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Abstract

This manual describes the usage of the functions in the rflowcyt library
package. The main categories are Data Mananagement and Retrieval,
Flow Cytometry Visualizations, Exploratory Analysis, Gating, and Flow
Cytometry Hypothesis Testing and Statistical Inference. Examples are
also shown for each category.

Data Management and Retrieval

The rflowcyt tools (ie, in parentheses) in this category are used for the following

tasks:
1.
2.

10.

11.

("read.FCS”) to read in FCS binary files into R-objects of S4 class "FCS”

( "[i,j]” ) to extract or subset information from the ”data” (a ”matrix”
object) of the FCS R-object

. ("[[]]”) to extract "metadata” (which is of S4 class "FCSmetadata”) portion

of the FCS R-object

. ("[i,j]<-") to replace "data” information
. ("addParameter”) to add column variables in the ”data”

. ("[[i]]<-") to replace or add new information to the "metadata” portion of

the FCS R-object

. ("as”) to coerce among "FCS”, "data.frame” and "matrix” class objects

. (Pequals”) to demonstrate equality between two FCS R objects

” N,

. (Pprint-methods”, "show-methods”) print or show methods for "FCS” ob-

jects

("checkvars”) to check for any discrepancies between the metadata and the
data of the "FCS” object

("fixvars”) to fix the metadata to relect the information obtained from the
data if there are discrepancies



12. ("summary-methods”) to summarize the FCS R-object with Tukey’s five
number summary of the data and with slot information in the metadata
and to output an "FCSsummary” S4 class object

1.1 Datasets

There are two types of data sets that are available in the required data package
rfedmin. The first type of data set consists of raw binary Flow Cytometry
Standard (FCS) files, and the second type consists of R-objects of S4 class "FCS”
and is the result of reading in an FCS binary file using "read.FCS” function.
There are other larger data packages called rfedfhcre2 and rfedorig which also
contains FCS binary files and from which rfedmin is obtained.

1.1.1 Binary FCS data files

The Flow Cytometry Standard (FCS) binary files consist of a HEADER, a
TEXT, a DATA, and an optional ANALYSIS segment. The HEADER in ASCII
text gives information about the version of the FCS file and the byte offsets of
the beginning and ending of the other segments within the FCS file. The FCS
version 3.0 is currently used and has been updated from version 2.0 to accom-
modate data sets longer than 99,999,999 bytes and allowing for primary and
supplemental portions within the TEXT segment, among other changes. Lo-
cated after the HEADER, the TEXT segment in ASCII text includes summary
information in keywords such as the number of observations and names of col-
umn variables in the DATA segment. The DATA segment that follows consists
of the raw binary data. The optional ANALYSIS segment includes some results
of earlier data analyses (Robinsonl 2001]).

A Note about the Data Range

When specific immunofluoroescence signals are received and digitized by the
analog-to-digital converters (ADCs) of a flow cytometer machine, the measure-
ments are grouped into a number of bins based on the bit-resolution of the ADC.
Thus, a n-bit resolution ADC will group the data into 2" bins or ”channels”.
Thus, each immunofluoroescence measurement variable is actually categorical
and has an integer range from 0 to 2", depending on the ADC bit-resolution,
which is usually 10 or 8 (Robinson, [2001]).

The following removes all objects such that the following examples can be
run in a cleared workspace.

> rm(list = 1s())

Loading required package: xtable

1.1.2 Reading in the FCS binary file: "read.FCS” and "fcs.type”

The subsequent code will allow for us to call the rflowcyt library. If the rflowcyt
library is in the working library location, then the "library.location” is a character
string identifying the location of the rflowcyt library.



FCS Version Source Machine bit resolution Integer range
073100v3.013.fcs 2.0 UW CELLQuest 10 0—-1024
DiVa-262k-FCS3.fcs 3.0 ANU DiVa 18 0—262,144

DiVal024.fcs 2.0 ANU DiVa 10 0—1024
FACSCalibur256.fcs 2.0 ANU FACSCalibur 8 0—256

FACSCalibur1024.fcs 2.0 ANU FACSCalibur 10 0—1024
facscan256.fcs 2.0 ANU facscan 8 0—256

facscan1024.fcs 2.0 ANU facscan 10 0—-1024
FACStar256.fcs 2.0 ANU FACStar 8 0—256
LSR256.fcs 2.0 ANU LSR 8 0—256

LSR1024.fcs 2.0 ANU LSR 10 0—-1024

Table 1: Example FCS binary files in ’rfcdorig’ package that can be read in
using read . FCS

> if (lrequire(rflowcyt)) {

+ stop("Rflowcyt not available?")
+ }

Loading required package: rflowcyt
Loading required package: survival
Loading required package: splines
Loading required package: KernSmooth

KernSmooth 2.22 installed
Copyright M. P. Wand 1997
Loading required package: MASS
Loading required package: grid
Loading required package: splancs

Spatial Point Pattern Analysis Code in S-Plus
Version 2 - Spatial and Space-Time analysis
Loading required package: hexbin

Loading required package: colorspace

Attaching package: 'colorspace'

The following object(s) are masked from package:grDevices :

hcl

Loading required package: rfcdmin
Loading required package: fields
fields is loaded use help(fields) for an overview of this library



> if (!require(rfcdmin)) {
+ stop("rfcdmin not available?")

+ }

Alternatively, the data packages rfcdorig or rfedfhcre2 could also be called
using similar commands as demonstrated above.

In order to read in the FCS binary file, the location of the FCS binary file
in the /fcs directory of the rfedmin, rfedorig, or the rfedfhere2 package has to
be input as a parameter in the calling for "read. FCS”.

Table[[]summarizes the current reading information for the raw binary files in
the rfedorig data package. Only the "facscan256.fcs” and "SEB-NP22.fcs” binary
files are available in rfedmin. For more information about the binary FCS files
for the rfcdfhcrc2 and rfcdorig packages, look at the package documentation
files using the commands in R:

> help(package = "rfcdmin")

The ”.fcs” files noted in each package are raw binary FCS files which have
to be read into R by using the read.FCS function. The output is a FCS R
object of S4 or S3 class. Currently, the rflowcyt package implements functions
and methods with the S4 class.

We will find the /fcs directory location containing the FCS raw binary files
within the rfcdmin package.

> fcs.loc <- system.file("fcs", package = "rfcdmin")

After finding the .fcs file location, we will read in the raw binary file "fac-
scan2h6.fcs” using read.FCS and call it "FC.FCSRobj”. In order to demon-
strate a S3-to-S4 class change, we will incorrectly read in the binary file as an
S3 object.

> file.location <- paste(fcs.loc, "facscan256.fcs", sep = "/")
> FC.FCSRobj <- read.FCS(file.location, UseS3 = TRUE, MY.DEBUG = FALSE)

NOTE: Long names $PnS are missing.
Short names $PnN are assigned to the dataset instead.

Currently, read.FCS will read in all the ”.fcs” raw, binary files from all
three packages: rfcdmin, rfcdorig, and rfedfhcrc2.

If the "fcs.type” option is specified for a particular flow cytometer machine,
the "read . FCS” options will be pre-specified automatically without user input.
Depending on the machine from which the FCS binary file was obtained, the
“fcs.type” can be specified as one of the following in Table

See also "fcs.type” documentation for details. If your FCS raw, binary files
cannot be read into R using "read . FCS”, please notify A.J. Rossini (email: blind-
globe@gmail.com).



fes.type

fes.type. LYSYS
fes.type.cellquest.3.1. FACS. Vantage
fes.type.cellquest.3.1. FACScan
fes.type.cellquest.3.3
fes.type.default
fes.type.LSR256
fes.type.facscan256
fes.type.DiVal024

fes.type. FACSCalibur1024
fes.type.LSR1024
fes.type.facscan1024

—
— O © 00 O Uik Wi -

—_

Table 2: Summary of FCS types used by read.FCS

1.1.3 FCS R-objects

The following are FCS R-objects which are readily accessible in R and can be
used for analysis using the tools in the rflowcyt package. Prior to this release, the
FCS class has been S3. Now the FCS class among other classes (FCSmetadata,
FCSgate (described in the Gating section), FCSggobi (still in working progress)
) are S4. Use convertS3toS4 to convert S3-class "FCS” to S4-class "FCS” R
objects.

The exemplify the conversion, the following demonstrates the conversion of
an S3 FCS R-object to an S4 FCS R-object:

> FC.FCSRobj <- convertS3toS4(FC.FCSRobj, myFCSobj.name = "FC.FCSRobj",
+ fileName = file.location)

A "FCS” R object has slots "data” and "metadata”. The "data” component
is a matrix in which the rows are the individual cells or observations, and the
columns are the different immunofluoroescence measurements or variables. The
metadata is of S4-class "FCSmetadata” and has slots referring to keywords that
are in the TEXT segment of the FCS raw binary file. Information such as
variable names ("longnames” and "shortnames”) and ranges ("paramranges”) are

also slots in the metadata component. For more details, see the help files for
"FCS” and "FCSmetadata”.

