summary of activities 7

6 Appendix 9
6.1 The full vocabulary . 9
6.2 Snapshots of vocabulary subgraphs . 10
6.3 An example ctv document . 13

1 Overview

Bioconductor is a project supporting statistical computations and inference in high-
throughput biological experimentation. Currently the project consists of containers,
workflow components, and multiscale documentation useful in the areas of

� DNA microarray preprocessing and analysis,

� array CGH, SAGE, proteomic, and cell-based assay preprocessing and analysis,

� annotation of experimental processes and results,

� graph and network structures relevant to bioinformatics.

1

Bioconductor software is currently organized into over 100 R packages. R packages are
collections of folders populated with program code in R and other languages, compiled
datasets used for annotation or software demonstration, and documentation.

The use of R packages use of packages is helpful to both users and developers. At
the user level, R provides high-level processes for installing R packages with checksum
verification, and for presenting/executing documentation at the package or package-
component level. At the developer level, R provides high-level processes for carrying out
package quality control, including verifying the structure of the package, the coverage of
supplied documentation, and the freedom from error of various example computations
supplied in the documentation sources.

Large collections of R packages are difficult to survey without special guidance. This
document describes how a task view vocabulary can be constructed and used to provide
a hypertext interface to a catalog of R packages. Section 5 below gives a concise step-
by-step summary of the activities required.

2 A vocabulary graph and some manipulations

A possible vocabulary for bioconductor package topics has been created as a directed
graph, saved as bcVoc in the biocViews package.

> data(bcVoc)

> bcVoc

A graphNEL graph with directed edges

Number of Nodes = 68

Number of Edges = 68

This graph was created with the graphviz dot language, then converted to GXL using
graphviz dot2gxl utility, then imported to R using graph::fromGXL. To see the top-level
terms of the vocabulary, use

> adj(bcVoc, "vocRoot")

$vocRoot

[1] "ArrayCGH"

[2] "FlowCytometry"

[3] "Proteomics"

[4] "DNAMicroarrayPreprocessing"

[5] "StatisticalModelingForHighThroughputBiology"

[6] "GraphsAndNetworks"

[7] "Visualization"

[8] "Ontologies"

[9] "SequenceAnalysis"

2

[10] "Databases"

[11] "QuantitativeGenetics"

[12] "Annotation"

[13] "GeneralInfrastructure"

[14] "biocMiscellaneous"

[15] "SAGE"

To see all concept terms subordinate to “ontologies”, use

> acc(bcVoc, "Ontologies")

$Ontologies

otherOntology OntologyInfrastructure MAGEasOntology

1 1 1

GOasOntology

1

The entire term set is listed in the appendix.

3 Associating packages with vocabulary terms

The packAssoc function will associate each element of a vector of package names with
(at present) a single term in the vocabulary. This works using a trivial GUI. The R
interpreter prompts the user to give top level, second level (if relevant given top level),
and third level (if relevant given second level) terms associated with each package named
in the packlist argument. The vocabulary graph is given as the second argument.

Suppose our package list is

> demop <- c("Biobase", "graph", "limma", "factDesign")

Then

> pal <- packAssoc(demop, bcVoc)

loads pal with a list, after the GUI has been used.

> names(pal)

[1] "Biobase" "graph" "limma" "factDesign"

> pal$factDesign

3

$top

[1] "StatisticalModelingForHighThroughputBiology"

$second

[1] "DifferentialExpression"

$third

[1] "FactorialDesign"

$maintainer

[1] "Denise Scholtens <dscholte@hsph.harvard.edu>"

$packagename

[1] "factDesign"

$desc

[1] "This package provides a set of tools for analyzing data from a factorial designed microarray experiment, or any microarray experiment for which a linear model is appropriate. The functions can be used to evaluate tests of contrast of biological interest and perform single outlier detection."

$title

[1] "Factorial designed microarray experiment analysis"

Some of the information saved is derived from calls to packageDescription.
The package:terminology associations can be permuted:

> vpal <- packAssoc2viewlist(pal)

> vpal

$DifferentialExpression

[1] "limma" "factDesign"

$FactorialDesign

[1] "factDesign"

$GeneralInfrastructure

[1] "Biobase"

$GraphInfrastructure

[1] "graph"

$GraphsAndNetworks

[1] "graph"

$LinearModels

4

[1] "limma"

$StatisticalModelingForHighThroughputBiology

[1] "limma" "factDesign"

This enables us to build ctv structures.

4 Building ctv documents

ctv documents are XML markups of view-related metadata. The appendix includes a
full example of a ctv view document.

