Description of afty

Laurent Gautier, Rafael Irizarry, Leslie Cope, and Ben Bolstad
October 13, 2005

Contents

(1__Introductionl

2 Changes 1n versions 1.6.x]

[3 Getting Started: From probe level data to expression values|
[3.1 Quick start]
[3.2 Reading CEL file information|
[3.3 Expression measures| Lo
[3.0.1 expresso|o
B.32 MASHO.
(3.3.3 Liand Wong’s MBEI (dchip)|
[3.3.4 C implementation of RMA|.

[4 Quality Control through Data Exploration|
4.1 Accessing PM and MM Datal

4.2 Histograms, Images, and Boxplots|
4.3 RNA degradation plots| 0.

E N Tizationl

[6Classes]
BT AMYBAtcl .« o o o oo

6.2 _ProbeSetl.

[Location to ProbeSet Mapping|

[8 Configuring the package options|

[9 Where can I get more information?|

w

—_ =

20

20
20
21

22

27

28

[A__Previous Release Notes| 28

IA.1 Changes in versions 1.5.x[. 28
IA.2 Changes in versions 1.4.X. 28
IA.3 Changes in Version 1.3.x] 29
IA.4 Changes in Version 1.2.x] 29
IA.5 Changes in Version 1.1.x] 30

1 Introduction

The affy package is part of the Bioconductoxﬂ project. It is meant to be an extensible,
interactive environment for data analysis and exploration of Affymetrix oligonucleotide
array probe level data.

The software utilities provided with the Affymetrix software suite summarizes the
probe set intensities to form one expression measure for each gene. The expression
measure is the data available for analysis. However, as pointed out by [Li and Wong
(2001)), much can be learned from studying the individual probe intensities, or as we call
them, the probe level data. This is why we developed this package. The package includes
plotting functions for the probe level data useful for quality control, RNA degradation
assessments, different probe level normalization and background correction procedures,
and flexible functions that permit the user to convert probe level data to expression
measures. The package includes utilities for computing expression measures similar to
MAS 4.0’s AvDiff (Affymetrix, 1999)), MAS 5.0’s signal (Affymetrix, 2001), DChip’s
MBEI (Li and Wong, [2001)), and RMA (Irizarry et al. 2003b)).

We assume that the reader is already familiar with oligonucleotide arrays and with the
design of the Affymetrix GeneChip arrays. If you are not, we recommend the Appendix
of the Affymetrix MAS manual Affymetrix (1999, [2001)).

The following terms are used throughout this document:

probe oligonucleotides of 25 base pair length used to probe RNA targets.
perfect match probes intended to match perfectly the target sequence.
PM intensity value read from the perfect matches.

mismatch the probes having one base mismatch with the target sequence intended to
account for non-specific binding.

MM intensity value read from the mis-matches.
probe pair a unit composed of a perfect match and its mismatch.

affyID an identification for a probe set (which can be a gene or a fraction of a gene)
represented on the array.

"http://www.bioconductor.org/

http://www.bioconductor.org/

probe pair set PMs and M Ms related to a common affylD.

CFEL files contain measured intensities and locations for an array that has been hy-

bridized.
CDF file contain the information relating probe pair sets to locations on the array.

Section [2| describes the main differences between version 1.5 and this version (1.6).
Section [3| describes a quick way of getting started and getting expression measures. Sec-
tion 4] describes some quality control tools. Section [o| describes normalization routines.
Section [0 describes the different classes in the package. describes our strategy to
map probe locations to probe set membership. Section [8] describes how to change the
package’s default options. Section ?? describes earlier changes.

Note: If you use this package please cite Gautier et al.| (2003) and/or Irizarry et al.
(2003a).

2 Changes in versions 1.6.x
Very few changes.

e The function MAplot has been added. It works on instances of AffyBatch. You
can decide if you want to make all pairwise MA plots or compare to a reference
array using the pairs argument.

e Minor bugs fixed in the parsers.

e The path of celfiles is now removed by ReadAfty.

3 Getting Started: From probe level data to expres-
sion values

The first thing you need to do is load the package.
R> library(affy) ##load the affy package

This release of the affy package will automatically download the appropriate cdf envi-
ronment when you require it. However, if you wish you may download and install the
cdf environment you need from http://www.bioconductor.org/data/metaData.html
manually. If there is no cdf environment currently built for your particular chip and you
have access to the CDF file then you may use the makecdfenv package to create one
yourself. To make the cdf packaes, Microsoft Windows users will need to use the tools
described here: http://www.stats.ox.ac.uk/pub/R/rw-FAQ.html.

http://www.bioconductor.org/data/metaData.html
http://www.stats.ox.ac.uk/pub/R/rw-FAQ.html

3.1 Quick start

If all you want is to go from probe level data (Cel files) to expression measures here are
some quick ways.

If you want is RMA, the quickest way of reading in data and getting expression
measures is the following:

1. Create a directory, move all the relevant CFEL files to that directory
2. If using linux/unix, start R in that directory.

3. If using the Rgui for Microsoft Windows make sure your working directory contains
the Cel files (use “File -> Change Dir” menu item).

4. Load the library.
R> library(affy) ##load the affy package
5. Read in the data and create an expression, using RMA for example.