1.1.4 Opening rflowcyt data with FCS R-objects

A simple use of the "data” function will enable the user to access the FCS R-
objects within a particular data directory of the rfcdmin and other data pack-
ages.

We have saved and archived the objects using the "save” function with option
"compress=TRUE” in the base library will keep the extension as .RData (ie,
NOT RData.gz) eventhough these files were compressed. Table [3| summarizes



R-object name FCS raw binary file HIV-protein stimulated?

HIV status

VRC unst.1829 1829—28+49d.fcs no
st.1829 1829—GAG.fcs yves, GAG—protein
unst.DRT DRT—-28+49d.fcs no
. st.DRT DRT—-GAG. fcs yes, GAG—protein
FHCRC MC.053 042404c¢1.053.fcs no
MC.054 042404c1.054.fcs yes, CEF —protein
..... MC.055 042404c1.055.fcs yes, SEB—protein

— (negative control)
— (negative case)

+ (positive control)
+ (positive case)

— (negative control)
contact source
contact source

Table 3: Summary of FCS R-objects in 'rfcdorig’ data package

the two archived FCS R-object datasets in rfcdorig data package. The rfecdmin
data package contains only the VRC data and the MC.053 individual of the
FHCRC data and can be retrieved by the following data call:

> data(VRCmin)
> data(MC.053min)

Alternatively, other FCS R objects that have not been archived in the /data
directory of either data package "rfcdorig” and ’rfcdfhcrc2” can be currently
read in using "read.FCS”, by also using the textbfdata(”.FCSRobj”) command,
where 7. FCSRobj” is the character string of the FCS R object filename. The
7. FCSRobj” can then be accessible from the current workspace.

For the rfedmin package, the textbfdata(”.FCSRobjmin”) command must be
used in order to obtain the facscan256.FCSRobj in the current workspace :

> data("facscan256.FCSRobj.currentmin")

Start/Stop:$version
[1] "FCS2.0"

$TextStart
[1] 256

$TextEnd
[1] 1595

$TextLength
[1] 1340

$DataStart
[1] 1792

$DataEnd
[1] 51791



$Datalength
[1] 50000

$AnalysisStart
(11 0

$AnalysisEnd
(11 0

[1] "Obtaining the metadata."
(1] "$BYTEORD 4,3,2,1"

[1] "file endian is big"

[1] "platform endian is little
[1] "FCS object endian is swap
[1] "Reading in data"

[1] "Checking the size and range of data"

[1] "Data passes range and size check"

[1] "Constructing data.frame from N= 50000"

[1] "Get names"

NOTE: Long names $PnS are missing.

Short names $PnN are assigned to the dataset instead.
[1] "Assigning 5 names to dataframe dims 10000 x 5"
[1] "Constructing return value"

To see other . FCSRobj” or ".FCSRobjmin” filenames, the user can imple-
ment one of the following commands :

> data(package = "rfcdmin")

1.2 Other S4 class R-objects

Besides the already defined "FCS” class, other S4 class R-objects include "FC-
Smetadata”, "FCSsummary”, and "FCSgate”. The "FCS” class is the class of
all 7.fcs” files that are read into R using "read.FCS”. The "FCSmetadata” is
the class of the metadata slot of an "FCS” R-object. The "FCSsummary” class
is the class of the output of the summary method implemented on a FCS R-
object. The "FCSgate” class contains the "FCS” class and extends it to include
gating information (ie, the information about the indexing of row observations
for subsequent extraction).

The following is a brief summary of the available, generic methods associated
with each class object.

1.2.1 ”new” Generic Method

Default objects can be made by using the new(object-contents, S4-class-
name) method, where object-contents refer to the contents of each slot for the



specified S4-class-name.
The following commands produce default class objects with no slot informa-
tion:

new.FCS <- new("FCS")
new.FCSmetadata <- new("FCSmetadata")
new.FCSsummary <- new("FCSsummary")
new.FCSgate <- new("FCSgate")

V VvV Vv Vv

1.2.2 ”coercian” Generic Method

Currently, there are only coercian methods to and from the "FCS” class and the
"matrix” and ”data.frame” classes.

A user makes a FCS R-object by the coercian method ”as” exemplified in
the following code, where data2 is a matrix or data.frame identifying the rows
as the cell observations and the columns as the different variables:

data2 <- rbind(1:10, 2:11, 3:12)

data2.matrix <- as(data2, "matrix")

data2.df <- as.data.frame(data2)

test.FCSRobj <- as(data2.matrix, "FCS")

test.FCSobj2 <- as(data2.df, "FCS")

original.matrix <- as(test.FCSobj2, "matrix")

original.matrix <- as(test.FCSobj2, "data.frame")

metadata <- new("FCSmetadata", size = dim(data2)[1], nparam = dim(data2) [2],
fcsinfo = list(comment = "This is a pseudo FCS-R object."))

test.FCSRobj@metadata <- metadata

test.FCSRobj

VV+VVVVVYVVYy

Original Object of class "FCS' from: None
Object name: None
Dimensions 3 by 10

1.2.3 ”is” Generic Method

The S4 R-object class can be verified by using the ”is” method.
> is(MC.053, "matrix")

[1] FALSE

> is(MC.053, "FCS")

[1] TRUE

> is(MC.0530@metadata, "FCSmetadata')

[1] TRUE



> is(MC.053, "FCSgate")

[1] FALSE

The FCSsummary class is exemplified below:

> sum.FCS <- summary(MC.053)

I. Data reports:

A. Dimension Check: Dimensions:

(row X col):

B. Data Column Names & Univariate Summary:

Using Tukey's method for the five number summary

126795 X 7

column min lower-hinge median upper-hinge

Forward Scatter 1
Side Scatter
IFNgamma FITC
CD69 PE

CD8 PerCP
<NA>

CD3 APC

~N O O wWwN

0

O O O O O O

430
70
194
291
111
0
276

II. Metadata Variable/Slot reports:

A. Metadata Slots:
slotnames
mode
size/$TOT
nparam/$PAR

filename
objectname

© 00 NO O WN -

-
o

fcsinfo

$ColumnParametersSummary
$PnN $PnsS

504
94
236
353
186
0
740

description

Mode

number of cells/rows
number of column params

shortnames/$PnN Shortnames of column parameters
longnames/$PnS Longnames of column parameters
paramranges/$PnR Ranges/max of column parameters

original FCS filename
name of current object

original current object original status

misc. metadata info

$PnR

[1,] "FSC-H" "Forward Scatter" "1024"

[2,] "SSC-H" "Side Scatter"
[3,] "FL1-H" "IFNgamma FITC"

[4,] "FL2-H" "CD69 PE"
[5,] "FL3-H" "CD8 PerCP"
[6,] "FL1-A" NA

[7,] "FL4-H" "CD3 APC"

n 1024"
n 1024"
n 1024"
n 1024"
"1024"
"1024"

687
275
308
422
286

0
806

max
1023
1023
955
1023
986
1023
1023

568.
185.
246.
357.
237.

571.

valu

1267

mean
045
913
718
339
867
.906
022

es
L
95
7

see below

see below
see below
042402c1.053.fcs

MC.0
TR

53
UE

see part II B.

196.
185.

81.
108.
187.
.T37
288.

sd
049
470
965
511
510

345



B. Metadata
$fcsinfoNames
[1] "$BYTEORD"
[4] "$Sys"
[7] "$P1E"
[10] "$P3B"
[13] "$P4E"
[16] "$P6B"
[19] "$PTE"
[22] "g$CYT"
[25] "$ETIM"
[28] "BD$PIN"
[31] "BD$P4N"
[34] "BD$P7N"
[37] "BD$WORD2"
[40] "BD$WORD5"
[43] "BD$WORDS"
[46] "BD$WORD11"
[49] "BD$WORD14"
[52] "BD$WORD17"
[55] "BD$WORD20"
[58] "BD$WORD23"
[61] "BD$WORD26"
[64] "BD$WORD29"
[67] "BD$WORD32"
[70] "BD$WORD35"
[73] "BD$WORD3S"
[76] "BD$WORD41"
[79] "BD$WORD44"
[82] "BD$WORD4AT7"
[85] "BD$WORD50"
[88] "BD$WORD53"
[91] "BD$WORD56"
[94] "BD$WORD59"
[97] "BD$WORD62"
[100] "CalibFile"
[103] "$DATE"

'fcsinfo'!

slot length= 103 & slot names:

"$DATATYPE"
"CREATOR"
II$P2BII
"$P3E"
||$P5B||
|I$P6E||
"PATIENT ID"
"CYTNUM"

"BD$AcqLibVersion"