The basic structural elements are currently:

� <CRANTaskView> is the root tag

� <name>, <topic>, <maintainer>; self-explanatory except for topic, which is a
plaintext rendering of the topic; the maintainer must also be plaintext, apparently
owing to XML syntax restrictions

� <info>; can hold a rich HTML markup of narrative about the view, including
references to packages, which are marked up with <pkg>

� <packagelist>, a list of packages marked up with <pkg>

� <links>, a list of URLs marked up as pure HTML anchors

The makeCTV function helps to create such a document from the elements of a view-
package-vocabulary association list created by packAssoc2vlist. A trivial illustration:

> vn <- names(vpal)

> c1 <- makeCTV(vn[1], vn[1], "None", vpal[[1]], "None", bcVoc)

Loading required package: XML

> targ <- tempfile()

> saveXML(c1, file = targ)

> dem <- read.ctv(targ)

> dem

CRAN Task View

Name: DifferentialExpression

Topic: DifferentialExpression

Maintainer: None

Packages: factDesign, limma

5

To run this over our entire view set, we can use:

> allc <- getCTVs(vpal, bcVoc)

I now have a list of CTV structures in R. We’ll serialize them to HTML:

> jnk <- sapply(allc, ctv2html)

In addition to the view-specific HTML pages, we need a top-level entry point. The
topwrap function helps with this.

> els <- topwrap(bcVoc)

> toptop <- readLines(system.file("htmlfrags/topfrag.html", package = "biocViews"))

> cat(toptop, els, "\n")

<html> <head> <title>Bioconductor Task View: top level views</title> <link rel=stylesheet type="text/css" href="../../../R.css"> </head> <body> <h2>Bioconductor Task View: top level views</h2> <h3>Maintainer: None</h3> <p> <p> Has subviews: </p> ArrayCGH

FlowCytometry

Proteomics

DNAMicroarrayPreprocessing

 subviews: cDNAPreproc, AffyPreproc, GeneFiltering, OtherPreproc

StatisticalModelingForHighThroughputBiology

 subviews: ClusterAnalysis, FunctionalInference, DifferentialExpression, MultipleTesting, DesignOfExperiments, MetaAnalysis, TimeSeries, ErrorModels, SurvivalAnalysis, OtherStatMethods, MachineLearning

GraphsAndNetworks

 subviews: GraphInfrastructure, GraphVisualization, GraphDataExamples, InferenceOnGraphs

Visualization

 subviews: VisualizationInfrastructure, ChromosomeVisualization, GeneralVisualization

Ontologies

 subviews: OntologyInfrastructure, MAGEasOntology, GOasOntology, otherOntology

SequenceAnalysis

 subviews: SequenceSimilarity, SequenceInfrastructure

Databases

 subviews: DatabaseInfrastructure, SequenceDatabases

QuantitativeGenetics

Annotation

 subviews: AnnotationInfrastructure, OrganismAnnotation, PlatformAnnotation

GeneralInfrastructure

biocMiscellaneous

SAGE

The resulting HTML can be installed as index.html in the directory holding all the other
view files emitted by the application of ctv2html shown above.

Figures 1 and 2 illustrate some view-specific outputs.

6

Figure 1: A view of one of the generated HTML pages. To proceed, we need systematic
ways of populating the narrative components.

5 Summary of activities

1. Create a vocabulary graph. The dot language can be used very conveniently. Seri-
alize this to GXL using graphviz dot2gxl and then import using R graph::fromGXL.

2. Create a package list. A character vector in R of packages that are installed in the
image of R to be used for view generation.

3. Create a package-view association structure. This can be very laborious, but is
interruptible using packAssoc. Permute this structure to a viewlist using pack-

Assoc2viewlist.

4. Transform viewlist to ctv structures using getCTVs. The ctv structures generated
here respect aspects of the vocabulary hierarchy, so the vocabulary graph must be
identified as a an argument to getCTVs.

5. Create an entry page using topwrap. Move the folder including all generated
HTML to a web-accessible location.

7

Figure 2: Here’s a higher level page on a rich topic set.

8

6 Appendix

6.1 The full vocabulary

> sort(nodes(bcVoc))

[1] "AffyAnnotation"

[2] "AffyPreproc"

[3] "Annotation"

[4] "AnnotationInfrastructure"

[5] "ArrayCGH"

[6] "arrayQC"

[7] "Bayesian"

[8] "biocMiscellaneous"

[9] "cDNAPreproc"

[10] "ChromosomeVisualization"

[11] "ClusterAnalysis"

[12] "DatabaseInfrastructure"

[13] "Databases"

[14] "DesignOfExperiments"

[15] "DifferentialExpression"

[16] "DNAMicroarrayPreprocessing"

[17] "ErrorModels"

[18] "ExternalQueryResolutionWithSequence"

[19] "FactorialDesign"

[20] "FlowCytometry"

[21] "FunctionalInference"

[22] "GeneFiltering"

[23] "GeneralInfrastructure"

[24] "GeneralVisualization"

[25] "GOasOntology"

[26] "GraphDataExamples"

[27] "GraphInfrastructure"

[28] "GraphsAndNetworks"

[29] "GraphVisualization"

[30] "HumanPlatform"

[31] "InferenceOnGraphs"

[32] "LinearModels"

[33] "MachineLearning"

[34] "MAGEasOntology"

[35] "MetaAnalysis"

[36] "MultipleTesting"

[37] "nonHumanPlatform"

9

[38] "Ontologies"