R> Data <- ReadAffy() ##read data in working directory
R> eset <- rma(Data)

Depending on the size of your dataset and on the memory available to your system,
you might experience errors like ‘Cannot allocate vector ...”. An obvious option is to
increase the memory available to your R process (by adding memory and/or closing
external applicationsﬂ An another option is to use the function justRMA.

R> eset <- justRMA()

This reads the data and performs the ‘RMA’ way to preprocess them at the C' level.
One does not need to call ReadAffy, probe level data is never stored in an AffyBatch.
rma continues to be the recommended function for computing RMA.

The rma function was written in C for speed and efficiency. It uses the expression
measure described in [[rizarry et al. (2003b).

For other popular methods use expresso instead of rma (see Section [3.3.1)). For
example for our version of MAS 5.0 signal uses expresso (see code). To get mas 5.0 you
can use

R> eset <- mas5(Data)

which will also normalize the expression values. The normalization can be turned off
through the normalize argument.

2UNIX-like systems users might also want to check ulimit and/or compile R and the package for 64
bits when possible.

In all the above examples, the variable eset is an object of class exprSet described
in the Biobase vignette. Many of the packages in Bioconductor work on objects of this
class. See the genefilter and geneplotter packages for some examples.

If you want to use some other analysis package you can write out the expression
values to file using the following command:

R> write.exprs(eset, file="mydata.txt")
or if on Microsfot Windows and interested in reading your data into excel

R> exprs2excel(eset, file="mydata.csv")

3.2 Reading CEL file information

The function ReadAffy is quite flexible. It lets you specify the filenames, phenotype, and
MIAME information. You can enter them by reading files (see the help file) or widgets
(you need to have the tkWidgets package installed and working)

R> Data <- ReadAffy(widget=TRUE) ##read data in working directory

This function call will pop-up a file browser widget, see Figure [I] that provides an easy
way of choosing cel files.

Ed . L=) 8] L0
Choose CEL files
Directory: Mrap

Files in directory Files selected

affyRY ctrldd Teellamp . CEL gz
affy Rchecks

annariy s

Biokaszes

hioconductor1 014203462¢
coms

cirldd Teellarmp . CEL gz
cirldd Teel . CEL g2

datazets

dernof

Dilution/

exolf

exo2f

ex02_news

ex02_oHgf

fonts!

Up Select == Clear

Finish

Figure 1: Graphical display for selecting CEL files. This widget is part of the tkWidgets
package. (function written by Jianhua (John) Zhang).

Next, a widget (not shown) permits the user to enter the phenoData. Finally the a
widget is presented for the user to enter MIAME information.

Notice that it is not necessary to use widgets to enter this information. Please
read the help file for more information on how to read it from flat files or to enter it
programmatically.

The function ReadAffy is a wrapper for the functions read.affybatch, tkSample-
Names, read.phenoData, and read.MIAME. The function read.affybatch has some nice
feature that make it quite flexible. For example, the compression argument permit the
user to read compressed CEL files. The argument compress set to TRUFE will inform
the readers that your files are compressed and let you read them while they remain
compressed. The compression formats zip and gzip are known to be recognized.

A comprehensive description of all these options is found in the help file:

R> 7read.affybatch
R> 7read.phenoData
R> 7read.MIAME

3.3 Expression measures

The most common operation is certainly to convert probe level data to expression values.
Typically this is achieved through the following sequence:

1. reading in probe level data.

2. background correction.

3. normalization.

4. probe specific background correction, e.g. subtracting M M.

5. summarizing the probe set values into one expression measure and, in some cases,
a standard error for this summary.

We detail what we believe is a good way to proceed below. As mentioned the function
expresso provides many options. For example,

R> eset <- expresso(affybatch, normalize.method="qspline", bg.method="rma",pmcorrect.

This will store expression values, in the object eset, as an object of class exprSet
(see the Biobase package). You can either use R and the Bioconductor packages to
analyze your expression data or if you rather use another package you can write it out
to a tab delimited file like this

R> write.exprs(eset, file="mydata.txt")

In the mydata.txt file, row will represent genes and columns will represent sam-
ples/arrays. The first row will be a header describing the columns. The first column will
have the affylDs. The write.exprs function is quite flexible on what it writes (see the
help file).

For users of Microsoft Windows, who wish to use Excel, the convenient function
exprs2excel will write out a comma delimted file of expression values. You should be
able to open this file by double clicking in Windows (use a .csv file extension).

R> exprs2excel(eset,file="mydata.csv")

3.3.1 expresso

The function expresso performs the steps background correction, normalization, probe
specific correction, and summary value computation. We now show this using an Affy-
Batch included in the package for examples. The command data(affybatch.example)
is used to load these data.

Important parameters for the expresso function are:

bgcorrect.method . The background correction method to use. The available methods
are

> bgcorrect.methods
[1] llmasﬂ llnonell |lrmall llrmaQH

normalize.method . The normalization method to use. The available methods can
be queried by using normalize.methods.