"BD$P2N"
"BD$P5N"
"BD$WORDO"
"BD$WORD3"
"BD$WORD6"
"BD$WORD9"
"BD$WORD12"
"BD$WORD15"
"BD$WORD18"
"BD$WORD21"
"BD$WORD24"
"BD$WORD27"
"BD$WORD30"
"BD$WORD33"
"BD$WORD36"
"BD$WORD39"
"BD$WORD42"
"BD$WORD45"
"BD$WORD48"
"BD$WORD51"
"BD$WORD54"
"BD$WORD57"
"BD$WORDE0O"
"BD$WORDE3"
"P7THRESVOL"

> is(sum.FCS, "FCSsummary")

[1] TRUE
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"$NEXTDATA"
"$P1B"

" $P2E"
"$P4B"
"$PSE"
"$P7B"
"SAMPLE ID"
"$BTIM"
"BD$NPAR"
"BD$P3N"
"BD$P6EN"
"BD$WORD1"
"BD$WORD4"
"BD$WORD7"
"BD$WORD10"
"BD$WORD13"
"BD$WORD16"
"BD$WORD19"
"BD$WORD22"
"BD$WORD25"
"BD$WORD28"
"BD$WORD31"
"BD$WORD34"
"BD$WORD37"
"BD$WORD40"
"BD$WORD43"
"BD$WORD46"
"BD$WORD49"
"BD$WORD52"
"BD$WORD55"
"BD$WORD58"
"BD$WORD61"

"BD$LASERMODE"

||$FILII



1.3 Descriptive tools for FCSmetadata class R-objects

For the rest of this manual we will use one example FCS R object "st.1829” to
demonstrate the tools that are available in rflowcyt.

Some descriptive tools for the "FCSmetadata” class is show, print, and
summary, which all can be exemplified in the following code:

> show(st.1829@metadata)

FACSmetadata for original FCS object: st.1829 from original file 1829_GAG.fcs
with 126675 cells and 8 parameters.

The following code would output the metadata as a string and is not shown
because of its lengthy output.

> summary(st.1829@metadata)

The slots for an FCSmetadata are summarized in Table [ Alternative
character indices include:

P$TOT” "size”
»$PAR” "nparam”
»$PnIN” “shortnames”
»$PnS” "longnames”

”$PnR” "paramranges”

slotnames description
1 mode Mode
2 size number of cells/rows
3 nparam number of column parameters
4  shortnames shortnames of column parameters
5 longnames longnames of column parameters
6 paramranges Ranges/Max value of the columns
7 filename original FCS filename
8 objectname name of the current object
9 original current object original status
10 fesinfo misc. metadata info

Table 4: FCSmetadata slot descriptions

Slots and slot components of the metadata can be retreived by using , ”’[i]”, or
?[[i]]”. Currently to extract metadata information, we can use a single character
string index being one of the slotnames in Table [ or one of the slotnames in

11



the "fcsinfo” slot. In the case that there is a common slotname that is also in
the "fcsinfo” slot, only the slot from Table [4] will be retrieved.

A single numeric index or a vector of numeric indices refers to only the slot
positions of the "fcsinfo” slot.

The following example extracts the column parameter ranges or maximum
value. A similar extraction can be implemented with “shortnames” and ”long-
names” extraction.

> rngl <- st.1829@metadata@paramranges
> rngl <- st.1829C@metadata["paramranges"]
> rngl

[1] 1024 1024 1024 1024 1024 1024 1024 1024

> rng2 <- st.1829@metadatal["$PnR"]]
> rng2

[1] 1024 1024 1024 1024 1024 1024 1024 1024

> rngl.1 <- st.1829Cmetadata[["$P1R"]]
> rngl.1 <- st.1829C@metadata["$P1S"]

Items in the FCSmetadata can be replaced by using ”[...]<-" or ”[[...]]<-".
The following example will replace the "longnames” with dummy names.

> st.1829@metadata["longnames"]

[1] "FSC-Height" "Side Scatter" "CD8 FITC"
(4] "IFN, IL2, TNF PE" "CD4 perCP" "
[7] "CD3 APC" "Time (204.80 sec.)"

> st.1829@metadata["longnames"] <- rep("dummy", length(st.1829@metadata["longnames"]))
> st.1829@metadata["$P3S"] <- "wrongname"
> st.1829@metadata["longnames"]

[1] Ildummyll Ildummyll Ilwrongnamell Ildummyll Ildummyll Ildummyll
[7] Ildumm-yll Ildumm-yll

When using the replacement method for a FCSmetadata R-object (ie,”[...]<-
? or ”[[...]]<-"), if the slotname is not found, then a new slot with the current
character index is made under the ”fcsinfo” slot. In the following example, we
will add a new slot named "newslot” to the metadata.

> st.1829@metadatal["newslot"]] <- "wow this is cool"
> st.1829@metadata@fcsinfo[["newslot"]]

[1] "wow this is cool"

12



1.4 Descriptive tools for FCS class R-objects

To access the "data” or the "metadata” components, use either the or the tools
metaData to extract the metadata component and fluors to extract the data
component.

v

metal <- st.1829@metadata
metal <- metaData(st.1829)

\2

v

datal <- st.1829@data

> datal <- fluors(st.1829)
> summary(datal)

FSC.Height Side.Scatter CD8.FITC IFN..IL2..TNF.PE
Min. : 125.0 Min. :167.0 Min. : 0.0 Min. : 0.0
1st Qu.: 339.0 1st Qu.:410.0 1st Qu.:155.0 1st Qu.:222.0
Median : 441.0 Median :473.0 Median :227.0 Median :285.0
Mean : 489.9 Mean :475.6 Mean :235.2 Mean :276.1
3rd Qu.: 680.0 3rd Qu.:543.0 3rd Qu.:274.0 3rd Qu.:340.0
Max. :1023.0 Max. :969.0 Max. :856.0 Max. :882.0

CD4.perCP X. CD3.APC Time..204.80.sec..
Min. : 0.0 Min. : 0.0000 Min. : 0.0 Min. : 0.0
1st Qu.:121.0 1st Qu.: 0.0000 1st Qu.:199.0 1st Qu.:140.0
Median :264.0 Median : 0.0000 Median :272.0 Median :291.0
Mean :256.8 Mean 0.8412 Mean :321.8 Mean :292.5
3rd Qu.:371.0 3rd Qu.: 0.0000 3rd Qu.:399.0 3rd Qu.:444.0
Max. :948.0 Max. :1023.0000 Max. :969.0 Max. :599.0

A set of descriptive tools are attached to the FCS R-object. The method
"print” (using an "FCS” object in its signature) will automatically give a short
summary of the FCS R-object without printing out all the contents of the data
and the metadata. The following examples are different incantations of the
”print” method for FCS objects:

> print (unst.1829)

Original Object of class “FCS' from: 1829_28+49d.fcs
Object name: unst.1829
Dimensions 197025 by 8

> print (MC.053)

Original Object of class "FCS' from: 042402c1.053.fcs
Object name: MC.053
Dimensions 126795 by 7

A longer and more detailed summary with statistics for the column variables
can be displayed by using the "summary” method, whose output is a "FCSsum-
mary” S4 class.

13



> out.sum <- summary(st.1829)
> print (out.sum)

To extract and replace slots of the metadata of a "FCS” object, use only
?[[..]]” and ™[[...]] <-", respectively.

> shortnames.1829 <- st.1829[["shortnames"]]
> shortnames. 1829

[1] "FSC-H" "SSC-H" "FL1-H" "FL2-H" "FL3-H" "FL2-A" "FL4-H" "Time"
> st.1829[["$PnR"]]
[1] 1024 1024 1024 1024 1024 1024 1024 1024

> st.1829[["$P1R"]] <- 0
> st.1829[["paramranges"]]

[1] 0 1024 1024 1024 1024 1024 1024 1024
> 5t.1829[["newslot"]]
[1] "wow this is cool"

> st.1829[["newslot"]] <- "this is even cooler"
> st.1829[["newslot"]]

[1] "this is even cooler"

To extract and replace components within the ”data” matrix of a "FCS”
object, use only ”[..]”” and ”[...]<-”, respectively.

> firstten.1829 <- as(st.1829[1:10, ], "matrix")
> firstten.1829

FSC-Height Side Scatter CD8 FITC IFN, IL2, TNF PE CD4 perCP  CD3 APC

1 341 408 154 238 232 0
2 690 564 265 371 255 0
3 335 455 562 128 106 0O
4 367 550 165 283 113 0
5 190 495 219 334 107 O
6 441 414 194 229 159 0
7 144 443 199 296 00
8 730 509 257 344 366 0
9 542 480 243 337 278 0
10 305 463 61 113 472 0
Time (204.80 sec.)
1 0
2 0
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3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
> firstobs.1829 <- as(st.1829[1, 1], "matrix")
> firstobs. 1829
FSC-Height
1 341

> st.1829[1, 1] <- 99999999
> as(st.1829[1, 1], "matrix")

FSC-Height
1 1e+08

> st.1829([1, 1] <- firstobs.1829
> as(st.1829[1, 1], "matrix")

FSC-Height
1 341

> st.1829[1, 1]

Non-original Object of class “FCS' from: 1829_GAG.fcs
Object name: st.1829
Dimensions 1 by 1

Note that the "original” slot within the "metadata” is only changed to FALSE
when the "data” is changed.
Changing the metadata itself will not alter the status of the original” slot.