[39] "OntologyInfrastructure"

[40] "OrganismAnnotation"

[41] "otherAffypp"

[42] "othercDNApp"

[43] "OtherDesign"

[44] "OtherDiffExp"

[45] "OtherFunc"

[46] "otherOntology"

[47] "OtherPreproc"

[48] "otherSeqDB"

[49] "OtherStatMethods"

[50] "PlatformAnnotation"

[51] "ProbeLevelModels"

[52] "ProbeMatching"

[53] "Proteomics"

[54] "QuantitativeGenetics"

[55] "SAGE"

[56] "SampleSize"

[57] "SequenceAnalysis"

[58] "SequenceDatabases"

[59] "SequenceInfrastructure"

[60] "SequenceSimilarity"

[61] "StatisticalModelingForHighThroughputBiology"

[62] "SurvivalAnalysis"

[63] "TimeSeries"

[64] "Visualization"

[65] "VisualizationInfrastructure"

[66] "vocRoot"

[67] "WithGO"

[68] "WithPubMed"

6.2 Snapshots of vocabulary subgraphs

10

Figure 3: Top level terms.

11

Figure 4: Terms subordinate to statistical modeling for high throughput biology.

12

6.3 An example ctv document

<CRANTaskView>

<name>MachineLearning</name>

<topic>Machine Learning & Statistical Learning</topic>

<maintainer>Torsten Hothorn</maintainer>

<info>

Several add-on packages implement ideas and methods developed at the

borderline between computer science and statistics - this field of research

is usually referred to as machine learning.

The packages can be roughly structured into the following topics:

<i>Neural Networks</i>: Single-hidden-layer neural network are

implemented in package <tt>nnet</tt> as part of the <pkg>VR</pkg>

bundle (shipped with base R).

<i>Recursive Partitioning</i>: Tree-structured models for

regression, classification and survival analysis, following the

ideas in the CART book, are

implemented in <pkg>rpart</pkg> (shipped with base R) and <pkg>tree</pkg>.

An adaptation of <pkg>rpart</pkg> for multivariate responses

is available in package <pkg>mvpart</pkg>. The validity of

trees can be investigated via permutation approaches with package

<pkg>rpart.permutation</pkg> and a tree algorithm fitting

nearest neighbors in each node is implemented in package

<pkg>knnTree</pkg>. For problems with binary input variables

the package <pkg>LogicReg</pkg> implements logic regression.

Graphical tools for the visualization of

trees are available in packages <pkg>maptree</pkg> and

<pkg>pinktoe</pkg>.

<i>Regularized and Shrinkage Methods</i>: Regression models with some

constraint on the parameter estimates can be fitted with the

<pkg>lasso2</pkg> and <pkg>lars</pkg> packages. The shrunken

centroids classifier and utilities for gene expression analyses are

implemented in package <pkg>pamr</pkg>.

<i>Random Forests</i>: The reference implementation of the random

forest algorithm for regression and classification is available in

package <pkg>randomForest</pkg>. Package <pkg>ipred</pkg> has bagging

for regression, classification and survival analysis as well as

bundling, a combination of multiple models via

13

ensemble learning.

<i>Boosting</i>: Various forms of gradient boosting are

implemented in packages <pkg>gbm</pkg> and <pkg>boost</pkg>.

<i>Support Vector Machines</i>: The function <tt>svm()</tt> from

<pkg>e1071</pkg> offers an interface to the LIBSVM library and

package <pkg>kernlab</pkg> implements a flexible framework

for kernel learning (including SVMs, RVMs and other kernel

learning algorithms). An interface to the SVMlight implementation

(only for one-against-all classification) is provided in package

<pkg>klaR</pkg>.

<i>Model selection and validation</i>: Package <pkg>e1071</pkg>

has function <tt>tune()</tt> for hyper parameter tuning and

function <tt>errorest()</tt> (<pkg>ipred</pkg>) can be used for

error rate estimation. The cost parameter C for support vector

machines can be chosen utilizing the functionality of package

<pkg>svmpath</pkg>.

</info>

<packagelist>

<pkg>boost</pkg>

<pkg priority="core">e1071</pkg>

<pkg priority="core">gbm</pkg>

<pkg>ipred</pkg>

<pkg priority="core">kernlab</pkg>

<pkg>klaR</pkg>

<pkg>lars</pkg>

<pkg>lasso2</pkg>

<pkg>mvpart</pkg>

<pkg>pamr</pkg>

<pkg>rpart.permutation</pkg>

<pkg priority="core">randomForest</pkg>

<pkg priority="core">rpart</pkg>

<pkg>svmpath</pkg>

<pkg>tree</pkg>

<pkg priority="core">VR</pkg>

</packagelist>

<links>

Boosting Research Site

</links>

14

</CRANTaskView>

15

	Overview
	A vocabulary graph and some manipulations
	Associating packages with vocabulary terms
	Building ctv documents
	Summary of activities
	Appendix
	The full vocabulary
	Snapshots of vocabulary subgraphs
	An example ctv document