> data(affybatch.example)
> normalize.methods (affybatch.example)

[1] "constant" "contrasts" "invariantset" "loess"
[5] "gspline" "quantiles" "quantiles.robust"

pmcorrect.method The method for probe specific correction. The available methods
are

> pmcorrect.methods
[1] "mas" "pmonly" "subtractmm"
summary.method . The summary method to use. The available methods are
> express.summary.stat.methods
[1] "avgdiff" "liwong" "mas" "medianpolish" "playerout"

Here we use mas to refer to the methods described in the Affymetrix manual version
5.0.

widget Making the widget argument TRUE, will let you select missing parameters (like
the normalization method, the background correction method or the summary

method). Figure [2| shows the widget for the selection of preprocessing methods for
each of the steps.

R> expresso(affybatch.example, widget=TRUE)

There is a separate vignette affy: Built-in Processing Methods which explains
in more detail what each of the preprocessing options does.

Figure 2: Graphical display for selecting expresso methods.

3.3.2 MAS 5.0

To obtain expression values that correspond to those from MAS 5.0, use mas5, which
wraps expresso and affy.scalevalue.exprSet.

> eset <- masb(affybatch.example)

background correction: mas
PM/MM correction : mas
expression values: mas
background correcting...done.
150 ids to be processed

I I

| A |

A detailed comparison between the MAS 5.0 values that are computed by affy and
by Affymetriz’s software can be found at http://stat-www.berkeley.edu/ bolstad/|
MAS5diff/Masbdifference.htmll

To obtain MAS 5.0 presnce calls you can use the mas5calls method.

> Calls <- masbcalls(affybatch.example)

Getting probe level data...
Computing p-values
Making P/M/A Calls

This returns an exprSet with P/M/A calls in the exprs slot and the wilcoxon p-values
in the se.exprs slot.

http://stat-www.berkeley.edu/~bolstad/MAS5diff/Mas5difference.html
http://stat-www.berkeley.edu/~bolstad/MAS5diff/Mas5difference.html

3.3.3 Li and Wong’s MBEI (dchip)

To obtain our version of Li and Wong’s MBEI one can use

R> eset <- expresso(affybatch.example, normalize.method="invariantset",
bg.correct=FALSE,
pmcorrect.method="pmonly",summary.method="1iwong")

This gives the current PM-only default. The reduced model (previous default) can
be obtained using pmcorrect.method="subtractmm".
3.3.4 C implementation of RMA

One of the quickest ways to compute expression using the affy package is to use the rma
function. We have found that this method allows a user to compute the RMA expression
measure in a matter of minutes for datasets that may have taken hours in previous
versions of affy. The function serves as an interface to a hard coded C implementation
of the RMA method (Irizarry et al., 2003b)). Generally, the following would be sufficient
to compute RMA expression measures:

> eset <- rma(affybatch.example)

Background correcting
Normalizing
Calculating Expression

Currently the rma function implements RMA in the following manner

1. Probe specific correction of the PM probes using a model based on observed in-
tensity being the sum of signal and noise

2. Normalization of corrected PM probes using quantile normalization (Bolstad et al.,
2003))

3. Calculation of Expression measure using median polish.

The rma function is likely to be improved and extended in the future as the RMA
method is fine-tuned.

10

4 Quality Control through Data Exploration

Several of the functions for plotting summarized probe level data are useful for diagnosing
problems with the data. The plotting functions boxplot and hist have methods for
AffyBatch objects. Each of these functions presents side-by-side graphical summaries
of intensity information from each array. Important differences in the distribution of
intensities are often evident in these plots. The function MAplot (applied, for example,
to pm(affybatch.example)), offers pairwise graphical comparison of intensity data.
The option pairs permits you to chose between all pairwise comparisons (when TRUE)
or compared to a reference array (the default). These plots can be particularly useful in
diagnosing problems in replicate sets of arrays.

> data(affybatch.example)
> MAplot(affybatch.example, pairs = TRUE)

MVA plot

0.2

0.1

0.0

20A

-0.4
-0.2 -0.1

26 28 30 32 34 36 38 26 28 3.0 32 34 36 38

0.4

Median: 0.0895

M IQR: 0.0566 208
26 30 34 38
Median: 0.046 | Median: —0.0439 10A
IQR: 0.0458 IQR: 0.0691
A

For the users convenience we have included the affybatch.example sample data set:

11

> affybatch.example

AffyBatch object

size of arrays=100x100 features (238 kb)
cdf=cdfenv.example (150 affyids)

number of samples=3

number of genes=150

annotation=

This will create the affybatch.example object of class AffyBatch. print (or show)
will display summary information. These objects represent data from one experiment.
The AffyBatch class combines the information of various CEL files with a common CDF
file. This class is designed to keep information of one experiment. The probe level data
is contained in this object.

The data in affybatch.example is a small sample of probe sets from 2 sets of dupli-
cate arrays hybridized with different concentrations of the same RNA. This information
is part of the AffyBatch and can be accessed with the phenoData and pData methods:

> phenoData(affybatch.example)

phenoData object with 1 variables and 3 cases
varLabels
sample: arbitrary numbering

> pData(affybatch.example)

sample
20A 1
20B 2
10A 3

4.1 Accessing PM and MM Data

The PM and M M intensities and corresponding affylD can be accessed with the pm, mm,
and probeNames methods. These will be matrices with rows representing probe pairs
and columns representing arrays. The gene name associated with the probe pair in row
1 can be found in the ith entry of the vector returned by probeNames.