> st.1829[["original"]]
[1] FALSE

The function ’dim.FCS” retrieves the dimensions of the "data” matrix of a
FCS object.

> dim.1829 <- dim.FCS(st.1829)
> dim. 1829

[1] 126675 8
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A data parameter column can be appended to the "data” matrix of a "FCS”
object by using the method "addParameter”, which will also result in the change
of the original” metadata slot to be "FALSE”.

> column.to.add <- rep(0, dim.1829[1])
> st.1829 <- addParameter(st.1829, colvar = column.to.add, shortname = "test",
+ longname = "example", use.shortname = FALSE)

1.5 Checking Validity of the FCS R-object and Fixing er-
rors

The method ”checkvars” checks the ranges, dimensions, and the column variable
names of the data against what is specified in the metadata. If details are
not specified in the metadata, then the available information is added to the
metadata. The output is a boolean as to whether the object passes the check.
The option, MY.DEBUG=TRUE, allows us to view the checking statments.

> st.1829.checkstat <- checkvars(st.1829, MY.DEBUG = TRUE)

[1] "Class is FCS"
[1] "Object has data"
[1] "Object has metadata"
[1] "Object has a name:st.1829"
[1] "Data Dimension Check: Dimensions: (row X col)"
[11 Data: (126675 X 9)"
(1] Metadata: (126675 X 9)"
[1] "Names Check:"
Data Parameter Names st.1829@metadata@longnames

[1,] "FSC-Height" "dummy"

[2,] "Side Scatter" "dummy "

[3,] "CD8 FITC" "wrongname"

[4,] "IFN, IL2, TNF PE" "dummy"

[5,] "CD4 perCP" "dummy"

6,1 " " "qummy"

(7,1 "CD3 APC" "dummy"

[8,] "Time (204.80 sec.)" "dummy"

[9,]1 "example" "example"

(1] st.1829@metadata@longnames do not match with that of the data."

[1] "Range Check: Column parameters are within specified metadata range."
Data Ranges st.1829Q@paramranges

FSC-Height 1023 1023
Side Scatter 969 969
CD8 FITC 856 856
IFN, IL2, TNF PE 882 882
CD4 perCP 948 948

1023 1023
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CD3 APC 969 969
Time (204.80 sec.) 599 599
example 0 0

> st.1829.checkstat
[1] FALSE

Because st.1829 has been altered such that there is a discrepancy between
the "metadata” and the "data” portions of this FCS object, "fixvars” will be used
to correct major errors

> if (st.1829.checkstat == FALSE) {
+ st.1829 <- fixvars(st.1829, MY.DEBUG = TRUE)
+

[1] "Class is FCS"
[1] "Object has data"
[1] "Object has metadata"
[1] "Object has a name: st.1829"
[1] "Data Dimension Check: Dimensions: (row X col)"
(11" Data: (126675 X 9)"
(11 " Metadata: (126675 X 9)"
[1] "Names Check:"
Data Parameter Names st.1829@metadata@longnames

[1,] "FSC-Height" " dummy"

[2,] "Side Scatter" "dummy "

[3,]1 "CD8 FITC" "wrongname"

[4,] "IFN, IL2, TNF PE" "dummy"

[5,]1 "CD4 perCP" " qummy "

6,1 " " "qummy"

[7,] "CD3 APC" "dummy"

[8,] "Time (204.80 sec.)" "dummy"

[9,]1 "example" "example"

(17 " st.1829@metadata@longnames do not match with that of the data."

[1] "Names Fix: Replacement of the metadata parameter(s):"
[,1]

(1,1 "$P1s"

[2,] "$p2s"

[3,]1 "$pP3s"

[4’] II$P4SII

(5,1 "$P5s"

(6,1 "$pP63"

(7,1 "$p73"

(8,1 "$P83"

[1] " from the old name(s) of the original metadata:"
[,1]
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[1’] "du.mmy"

[2 ’] "dummy"

[3,] "wrongname"

(4,] "dummy"

(5,1 "dummy"

[6,]1 "dummy"

[7,] "dummy"

[8 ’] "dummy"

[1] " to the following name(s) from the data:"

[,1]

[1,] "FSC-Height"

[2,] "Side Scatter"

[3,] "CD8 FITC"

[4,] "IFN, IL2, TNF PE"

[5,] "CD4 perCP"

(6,1 " "

[7,] "CD3 APC"

[8,] "Time (204.80 sec.)"

[1] "Range Check: Column parameters are within specified metadata range."
Data Ranges st.1829@paramranges

FSC-Height 1023 1023
Side Scatter 969 969
CD8 FITC 856 856
IFN, IL2, TNF PE 882 882
CD4 perCP 948 948

1023 1023
CD3 APC 969 969
Time (204.80 sec.) 599 599
example 0 0

1.6 Equality between FCS objects

Two FCS objects can be checked for equality by using the “equals” method.
The default check is to verify the equality of the the "metadata” (except for the
"filename” and the "objectname”) and all the elements of the "data”.

> equals(st.1829, unst.1829)
[1] FALSE

The “check.filename” and “check.objectname” set to TRUE will allow the
equality verification of the "filename” and ”objectname” slots in the "metadata”.

> equals(st.1829, st.1829, check.filename = TRUE, check.objectname = TRUE)

[1] TRUE

18



1.7 Extraction of the FCS R-object

The original FCS R-object can be retrieved by using the function ”get”, if the
original object is on the current workspace and has been unchanged. Alterna-
tively, the original FCS R-object can be obtained by reading in the binary, fcs
file from the /fcs directory (if this raw binary file exists) of the data package
“rfcdmin”.

> st.1829 <- get(st.1829[["objectname"]])
> original .FC.FCSRobj <- read.FCS(FC.FCSRobj[["filename"]], MY.DEBUG = FALSE)

NOTE: Long names $PnS are missing.
Short names $PnN are assigned to the dataset instead.

2 Flow Cytometry Visualizations

In this section, we include visualization tools that help analyze the multivariate
flow cytometry data. Because each cell has multiple immunofluoroescence and
light scatter measurements, we have made alternatives to visualize, beyond the
ordinary bivariate scatterplots, the cell distributions based on the different mea-
surements. The common approach in the field circumvents the visualization of
data on all variables by selecting a subset of ”interesting” cells by a sequential
progression of 1 and 2 dimensional gating steps. Gating refers to the selection
of a region of cells or observations in a bivariate or univariate plot by plac-
ing boundaries around the region. These boundaries or thresholds based on a
particular immunofluoroescence or light scatter measurement are refered to as
gates. The sequence of gating steps is based on certain pairs of measurements
or individual measurement, in which the gated region in a previous step is sub-
sequently gated further in the next gating step. First we discuss the bivariate
and multivariate plotting tools and then the gating tools.

2.1 Bivariate Plotting Tools

The basic bivariate plots are the ContourScatterPlot with hexgonal binning
without contours or rectangular binning with superimposed contour levels and
the parallel.coordinates plot which is either an ImageParCoord or a Join-
tImageParCoord plot.

2.1.1 ContourScatterPlot

The plotvar.FCS has the options of plotting specified variables from an FCS
R-object. A univariate histogram or ContourScatterPlot with hexgonal binning
or rectangular binning can be shown with the appropriate specified options.
Here we will demonstrate with the FCS R object "unst.1829” the uses of plot-
var.FCS.
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> plotvar.FCS(unst. 1829, varpos = 1)

FSC-Height
o
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o
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FSC-Height

Figure 1: plotvar.FCS: Plotting a single variable histogram with the "unst.1829”
FCS R object
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> print(plotvar.FCS(unst. 1829, varpos = c(3, 4)))

plotvar.FCS: Plotting a bivariate ContourScatterPlot with hexagonal bin-
ning with the "unst.1829” FCS R object. The Bioconductor hexbin package
is needed for this type of plot. This works without Sweave, but fails within
Sweave.
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> plotvar.FCS(unst. 1829, varpos = c(3, 4), hexbin.CSPlot = FALSE)

CD8 FITC vs IFN, IL2, TNF PE

IFN, IL2, TNF PE
300 425 550 675 800 925

0 75 175

0 75 175 275 375 475 575 675 775 875 975

CD8 FITC

Figure 2: plotvar.FCS: Plotting a bivariate ContourScatterPlot with rectangular
binning with the "unst.1829” FCS R object

The function ContourScatterPlot will make an image plot using rectan-
gular bins of counts produced by the function make.grid by default. Also
by default, there are superimposed contour levels that are also drawn on the
plot with rectangular image binning. The "make.grid” function is used by the
"ContourScatterPlot” function to make an count matrix for the number of ob-
servations in a two-dimensional grid layout. This function will output a matrix
of counts ("z”) as well as the total number of observations ("n.cells”) within this
matrix. The count matrix for the image plot has 25 unit cut-offs and can be
changed by the "x.grid” and ”y.grid” options. Alternatively, if there is a sta-
tus or binary response variable for the data, other values such as the difference
in counts, proportions, normalized proportions, and z statistics can be calcu-
lated by make.density for the rectangular bins of the image plot. Currently,
a roughly estimated color legend is available for this rectangular binning with
the legend.CSP function.

Alternatively, however, there is an option for hexgonal binning with an ap-
propriate legend. Note that the Bioconductor "hexbin” package is necessary for
this plot option. The hexagonal binning does not have superimposed contour
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levels nor does it have the option to estimate other values besides counts in its
bins.

We will demonstrate the use of ContourScatterPlot to make the same
plots exemplified earlier with plotvar.FCS. These plots are not shown.

The following code extracts the third and the fourth column variables of the
FCS R object "unst.1829”.

> xvar <- as(unst.1829[, 3], "matrix")
> yvar <- as(unst.1829[, 4], "matrix")

The ContourScatterPlot function is implemented to make a plot with hexg-
onal binning and a legend. Other parameters such as binning style and number
of bins can also be specified in the signature.

> ContourScatterPlot (xvar, yvar, xlab = unst.1829[["longnames"]][3],
+ ylab = unst.1829[["longnames"]] [4], main = "Individual unst.1829",
+ hexbin.plotted = TRUE)

A plot can be made that has rectangular binning. The color of the image map
(via the ”image.col” option) can be changed as well as the size of the rectangular
bins by ”"x.grid” and "y.grid” options. A legend can be displayed in a separate
plot by setting the option "plot.legend.CSP” = TRUE.

> ContourScatterPlot (xvar, yvar, xlab = unst.1829[["longnames"]][3],
+ ylab = unst.1829[["longnames"]] [4], main = "Individual 042402c1.053",
+ hexbin.plotted = FALSE, numlev = 25, image.col = heat.colors(15))

2.2 Multivariate Plots

The FCS R-object can be plotted using the generic "plot.FCS” or "plot” com-
mand which will make a pairs plot (by default) or a parallel coordinates plot.
Here we show a default pairs plot using rectangular binning :

The same plot can be made using hexagonal binning; the code is shown, but
the plot will not be displayed. This is currently broken.

Additional parameters for the pairsplot of a data matrix can be referenced
by the pairs.CSP function. Currently a color legend can be plotted in the lower
panels for pairs.CSP only for the rectangular binning. There is currently no
legend available for pairs.CSP using hexagonal binning.

The parallel coordinates plot tracks each observation whose value is plotted
on the vertical, y-axis through a series of variables on the horizontal, x-axis.
The observation is tracked by a line from one variable to the next. The order
of the column variables on the horizontal axis is the order that is presented in
the input data matrix.

Here we make a parallel coordinates plot for the data portion of the ”st.1829”
FCS R-object. Because there are too many cell or row observations, we only
show the first 10 observations in this parallel coordinates plot.
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> plot (unst.1829)
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Figure 3: unst.1829: Default Pairs plotting with rectangular bins
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> par(mfrow = c(1, 1))
> row.obs <- 1:10
> parallel.coordinates(as(unst.1829[row.obs, ], "matrix"))

764

305.6 420.2 534.8 649.4

191

0 76.4

T T T T T T T T
FSC-Height CD8 FITC CD4 perCP CD3 APC

Variables

Figure 4: Parallel Coordinates plot of the first ten observations in the "data” of
unst.1829.
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It is important to note that all column variables in this plot must have the
same range and scaling. We can force scaling on a [0,1] scale by using the
option "scaled” set to TRUE. We can also give group certain observations by
color ("group.col”), type ("group.lty”), and width ("group.lwd”) of line. New
observations can also be added at a time by setting ”superimpose” to be TRUE
or by using the function "add.parallel.coordinates”. The following example shows
these other options:

> row.obs <- 1:10
> parallel.coordinates(as(unst.1829[row.obs, ], "matrix"), scaled = TRUE,
+ group = c(rep(1, 5), rep(2, 5)))

1
|
|
|
|

7
7 group 14~ \
’ group2

Scaled Values
0 01 02 03 04 05 06 07 08 0.9

FSC-Height CD8 FITC CD4 perCP CD3 APC

Variables

Figure 5: Scaled Parallel Coordinates plot of the first ten observations in the
data of unst.1829, where the first 5 observations are in one group, and the next
five observations are in the second group.

Because there are many cell or row observations, an ImageParCoord or Join-
tImageParCoord plot can be used to show all of the row observations by binning
on the y-axis and having the different column variables as labels on the x-axis.
There are superimposed parallel.coordinates lines on the colored binning that
demonstrate the movement of observations from one bin of one variable to an-
other bin of the next variable. In an ImageParCoord, these lines represent moves
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only between two adjacent variables, and in a JointImageParCoord, the lines
represent movement among all of the variables. The plots are subject to change
with the ordering of the column variables as labels on the x-axis of the plots.
Additional parallel.coordinates lines can be added to any existing plot using
the add.parallel.coordinates function.
The following series of graphs exemplify the Image parallel.coordinates plots.
Only the first 5 column variables and the first 1000 observations will be shown.

> outputl <- ImageParCoord(unst.1829@data[1:1000, 1:5], num.bins = 16,
+ title = "1000 obs 16 bins 5 trans", ntrans = 5, legend.plotted = TRUE,
+ image.plotted = TRUE, lines.plotted = TRUE, MY.DEBUG = FALSE)

1000 obs 16 bins 5 trans

/

Bins

Figure 6: This plot is an Image Parallel Coordinates plot of the first 1000
observations and the first 5 column variables in the "data” of unst.1829.
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> output2 <- ImageParCoord(unst.1829@data[1:1000, 1:5], num.bins = 16,
+ title = "1000 obs 16 bins 5 trans", ntrans = 5, legend.plotted = TRUE,
+ image.plotted = FALSE, lines.plotted = FALSE, MY.DEBUG = FALSE)

Key for counts signified by the line

1 <= Counts <= 13

14 <= Counts <= 37
40 <= Counts <= 61
67 <= Counts <= 86
97 <= Counts <= 106
121 <= Counts <= 127
152 <= Counts <= 152

Figure 7: This plot is the legend for the lines of the Image Parallel Coordinates
plot of the first 1000 observations and the first 5 column variables in the "data”
of unst.1829. Each line color and width represents the number of observations
that have moved from one bin of one variable to the adjacent bin of the next
variable. The lines only represent movement between two variables.
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The functions ImageParCoord and JointImageParCoord can also plot
histograms and traditional parallel coordinates plots as diagnostics in addi-
tion to or separately from the image parallel coordinates plots when the option
MY.DEBUG=TRUE.

> output3 <- JointImageParCoord(unst.1829@data[1:1000, 1:5], num.bins = 16,
+ title = "1000 obs 16 bins 5 trans", ntrans = 5, legend.plotted = FALSE,
+ MY.DEBUG = FALSE)

1000 obs 16 bins 5 trans

Bins

=
N

Figure 8: This is a Joint Image Parallel Coordinates plot of the first 1000
observations and the first 5 column variables in the ”data” of unst.1829.

2.3 Dynamic Plotting Tools

Another multi-dimensional tool is "xgobi.FCS” which uses the "xgobi” library.
We will leave the example for the user because the tool is interactive. Generally,
by default xgobi.FCS will show the first 15 observations across all variables in
the input data of the FCS R-object in a high-level multi-dimensional plot, in
which the user is able to shift among sets of variables, color certain observations,
and rotate visual perspectives of these observations amongst these variables.
The function "xgobi.FCS” allows the user to input the FCS R-object, subset
amongst the row observations, and subset amongst the column variables to

29



> output4 <- JointImageParCoord(unst.1829@data[1:1000, 1:5], num.bins = 16,
+ title = "1000 obs 16 bins 5 trans", ntrans = 5, legend.plotted = TRUE,
+ image.plotted = FALSE, lines.plotted = FALSE, MY.DEBUG = FALSE)

Key for counts signified by the line

1<=Counts <=1
2<=Counts<=4
5<=Counts <=5
6 <= Counts <=8
9 <= Counts <=9
12 <= Counts <= 12
13 <= Counts <= 13

Figure 9: This legend is for the previous Joint Image Parallel Coordinates plot
of the first 1000 observations and the first 5 column variables in the “data”
of unst.1829. Each different line represents a different number of cells that
have moved from bin to bin across all the variables. The lines represent the
movement of cells across all variables jointly. An extra black line was added by
the function "add.parallel.coordinates” function. This function can also be used
with "ImageParCoord” and ”parallel.coordinates” plots to add additional lines.
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show in an "xgobi” plot. Currently “ggobi” S4 objects are still being contructed
and would extend "xgobi” with more dynamic plotting and subsetting features.