> Index <- c(1, 2, 3, 100, 1000, 2000)
> pm(affybatch.example) [Index,]

20A 20B 10A
[1,] 149.0 118.0 124.0
[2,] 143.5 124.8 116.5

12

[3,] 132.0 111.0 105.0

,] 122.3 90.5 111.3
[5,] 121.0 89.3 98.0
[6,] 120.8 80.3 103.3

> mm(affybatch.example) [Index,]

20A 20B 10A

[1,] 847.0 694.0 999.0
[2,] 860.3 667.3 1084.8
[3,] 815.3 650.0 1057.0
[4,] 847.0 615.0 842.0
[5,] 206.0 95.3 154.3
[6,] 120.0 86.5 105.0

> probeNames (affybatch.example) [Index]

[1] "A28102_at" "A28102_at" "A28102_at" "AB002318_at" "D31815_at"
[6] "D87024_at"

Index contains six arbitrary probe positions.

Notice that the column names of PM and M M matrices are the sample names and
the row names are the affylD, e.g. ABO00114_at and AB000115_at together with the
probe number (related to position in the target sequence).

> sampleNames (affybatch.example)
[1] n2OA|| ||20B|| "1OA"

Quick example: To see what percentage of the M M are larger than the PM simply
type

> mean (mm(affybatch.example) > pm(affybatch.example))
[1] 0.5425
The pm and mm functions can be used to extract specific probe set intensities.

> gn <- geneNames (affybatch.example)
> pm(affybatch.example, gn[100])

13

20A 20B 10A

D781566_atl 223.3 148.0 203.0
D78156_at2 149.8 155.5 131.0
D78156_at3 147.3 133.8 145.0
D78166_at4 162.3 131.8 134.0
D78166_atb 459.3 451.0 345.0
D78166_at6 711.0 526.8 601.8
D78156_at7 158.8 142.8 109.0
D78156_at8 219.0 211.3 167.0
D78156_at9 196.0 251.0 182.3
D781566_at10 1715.0 1291.8 1341.3
D781566_atl1l 710.5 506.3 553.0
D78156_at12 438.0 346.0 282.8
D78156_at13 439.0 311.3 387.0
D78156_at14 114.8 78.0 101.5
D78166_at15 114.0 87.0 89.5
D78166_atl6 181.0 122.0 160.0

The method geneNames extracts the unique affy/Ds. Also notice that the 100th probe
set is different from the 100th probe! The 100th probe is not part of the the 100th probe
set.

The methods boxplot, hist, and image are useful for quality control. Figure|3|shows
kernel density estimates (rather than histograms) of PM intensities for the 1st and 2nd
array of the affybatch.example also included in the package

4.2 Histograms, Images, and Boxplots

As seen in the previous example, the sub-setting method [can be used to extract
specific arrays. NOTE: Sub-setting is different in this version. One can no
longer subset by gene. We can only define subsets by one dimension: the
columns, i.e. the arrays. Because the Cel class is no longer available [[is no
longer available.

The method image () can be used to detect spatial artifacts. By default we look at
log transformed intensities. This can be changed through the transfo argument.

These images are quite useful for quality control. We recommend examining these
images as a first step in data exploration.

The method boxplot can be used to show PM, M M or both intensities. As discussed
in the next section this plot shows that we need to normalize these arrays.

4.3 RNA degradation plots

The functions AffyRNAdeg, summaryAffyRNAdeg, and plotAffyRNAdeg aid in assessment
of RNA quality. Individual probes in a probeset are ordered by location relative to

14

> hist(affybatch.example[, 1:2])

0.7

0.5 0.6
|

0.4

density

0.2

0.1

0.0

log intensity

Figure 3: Histogram of PM intensities for 1st and 2nd array

15

> par (mfrow = c(2, 2))
> image (affybatch.example)

20A 20B

Figure 4: Image of the log intensities.

16

> par (mfrow = c(1, 1))
> boxplot(affybatch.example, col = c(2, 3, 4))

affybatch.example

14

12

10

Figure 5: Boxplot of arrays in affybatch.example data.

17

the 5" end of the targeted RNA molecule/Affymetrix (1999) Since RNA degradation
typically starts from the 5" end of the molecule, we would expect probe intensities to be
systematically lowered at that end of a probeset when compared to the 3’ end. On each
chip, probe intensities are averaged by location in probeset, with the average taken over
probesets. The function plotAffyRNAdeg produces a side-by-side plots of these means,
making it easy to notice any 5" to 3’ trend. The function summaryAffyRNAdeg produces
a single summary statistic for each array in the batch, offering a convenint measure of
the severity of degradation and significance level. For an example

> deg <- AffyRNAdeg(affybatch.example)
> names (deg)

(1] "N" "sample.names" "means.by.number" "ses"
[5] "slope" "pvalue"

does the degradation analysis and returns a list with various components. A summary
can be obtained using

> summaryAffyRNAdeg (deg)
20A 20B 10A

slope 0.0767 0.063 0.0842

pvalue 0.1360 0.212 0.0911

Finally a plot can be created using plotAffyRNAdeg, see Figure [0

18

> plotAffyRNAdeg(deg)

Mean Intensity : shifted and scaled

RNA digestion plot

o —
o -
=
o
=
(¢)]

Probe Number

Figure 6: Side-by-side plot produced by plotAffyRNAdeg.

5 Normalization

Various researchers have pointed out the need for normalization of Affymetrix arrays.
See for example Bolstad et al.| (2003)). The method normalize lets one normalize at the
probe level

> affybatch.example.normalized <- normalize(affybatch.example)

For an extended example on normalization please refer to the vignette in the affydata
package.

6 Classes

AffyBatch is the main class in this package. There are three other auxiliary classes that
we also describe in this Section.

6.1 AffyBatch

The AffyBatch class has slots to keep all the probe level information for a batch of
Cel files, which usually represent an experiment. It also stores phenotypic and MIAME
information as does the exprSet class in the Biobase package (the base package for
Bioconductor). In fact, AffyBatch extends exprSet.

The exprs slot contains the a matrix with the columns representing the intensities
read from the different arrays. The rows represent the cel intensities for all position on
the array. The cel intensity with physical coordinatesﬂ (z,y) will be in row

i =x+nrow x (y — 1)

. The ncol and nrow slots contain the physical rows of the array. Notice that this is
different from the dimensions of the exprs matrix. The number of row of the exprs
matrix is equal to ncolxnrow. We advice the use of the functions xy2indices and
indices2xy to shuttle from X/Y coordinates to indices.

For compatibility with previous versions the accessor method intensity exists for
obtaining the exprs slot.

The cdfName slot contains the necessary information for the package to find the
locations of the probes for each probe set. See Section [7] for more on this.

3Note that in the . CEL files the indexing starts at zero while it starts at 1 in the package (as indexing
starts at 1 in R).

20

6.2 ProbeSet

The ProbeSet class holds the information of all the probes related to an affylD. The
components are pm and mm.

The method probeset extracts probe sets from AffyBatch objects. It takes as
arguments an AffyBatch object and a vector of affylDs and returns a list of objects of
class ProbeSet

> gn <- geneNames (affybatch.example)
> ps <- probeset (affybatch.example, gn[1:2])
> show(ps[[1]])

ProbeSet object:
1d=A28102_at
pm= 16 probes x 3 chips

The pm and mm methods can be used to extract these matrices (see below).

This function is general in the way it defines a probe set. The default is to use
the definition of a probe set given by Affymetrix in the CDF file. However, the user
can define arbitrary probe sets. The argument locations lets the user decide the row
numbers in the intensity that define a probe set. For example, if we are interested in
redefining the AB000114_at and ABO00115_at probe sets, we could do the following:

First, define the locations of the PM and M M on the array of the ABO00114_at and
AB000115_at probe sets

> mylocation <- 1ist(AB000114_at = cbind(pm = c(1, 2, 3), mm = c(4,
+ 5, 6)), ABO00115_at = cbind(pm = c(4, 5, 6), mm = c(1, 2,
+ 3)))

The first column of the matrix defines the location of the PMs and the second column
the M Ms.

Now we are ready to extract the ProbSets using the probeset function:

> ps <- probeset (affybatch.example, genenames = c("AB000114_at",
+ "AB000115_at"), locations = mylocation)

Now, ps is list of ProbeSets. We can see the PMs and M Ms of each component using
the pm and mm accessor methods.

> pm(ps[[1]1])

20A 20B 10A
[1,] 987.3 603.5 841.8
[2,] 127.3 202.0 118.0
[3,] 1048.8 668.0 958.0

21

> mm(ps[[1]]1)

20A 20B 10A
[1,] 127.0 164.8 109
[2,] 1050.8 560.0 872
[3,] 130.5 99.0 105

> pm(ps[[2]1])

20A 20B 10A
[1,] 127.0 164.8 109
[2,] 1050.8 560.0 872
[3,] 130.5 99.0 105

> mm(ps[[2]])

20A 20B 10A
[1,] 987.3 603.5 841.8
[2,] 127.3 202.0 118.0
[3,] 1048.8 668.0 958.0

This can be useful in situations where the user wants to determine if leaving out
certain probes improves performance at the expression level. It can also be useful to
combine probes from different human chips, for example by considering only probes
common to both arrays.

Users can also define their own environment for probe set location mapping. More
on this in Section [7

An example of a ProbeSet is included in the package. A spike in data set is included
in the package in the form of a list of ProbeSets. The help file describes the data set.
Figure [7] uses this data set to demonstrate that the MM also detect transcript signal.

7 Location to ProbeSet Mapping

On Affymetrix GeneChip arrays, several probes are used to represent genes in the form
of probe sets. From a CFEL file we get for each physical location, or cel, (defined by x and
y coordinates) an intensity. The CEL file also contains the name of the CDF file needed
for the location-probe-set mapping. The CDF files store the probe set related to each
location on the array. The computation of a summary expression values from the probe
intensities requires a fast way to map an affyid to corresponding probes. We store this
mapping information in R environmentsﬂ They only contain a part of the information
that can be found in the CDF files. The cdfenvs are sufficient to perform the numerical

4Please refer to the R documentation to know more about environments.