The example code for the S3 "xgobi.FCS” is shown below but is left for the
user to run separately. By default, only the first 15 rows and half of the column
variables are shown. If "subset.row” and ”subset.col” are specified, then these
rows and columns will be displayed for the user to view interactively. In the
second example, the first 6000 rows with the first 2 column variables are shown.

> xgobi.FCS(unst.1829, title = "unst.1829 default subset")
> xgobi.FCS(unst.1829, subset.row = 1:6000, subset.col = 1:2, title = "unst.1829: 6000 rows,

3 Gating
slotnames description
1 gate matrix of column indices for row selection
2 history vector of strings describing columns in gate
3 extractGatedData.msg vector of strings describing extraction of the data
4 current.data.obs vector of the original row positions in current data
5 data matrix of column variables for rows denoting cells
6 metadata FCSmetadata object
Table 5: FCSgate slot descriptions
slotnames description

1 uniscut univariate single cut

2 bipcut bivariate polygonal cut

3 bidcut bivariate double cut

4 biscut bivariate single cut

5 biscut.quadrant values denoting the quadrant to be selected

6 +/+7 +/'7 '/_7 +/_

Table 6: Types of Gating

The FCSgate class extends the S4 FCS class. The slots of the S4 FCSgate
class are summarized in Table There are three aspects to gating that are
summarized below:

Create Gating Index Initially, a gating index will be created. This binary
index will denote the selection of row observations in the "data” and will
be appended as a column to the "gate” matrix. The extension of the FCS
object to a FCSgate object results from the S4 methods createGate and
icreateGate, an interactive method with user prompts for option values.
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slotnames description
1 gateNum column position in ’gate’ matrix
2 gateName name of gate index
3  type type of gating
4  Dbiscut.quadrant quadrant selected, if gating type is 'biscut’
5 data.colpos "data’ column variable positions used in gating
6 data.colnames "data’ names of the column variables used in gating
7 IndexValue.In value of the gating index denoting inclusion
8 gatingrange vector of gating thresholds
9 prev.gateNum gateNum of previous gating, if any
10 prev.gateName gateName of previous gating, if any
11 comment comment by user for this gating index

Table 7: Description of ’extractGateHistory’ output: Gating Details

Table [6] summarizes the types of gates or cuts that can be used to select
the data. Currently, there are only gates involving one (ie, univariate) or
two (ie, bivariate) column variables of the “data”. A 7single” or "double”
cut refers to the number of thresholds for each variable. For an example, if
there is a ”"bidcut”, then there are two thresholds for each of the two vari-
ables. The group of observations lying within these bivariate thresholds
are chosen. In the bivariate polygonal cut ”bipcut”, the selection ranges
describe a polygonal shape which could be a square or any other closed
linear shape description.

Extract Gated Data In order to collapse the “data” given the row selection
index, the method extractGatedData will subset the "data” according
to a specific value of the selection index (ie, IndexValue.In) and to a par-
ticular column in the ”"gate” matrix. Information about the extraction will
be updated in the corresponding element of the “extractGatedData.msg”
vector. The "metadata” will also be updated in terms of row ”size” and
the “original” flag will be set as FALSE. The "current.data.obs” will also
be subset according to the selection index. In summary, the S4 method
extractGatedData handles ”"data” collapsing with a corresponding row
selection index of a FCSgate class object.

Extract Gating Information The extractGateHistory will output a list
of values and details of a particular gating index. Table [7]summarizes the
descriptions of the gating information that is extracted.

The following subsections exemplify the creation of a gating or selection
binary index, the extraction or subsetting of the "data” using this newly created
gating index, the extraction of gating details, a description of bivariate gating
schemes, and other gating functions for high-dimensional plots.

See for details about subsequent analyses after gating (Roederer and
Hardy), 2001)).
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3.1 Creating Gate Index

Using createGate or the interactive icreateGate will result in a binary in-
dex that will be appended to the gate matrix. We will use the FCS R-object
unst. 1829 for a following demonstration of gating.

First a bivariate double cut gate will be implemented and will capture the
observations between 300 and 600 of the FSC-Height, first column variable of
“data”, and the Side Scatter, second column variable of “data”.

> gate.range.x <- c(300, 600)

> gate.range.y <- c¢(300, 600)

> unst.1829.gatel <- createGate(unst.1829, varpos = c(1, 2), gatingrange = c(gate.range.x,
+ gate.range.y), type = "bidcut", comment = "first gate")

In order to see the gate, we use "plotvar.FCS” and "showgate.FCS”.

Currently, the "showgate.FCS” does not work with "plotvar.FCS” with the
“hexbin.CSPlot=TRUE” option. The following is a hexbin ContourScatterPlot
of the complete data before extraction on the created gate. Note that the gating
thresholds are not shown.

> par(mfrow = c¢(1, 1))

> data.vars <- 1:2

> plotvar.FCS(unst.1829.gatel, varpos = data.vars, plotType = "ContourScatterPlot",
+ hexbin.CSPlot = TRUE)

(Again, Sweave errors cause the above not to work here).
The gate for the can be shown with the original data with the following code:

data.vars <- 1:2

plotvar.FCS(unst.1829.gatel, varpos = data.vars, plotType = "ContourScatterPlot",
hexbin.CSPlot = FALSE)

showgate.FCS(unst.1829.gatel@datal, data.vars], gatingrange = c(gate.range.x,
gate.range.y), Index = unst.1829.gatel@gate[, 1], type = "bidcut",
pchtype = ".")

+ + VvV + vV

Alternatively, the corresponding icreateGate could be implemented that
would make a plot and prompt the user for information about the type of gate
desired. If parameters such as the type of gate and the gatingrange are known
before looking at the data, these options can be input into icreateGate, and the
plot will be shown.

The following plot and implementation describes the use of setting a univari-
ate single cut gate for selection of cells that are > 500 in value for the 4th "data”
column variable from those selected by the first gate. The previous gate is the
first column of "gate” and the selection value is 1 (ie, prev.gateNum = 1 and
prev.IndexValue.In = 1). Setting "prompt.all.options” to FALSE will surpress
other interactive prompts for the title and gating color of the plot.

For a completely interactive gating session, the user can implement icreate-
Gate on a FCS R-object and input all plotting and gating options after each
prompt.
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> unst.1829.gate2 <- icreateGate(unst.1829.gatel, varpos = 4, gatingrange = 500,

+ type = "uniscut", prev.gateNum = 1, prev.IndexValue.In = 1,
+ comment = "", MY.DEBUG = FALSE, prompt.all.options = FALSE)
[1] " plotvar.FCS: Making univariate histogram; Please Wait..."

IFN, IL2, TNF PE

frequency
10000 15000 20000 25000 30000
1

5000

[ T T T 1
0 200 400 600 800

0
|

IFN, IL2, TNF PE

Figure 10: unst.1829: The gating index for fourth column variable of the data
is shown. The row observations beyond the vertical gate of 500 of uniscut are
selected with an IndexValue.In=1.
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> icreateGate(unst.1829)

3.2 Data Extraction from Gate Index

The extraction or row subsetting of the "data” matrix corresponding to a gating
index is implemented by extractGatedData.

The following extraction the "data” will use the first gating index (ie, the
first column of the "gate” matrix specified with gateNum=1) and the selection
value of 1 (ie, selection of observations with IndexValue.In=1).

> unst.1829.subsetl.1 <- extractGatedData(unst.1829.gate2, gateNum = 1,
+ IndexValue.In = 1, MY.DEBUG = FALSE)
> unst.1829.subsetl.2 <- extractGatedData(unst.1829.gatel, gateNum = 1,
+ IndexValue.In = 1, MY.DEBUG = FALSE)

Both the "unst.1829.gatel” and "unst.1829.gate2” are FCSgate objects with
the same ”data” but different "gate” matrices. The generic method ”equals” will
only evaluate the equality of the "data” and "metadata” slots and not of the
“gate” matrix for FCSgate objects.

> equals(unst.1829.subsetl.1, unst.1829.subsetl.2, check.filename = FALSE,
+ check.objectname = FALSE)

[1] TRUE

Extraction using the second column index of the "gate” matrix (ie, gateNum=2)
and selecting those with IndexValue.In=1 could be implemented on either a pre-
viously extracted FCSgate object or the FCSgate object without extraction. The
output "unst.1829.subset.2.1” and "unst.1829.subset2.2” should have the same
“data” and "metadata” slots evaluated by “equals”.