22

vV + VvV +V + VVVVYV

data(SpikeIn)

pms <- pm(SpikelIn)
mms <- mm(SpikelIn)
par (mfrow = c(1, 2))

concentrations <- matrix(as.numeric (sampleNames (SpikelIn)),

12, byrow = TRUE)
matplot (concentrations,

20000))
lines(concentrations/[1,
matplot (concentrations,

20000))
lines(concentrations|[1,

pms, log = "xy", main = "PM", ylim

], apply(pms, 2, mean), lwd = 3)
mms, log = "xy", main = "MM", ylim

], apply(mms, 2, mean), lwd = 3)

PM

o

s |

< 5

p— O

g - o

) E

S | 0. "

Q g b
g] 0
Qe o

3 0

;.‘

S _13;

g

mms

0.5 2.0 10.0

I
100.0

concentrations

500 2000 5000 20000

50 100

MM

1T 17T T 1T 1T T
05 20 100 100.0

concentrations

c (30,

c (30,

Figure 7: PM and MM intensities plotted against Spikeln concentration

23

processing methods included in the package. For each CDF file there is package, available
from http://www.bioconductor.org/data/metaData.html, that contains exactly one
of these environments. The cdfenvs we store the z and y coordinates as one number (see
above).

In instances of AffyBatch, the cdfName slot gives the name of the appropriate
CDF file for arrays represented in the intensity slot. The functions read.celfile,
read.affybatch, and ReadAffy extract the CDF filename from the CEL files being read.
Each CDF file corresponds to exactly one environment. The function cleancdfname con-
verts the Affymetrix given CDF name to a Bioconductor environment and annotation
name. Here are two examples:

These give environment names:

> cat ("HG_U95Av2 is", cleancdfname ("HG_U95Av2"), "\n")
HG_U95Av2 is hgu9b5av2cdf

> cat("HG-133A is", cleancdfname("HG-133A"), "\n")
HG-133A is hgl33acdf

This gives annotation name:

> cat ("HG_U95Av2 is", cleancdfname ("HG_U95Av2", addcdf = FALSE),
+ ”\Il")

HG_U95Av2 is hgu9bav2

An environment representing the corner of an Hu6800 array is available with the
package. In the following, we load the environment, look at the names for the first 5
objects defined in the environment, and finally look at the first object in the environment:

> data(cdfenv.example)
> 1s(cdfenv.example) [1:5]

[1] "A28102_at" "ABOOO114_at" "ABOOO115_at" "AB000220_at" "AB002314_at"
> get(ls(cdfenv.example) [1], cdfenv.example)

pm mm

1 102 203
[2,] 104 205

1 106 207
4,] 108 209
[5,] 110 211
[6,] 112 213

24

http://www.bioconductor.org/data/metaData.html

[7,] 114 215

[8,] 116 217

[9,] 118 219
[10,] 120 221
[11,] 122 223
[12,] 124 225
[13,] 126 227
[14,] 128 229
[15,] 130 231
[16,] 132 233

The package needs to know what locations correspond to which probe sets. The
cdfName slot contains the necessary information to find the environment with this lo-
cation information. The method getCdfInfo takes as an argument an AffyBatch and
returns the necessary environment. If x is an AffyBatch, this function will look for an
environment with name cleancdfname (x@cdfName). For example:

The call to data loads an AffyBatch containing an artificial dataset.

> print(affybatch.example@cdfName)
[1] "cdfenv.example"

> myenv <- getCdfInfo(affybatch.example)
> ls(myenv) [1:5]

[1] "A28102_at" "ABOOO114_at" "ABOOO115_at" "AB000220_at" "AB002314_at"

Notice affybatch.example must be loaded (see above). Now lets look at affybatch.example

> print (affybatch.example@cdfName)
[1] "cdfenv.example"

> myenv <- getCdfInfo(affybatch.example)
> 1s(myenv) [1:5]

[1] "A28102_at" "ABO00114_at" "ABOOO115_at" "AB000220_at" "AB002314_at"

Notice affybatch.example should be loaded already as abouve.

By default we search for the environment first in the global environment, then in
a package named cleancdfname (x@cdfName), and finally in the data directory of the
affy package. This order can be changed through the options (see Section .

Various methods exist to obtain locations of probes as demonstrated in the following
examples:

25

> Index <- pmindex(affybatch.example)
> names (Index) [1:2]

[1] "A28102_at" "AB0O00114_at"
> Index[1:2]

$A28102_at
[1] 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132

$AB000114_at
[1] 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164

pmindex returns a list with probe set names as names and locations in the components.
We can also get specific probe sets:

> pmindex(affybatch.example, genenames = c("AB000114_at", "AB000115_at"))

$AB000114_at
[1] 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164

$AB000115_at
[1] 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196

The locations are ordered from 5’ to 3" on the target transcript. The function mmindex
performs in a similar way:

> mmindex(affybatch.example, genenames = c("AB000114_at", "AB000115_at"))

$AB000114_at
[1] 235 237 239 241 243 245 247 249 251 253 255 257 259 261 263 265

$AB000115_at
[1] 267 269 271 273 275 277 279 281 283 285 287 289 291 293 295 297

They both use the method indexProbes

> indexProbes(affybatch.example, which = "pm") [1]

$A28102_at
[1] 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132

> indexProbes(affybatch.example, which = "mm") [1]

$A28102_at
[1] 203 205 207 209 211 213 215 217 219 221 223 225 227 229 231 233

26

> indexProbes (affybatch.example, which = "both")[1]

$A28102_at
[1] 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 203 205 207
[20] 209 211 213 215 217 219 221 223 225 227 229 231 233

The which="both" options returns the location of the PMs followed by the M Ms.

8 Configuring the package options

Package-wide options can be configured, as shown below through examples.
e Getting the names for the options:

> opt <- getOption("BioC")
> affy.opt <- opt$affy
> print (names(affy.opt))

[1] "compress.cdf" "compress.cel" "use.widgets" "probesloc"
[56] "bgcorrect.method" "normalize.method" "pmcorrect.method" "summary.method"
[9] "xy.offset"

e Default processing methods:

> opt <- getOption("BioC")

> affy.opt <- opt$affy

> affy.opt$normalize.method <- "constant"
> opt$affy <- affy.opt

> options(BioC = opt)

e Compression of files: if you are always compressing your CEL files, you might find
annoying to specify it each time you call a reading function. It can be specified
once for all in the options.

> opt <- getOption("BioC")

> affy.opt <- opt$affy

> affy.opt$compress.cel <- TRUE
> opt$affy <- affy.opt

> options(BioC = opt)

e Priority rule for the use of a cdf environment: The option probesloc is a list. Each
element of the list is it self a list with two elements what and where. When looking
for the information related to the locations of the probes on the array, the elements
in the list will be looked at sequentially. The first one leading to the information
is used (an error message is returned if none permits to find the information). The
element what can be one of package, environment.

27

9

Where can I get more information?

There are several other vignettes addressing more specialised topics related to the affy
package.

A

affy: Custom Processing Methods (HowTo): A description of how to use
custom preprocessing methods with the package. This document gives examples of
how you might write your own preprocessing method and use it with the packae.

affy: Built-in Processing Methods: A document giving fuller descriptions of
each of the preprocessing methods that are available within the affy package.

affy: Import Methods (HowTo): A discussion of the data structures used and
how you might import non standard data into the package.

affy: Loading Affymetrix Data (HowTo): A quick guide to loading Affymetrix
data into R.

affy: Automatic downloading of cdfenvs (HowTo): How you can configure
the automatic downloading of the appropriate cdfenv for your analysis.

Previous Release Notes

A.1 Changes in versions 1.5.x

There are some minor differences in what you can do but little functionality has disap-
peared. Memory efficiency and speed have improved.

The widgets used by Read Affy have changed.

The path of celfiles is now removed by ReadAffy.

A.2 Changes in versions 1.4.x

There are some minor differences in what you can do but little functionality has disap-
peared. Memory efficiency and speed have improved.

e For instances of AffyBatch the subsetting has changed. For consistency with

exprSets one can only subset by the second dimension. So to obtain the first
array, abatch[1] and abatch[1,] will give warnints (errors in the next release).
The correct code is abatch[,1].

e masbcalls is now faster and reproduces Affymetrix’s official version much better.

e If you use pm and mm to get the entire set of probes, e.g. by typing pm(abatch)

then the method will be, on average, about 2-3 times faster than in version 1.3.

28

A.3 Changes in Version 1.3.x

What’s new?

masbcalls method added to get Affymetrix’s P/M/A calls.

Cel and Cdf classes no longer supported. Function, read.celfile and other Cel
related methods and functions removed. Most Cdf related functions have moved
to the makecdfenv package.

Big speed and memory improvement of ReadAffy, read.affybatch, and justRMA.

Function read.probematrix added. It reads CEL files and returns a matrix of
PM, MM, or both. This function is more memory efficient than read.affybatch.

Package no longer depends on affydata package. For this reason some examples
have been moved from this vignette to the affydata vignette.

The previously deprecated express function has been completely removed.

Most normalization routines for AffyBatches can now be called with the parameter
type which specifies whether the normalization should be applied as a PM-only,
MM-only, both PM and MM together or PM and MM separately.

A.4 Changes in Version 1.2.x

What’s new?

slot 'preprocessing’ of the MIAME attribute used to store normalization step in-
formation [list returned; more complex but organised structures (like a class) are
under evaluation.]

tuning of the implementations of the MAS5.0 methods (bgcorrect.mas, ...). E]
method plot.ProbeSet, an alternative to barplot, to plot probe level information.

parameter ’scale’ in the method barplot for ProbeSet. All the barplots are scaled
to each other.

New functions 'xy2indices’ and "indices2xy’ to shuttle from x/y pos to indices (like
the ones in cdfenvs) (and reverse).

The documentation for normalization has been improved.

®A comparison between the implementations of algorithms in MAS5.0 and the ones in affy can be
found at http://stat-www.berkeley.edu/ bolstad/MAS5diff/Masbdifference.html.

29

http://stat-www.berkeley.edu/~bolstad/MAS5diff/Mas5difference.html

e Due to some new protocols 7AffyBatch no longer will give you the help file. One
needs to type help("AffyBatch-class"). Same is true for other classes.

e The function justRMA added for those who want to use rma and are having memory
problems.