> unst.1829.subset2.1 <- extractGatedData(unst.1829.subsetl.1,

+ gateNum = 2, IndexValue.In = 1, MY.DEBUG = FALSE)
> unst.1829.subset2.2 <- extractGatedData(unst.1829.gate2, gateNum = 2,
+ IndexValue.In = 1, MY.DEBUG = FALSE)

> equals(unst.1829.subset2.1, unst.1829.subset2.2, check.filename = FALSE,
+ check.objectname = FALSE)

[1] TRUE

3.3 Extraction of Gating Details from ’history”

The use of extractGateHistory extracts information for a particular gate in-
dex. The list output provides an easy way to access the information that can be
used as input for the functions "createGate”, "icreateGate”, and “extractGated-
Data” in subsequent gating implementations.

The extraction of gating information before gated data extraction is shown

in the for gates 1 and 2.
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> info.gatel <- extractGateHistory(unst.1829.gate2, gatelNum

> info.gatel

$gateNum
(1] 1

$gateName
[1] nn

$type
[1] "bidcut"

$biscut.quadrant
NULL

$data.colpos
11 1 2

$data.colnames
[1] "FSC-Height"  "Side Scatter"

$IndexValue.In
(1] 1

$gatingrange
[1] 300 600 300 600

$prev.gateNum
[1] NA

$prev.gateName
[1] NA

$comment
[1] "first gate"

> info.gate2 <- extractGateHistory(unst.1829.gate2, gatelNum

> info.gate2

$gateNum
[11 2

$gateName
[1] "uniscut.v4"

$type
[1] "uniscut"
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$biscut.quadrant
NULL

$data.colpos
(1] 4

$data.colnames
[1] IIIFNII

$IndexValue.In
[1]1 1

$gatingrange
[1] 500

$prev.gateNum
(1] 1

$prev.gateName

[1] nn

$comment

[1] nn

The extraction of gating information after implementing “extractGatedData”
provides the following output for gates 1 and 2, respectively:

> info.gatel.1l <- extractGateHistory(unst.1829.subset2.1, gateNum = 1)
> info.gatel.1

$gateNum
(11 1

$gateName
[1] nn

$type
[1] "bidcut"

$biscut.quadrant
NULL

$data.colpos
[11 1 2

$data.colnames
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[1] "FSC-Height" "Side Scatter"

$IndexValue.In
[1] 1

$gatingrange
[1] 300 600 300 600

$prev.gateNum
[1] NA

$prev.gateName
[1] NA

$comment
[1] "first gate"

> info.gate2.1 <- extractGateHistory(unst.1829.subset2.1, gateNum = 2)
> info.gate2.1

$gateNum
(1] 2

$gateName
[1] "uniscut.v4"

$type
[1] "uniscut"

$biscut.quadrant
NULL

$data.colpos
(1] 4

$data.colnames
[1] HIFNH

$IndexValue.In
[1] 1

$gatingrange
[1] 500

$prev.gateNum
(11 1
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$prev.gateName

[1] nn

$comment

[1] nn

Suppose the next gate is a bivariate double cut on the 5th and 6th column
variables of the "data” matrix. If this gate is implemented from the previous first
gate, then this extracted information ”info.gatel” is used as well as "info.gatel.1”
to identify the previous gating information (ie, "previous.gateNum” and "previ-
ous.IndexValue.In” in the example).

> gate.range.x <- c¢(200, 300)

> gate.range.y <- c(100, 500)

> previous.gateNum <- info.gatel$gateNum

> previous.IndexValue.In <- info.gatel$InexValue.In

> unst.1829.gate3 <- createGate (unst.1829.gate2, varpos = c(1,

+ 2), gatingrange = c(gate.range.x, gate.range.y), type = "bidcut",

+ prev.gateNum = previous.gateNum, prev.IndexValue.In = previous.IndexValue.In,
+ comment = "first gate")

> extractGateHistory(unst.1829.gate3, gateNum = 3)

$gateNum
(11 3

$gateName
[1] "bidcut.viv2"

$type
[1] "bidcut"

$biscut.quadrant
NULL

$data.colpos
[11 1 2

$data.colnames
[1] "FSC-Height"  "Side Scatter"

$IndexValue.In
(11 1

$gatingrange
[1] 200 300 100 500
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$prev.gateNum
(1] 1

$prev.gateName

[1] nn

$comment
[1] "first gate"

Subsequent data extraction can be made on the FCSgate object "unst.1829.gate3”
using “extractGatedData” given a particular gate index column in the "gate”
matrix.

3.4 Gating Schemes

The "FHCRC.HTVNFCS” and the "VRC.HVTNFCS” are functions that im-
plement "icreateGate” and “extractGatedData” as example gating procedures
(Roederer and Hardyl, [2001)).

The user will be prompted for gating and plotting input with the following
examples and associated FCS R objects (shown and not demonstrated).

MC.053.gt <- FHCRC.HVTNFCS(MC.053)
MC.054.gt <- FHCRC.HVTNFCS(MC.054)
MC.055.gt <- FHCRC.HVTNFCS(MC.055)
st.1829.gt <- VRC.HVINFCS(st.1829)
unst.1829.gt <- VRC.HVTNFCS (unst.1829)
st.DRT.gt <- VRC.HVTNFCS(st.DRT)
unst.DRT.gt <- VRC.HVTNFCS (unst.DRT)

vV VVVVVYV

If the user decides to implement one of the example gating schemes on his or
her own FCS R object, the column variable positions can be adjusted for each
gate implementation such that the variables to be gated may remain the same.
The following example shows that for gate 2, column variable positions 7 and 5
refer to cd3 and cd8, respectively for that "data” matrix of "MC.053”, the FCS
object to be gated. Likewise, column variable positions that correspond to cd69
and INFgamma are 4 and 3.

> data(MC.053min)

> MC.053[["longnames"]]

> FHCRC.HVINFCS(MC.053, gate2.vars = c(7, 5), gate3.vars = c(4,
+ 3))

3.5 Other Image Gating

There are other gating procedures that can be implemented on high-dimensional
plots. The gate.IPC interactive function allows the user to click on upper and
lower bin boundaries for a particular variable to subset. The subsequent graphs
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represent this subset of points that move from one variable to the next. The
following code will be left for the user to implement as an exercise.

> st.DRT2 <- st.DRT

> st.DRT2@data <- st.DRT@data[1:1000, ]

> gate.IPC(st.DRT2, 3, hist.plotted = FALSE, image.plotted
+ para.plotted = FALSE, lines.plotted = TRUE, MY.DEBUG

TRUE,
FALSE)

Currently, there is still work in progress to gate on the dynamic plots ggobi
and xgobi. See Section for basic plotting usage.

4 Exploratory Data Analysis

The user may decide to use more qualitative means to investigate the data.
The Patient Rule Induction Method (PRIM) allows the extraction of rules de-
fined as subsets that maximizes or minimizes a target function which is usually
specified as the mean of a binary label (Friedman and Fisher| [1998). In the
flow cytometry setting, this target function is the mean of binary HIV-protein
stimulated (Y=1) or unstimulated status (Y=0) for a particular immunofluo-
roescence data subset or box, which ultimately estimates a rule through iterative
trimmings of the box in the greedy, top-down Peeling Step and iterative addi-
tions into the box during the patient Expansion Step. A Cross-Validation Step
implements the same Peeling and Expansion Steps on Testdata Sets. Hence,
the estimated rules aim at finding distributional differences between the HIV-
protein stimulated and unstimulated cells in a multi-dimensional setting where
many different immunofluoroescence measurements are made on the same sam-
ple of cells from an individual in an HIV vaccine trial. Again, the results of
PRIM are only exploratory because it is a qualitative process that needs sub-
jective, sound judgments to arrive at conclusions for each step of PRIM. PRIM
is regarded as a tool for hypothesis generation rather than for inference.
Please refer to the "PRIM.pdf” manual in the rfeprim package for details
regarding the functions used on the ”"data” component of the FCS R-objects.

5 Flow Cytometry Statistical Testing and Infer-
ence

The testing tools in this section are used to evaluate differences between HIV-
protein stimulated and unstimulated scenarios, particularly in the IFNgamma
measurement after gating described by |Roederer and Hardy| (2001]).