What’s different?

e Some of the large example datasets have been moved to a a new package affydata.

e Autoload of cdfenvs on demand (uses reposTools). Can be configured through the
options.

e default methods for normalization, bg correction, pm correction and summary now
in the package options [options exist for all, but only used by normalize for the
moment|.

e The default background on the rma function has been changed. Now the results
from rma and expresso should agree completely.

e The function express is deprecated. It still functions normally but gives warning
mesage. It will be removed in a future release. The function expresso should be
used as a replacement.

e bug in the parser fixed (infinite loop reported with apparently non-standard CEL
files).

e bug in the parser fixed (the ’sd’ data returned were not correct).
e missing slot in the dataset Spikeln fixed.

e bug in normalize. AffyBatch.gspline fixed (thanks to people at Insightful). The
expression data matrix sent to normalize.qspline was mistakingly transposed.

e barplot.ProbeSet scales plots to eachothers by default.

A.5 Changes in Version 1.1.x

What’s new?
e Faster reading functions (type ?read.affybatch)

e Widgets for reading phenotypic and MIAME information and choices of preprocess-
ing when computing expression measures. (?read.phenoData, ?7read.MIAME, 7ex-
presso)

e No need to read in CDF files.

30

e More efficient expression measure functions. (?expresso, 7express).
e Very fast RMA (?7rma).

e Our version of MAS 5.0 available (7expresso).

e RNA degradation assessment. (?AffyRNAdeg)

What’s different? The new version is not backwards compatible! Unfortunately the
changes we had to make to gain efficiency has resulted in some lack of backwards com-
patibility. Here are some important ones:

e Unless you are using the HG-U95Av2 chip or the HGU133A chip you need to
download and install a package for each chip type. They can be obtained from
http://www.bioconductor.org/data/metaData.html

You need the latest version of Biobase

To get RMA you no longer use express, you use rma

ReadAffy uses the argument filenames instead of CELS for denoting cel files.
e You can no longer subset probe level objects (now AffyBatch) by probe set name

The main difference between Version 1.0 and this version (1.1) is that the user no
longer needs to provide the CDF files. We now provide a more efficient way of obtaining
this information. Data packages containing the necessary CDF information can be ob-
tained from http://www.bioconductor.org/data/metaData.html. Simply download
as many of these cdf environments as you need and install them. The affy package
will know where to look. If you are using the HGU95Av2 or HGU133A chip the
information is included in the affy package and you do not need to download further
packages. You can also create your own cdf environments. See Section [7| for information
on how the environments work. A cdf environment making package is available from the
Bioconductor web site www.bioconductor.org.

Version 1.1 provides a unified approach to working with probe level data. AffyBatch
is the main class the user will manipulate. We believe it combines the simplicity of the
former Plob with the flexibility of the former Cel.container. As before, it bundles the
data from a batch of experiments. The classes Cdf contains the information of CDF file,
the class ProbeSet contain PM and M M intensities for a particular probe set. Beginners
need do not understand these classes. However, they are briefly described in Section [6]

There are some minor differences in what you can do but little functionality has
disappeared.

31

http://www.bioconductor.org/data/metaData.html
http://www.bioconductor.org/data/metaData.html
www.bioconductor.org

References

Affymetrix. Affymetriz Microarray Suite User Guide. Affymetrix, Santa Clara, CA,
version 4 edition, 1999.

Affymetrix. Affymetric Microarray Suite User Guide. Affymetrix, Santa Clara, CA,
version 5 edition, 2001.

B.M. Bolstad, R.A. Irizarry, M. Astrand, and T.P. Speed. A comparison of normaliza-
tion methods for high density oligonucleotide array data based on variance and bias.
Bioinformatics, 19(2):185-193, Jan 2003.

Laurent Gautier, Leslie Cope, Benjamin Milo Bolstad, and Rafael A. Irizarry. affy - an r
package for the analysis of affymetrix genechip data at the probe level. Bioinformatics,
2003. In press.

Rafael A. Irizarry, Laurent Gautier, and Leslie M. Cope. The Analysis of Gene Ezpres-
sion Data: Nethods and Software, chapter 4. Spriger Verlag, 2003a.

Rafael A. Irizarry, Bridget Hobbs, Francois Collin, Yasmin D. Beazer-Barclay, Kristen J.
Antonellis, Uwe Scherf, and Terence P. Speed. Exploration, normalization, and sum-
maries of high density oligonucleotide array probe level data. Biostatistics, 2003b. To
appear.

C. Li and W.H. Wong. Model-based analysis of oligonucleotide arrays: Expression index
computation and outlier detection. Proceedings of the National Academy of Science

U S A, 98:31-36, 2001.

32

	Introduction
	Changes in versions 1.6.x
	Getting Started: From probe level data to expression values
	Quick start
	Reading CEL file information
	Expression measures
	expresso
	MAS 5.0
	Li and Wong's MBEI (dchip)
	C implementation of RMA

	Quality Control through Data Exploration
	Accessing PM and MM Data
	Histograms, Images, and Boxplots
	RNA degradation plots

	Normalization
	Classes
	AffyBatch
	ProbeSet

	Location to ProbeSet Mapping
	Configuring the package options
	Where can I get more information?
	Previous Release Notes
	Changes in versions 1.5.x
	Changes in versions 1.4.x
	Changes in Version 1.3.x
	Changes in Version 1.2.x
	Changes in Version 1.1.x