Each subsection describes particular tests that are implemented by run-
flowcytests and other functions.
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5.1 Probability Binning

The current S3-class object ProbBin.FCS describes the equal probability bin-
ning of a univariate, immunofluoroescence measurement (usually of IFN-gamma)
after the implementation of a series of gating schemes across different im-
munofluorescence measurements. FEqual probability binning ensures that there
are equal number of observations, N, within a bin across all bins constructed
by cut-offs or integer breakpoints of the immunofluorescence measurement. The
final bin may contain more or less than N, the pre-specified number within
each bin. The function, breakpoints.ProbBin.FCS, makes the breakpoints
or cut-offs for equal probability binning in two ways:

combined based on the combination of the univariate distributions (usually of
INF-gamma) of both the HIV-protein stimulated and unstimulated sam-
ples of cells

by.control based on only the unstimulated HIV-protein sample. These break-
points are then used to make histogram objects from both the HIV-protein
stimulated and unstimulated cell samples from an individual (Roederer
and Hardyl, 2001]).

slotnames  description

1 unst.hist  unstimulated histogram

2 st.hist stimulated histogram

3 PB ‘combined’/ by.control’

4 N.n.bin number per bin for cut—off construction
5 wvarname  name of distribution/variable

Table 8: Description of 'ProbBin.FCS’ S3 list output

The ProbBin.FCS object is a S3 list of the following components in Table
il

We will construct two gated objects as described in Section The stimu-
lated gated object is "st. DRT.gt” and the unstimulated gated object is "unst. DRT.gt”.
Here we will only gate on the bivariate double cut that extracts the lympho-
cytes from the Forward Scatter and Side Scatter measurements. Then we will
extract the "IFN-gamma” measurment from each sample and then construct a
ProbBin.FCS object.

The following implements a "biscut” gate and plots the image with the gate.

We could choose to implement subsequent gates; each gate that is dependent
on the selection of a previous gate. We leave further gating as an exercise for
the user. Below is an extraction of the data from the cd3+ lymphocytes (ie,
from the second gate of cd3+ cells based on the selection of lymphocytes in the
first gate).

> unst.DRT.ex <- extractGatedData(unst.DRT.gt, gateNum = 2)
> st.DRT.ex <- extractGatedData(st.DRT.gt, gateNum = 2)
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> unst.DRT.gt <- icreateGate(unst.DRT, varpos = c(1, 2), gatingrange = c (300,
+ 650, 300, 500), type = "bidcut", comment = "", MY.DEBUG = FALSE,
+ prompt.all.options = FALSE)

FSC-Height vs Side Scatter

Side Scatter
0 75 175 300 425 550 675 800 925

0 75 175 275 375 475 575 675 775 875 975

FSC-Height

Figure 11: unst.DRT.gt: The gating index for first two column variables of the
data is shown for the selection of the central cluster of lymphocytes. The colored
points in the center of the bidcut are selected with an IndexValue.In = 1.
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> st.DRT.gt <- icreateGate(st.DRT, varpos = c(1, 2), gatingrange = c (300,
+ 650, 300, 500), type = "bidcut", comment = "", MY.DEBUG = FALSE,
+ prompt.all.options = FALSE)

FSC-Height vs Side Scatter

Side Scatter
0 75 175 300 425 550 675 800 925

0 75 175 275 375 475 575 675 775 875 975

FSC-Height

Figure 12: st.DRT.gt: The gating index for first two column variables of the
data is shown for the selection of the central cluster of lymphocytes. The colored
points in the center of the bidcut are selected with an IndexValue.In=1.
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> unst.DRT.gt <- icreateGate(unst.DRT.gt, varpos = c(7, 5), gatingrange = c (500,
+ 1024, 0, 1024), type = "bidcut", prev.gateNum = 1, prev.IndexValue.In = 1,
+ comment = "", MY.DEBUG = FALSE, prompt.all.options = FALSE)

CD3 APC vs CD4 PerCP

CD4 PerCP
0 75 175 300 425 550 675 800 925

0 75 175 275 375 475 575 675 775 875 975

CD3 APC

Figure 13: unst.DRT.gt: The gating index for 7th and 5th column variables of
the data is shown for the selection of cd3+ cells based on the previous gating
and selection of lymphocytes (ie, prev.gateNum=1, prev.IndexValue.In=1). The
colored points of the bidcut gate are selected with an IndexValue.In = 1.
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> st.DRT.gt <- icreateGate(st.DRT.gt, varpos = c(7, 5), gatingrange = c (500,
+ 1024, 0, 1024), type = "bidcut", prev.gateNum = 1, prev.IndexValue.In = 1,
+ comment = "", MY.DEBUG = FALSE, prompt.all.options = FALSE)

CD3 APC vs CD4 PerCP

CD4 PerCP
0 75 175 300 425 550 675 800 925

0 75 175 275 375 475 575 675 775 875 975

CD3 APC

Figure 14: st.DRT.gt: The gating index for the 7th and 5th column variables
of the data is shown for the selection of cd3+ based on the previous gating and
selection of lymphocytes (ie, prev.gateNum=1, prev.IndexValue.In = 1). The
colored points the bidcut gate are selected with an IndexValue.In = 1.
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We decide to analyze the IFN-gamma distribution among the selected cells.
We obtain this measurement, IFN.unst and IFN.st, from the HIV-protein un-
stimulated and stimulated samples of individual DRT, respectively.

> IFN.unst <- unlist(as(unst.DRT.ex[, 4], "matrix"))
> IFN.st <- unlist(as(st.DRT.ex[, 4], "matrix"))

These two distributions are used to implement probability binning ”by.control”
with 100 observations in each bin based on the control, unstimulated group:

> PB.by.control <- ProbBin.FCS(IFN.unst, IFN.st, 100, varname = unst.DRT[["longnames"]][4],
+ PBspec = "by.control", MY.DEBUG = FALSE)

Alternatively, these two IFN distributions could have been used to implement
probability binning constructed by the "combined” data having 100 observations
in each bin:

> PB.combined <- ProbBin.FCS(IFN.unst, IFN.st, 100, varname = unst.DRT[["longnames"]] [4],
+ PBspec = "combined", MY.DEBUG = FALSE)

To verify the "ProbBin.FCS” class objects, the following code using is can
be used:

> is(PB.by.control, "ProbBin.FCS")
[1] TRUE

> is(PB.combined, "ProbBin.FCS")
[1] TRUE

We show the following "ProbBin.FCS” plots of the "PB.by.control” object.

The statistics associated with testing the two distributions for differences,
assuming the null of no difference between the stimulated and unstimulated
samples can be referenced in (Roederer et all 2001} |Baggerly}, 2001)). The sum-
mary of a "ProbBin.FCS” object will produce statistics that test the difference
between the distributions of the stimulated and unstimulated samples. See Sec-
tion

> summary (PB.by.control)

Test of distribution difference: Probability Binning & PB metric

Null Hypothesis: Unstimulated/Control Data Histogram/Bins are the
statistically the same as the Stimulated Data Histogram/Bins;
both samples are from the same distribution

Alternative Hypothesis: Unstimulated/Control Data Histogram/Bins
are significantly different from the Stimulated Data Histogram/Bins;
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> plot(PB.by.control, plots.made = "unstimulated", freq = TRUE)

Unstimulated:

Frequency
1000 1500 2000 2500 3000 3500

500

[ T T T 1
0 200 400 600 800

IFN,IL2, TNF PE

Figure 15: PB.by.control: The histogram shows the equal probability that was
implemented on the unstimulated or control IFNgamma data. Here the counts
in each bin are about 100
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> plot(PB.by.control, plots.made = "stimulated", freq = TRUE)

Stimulated:

o
o _
o
<
o
o _|
o
- o
[$)
c
[}
>
g 2
S
o
o _|
o
—
o T ——
[ I I I |
0 200 400 600 800
IFN,IL2, TNF PE

Figure 16: PB.by.control: The histogram shows the equal probability that
was implemented on the unstimulated or control IFNgamma data of which
whose breaks are applied to the stimulated data (which is shown in the above
histogram). Here the counts in each bin can be shown setting the options
freq=TRUE and labels=TRUE, which will prompt a warning because the bin-
ning is not equidistant.
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the stimulated and unstimulated samples are from different distributions

Bins obtained from Probability binning with 100
in each bin in the control dataset
Note: The counts in the first bin may be greater than 100
because of abundance of zero data.
The counts in the bins are not shown because there are too many bins.
Number of Control: 38380
Number of Stimulated: 48304

Testl: T.chi.unadj
=max (0, (PBmetric-mean(PBmetric.unadj))/ SD(PBmetric.unadj)) statistic

standard normal approximation test: Mario Roederer:

unadjusted PB metric (PBmetric.unadj): 0.01033143

Statistic used to assess significance of PB metric= max(0, unadjusted PB metric)

= (T.chi.unadj): 8.388503
one-sided p value (p.val.ltail.z.unadj): 2.461853e-17
two-sided p value (p.val.2tail.z.unadj): 4.923706e-17

Test2: Adjusted PB metric statistic chi-squared test: Keith A. Baggerly:
adjusted PB metric (PBmetric.adj): 441.916
degrees of freedom (PB.df): 260
upper tail p value (p.val.ltail.chi.adj): 1.357756e-11

Test3: Adjusted T.chi.unadj standard normal approximation test: Keith A. Baggerly:
Adjusted T.chi.unadj (T.chi.adj): 7.977543
one-sided p value (p.val.ltail.z.adj): 7.46373e-16
two-sided p value (p.val.2tail.z.adj): 1.492746e-15

Test4: Pearson's Chi-Squared Test:

Pearson's Chi-squared test

data: cbind(c.i, s.i)
X-squared = 432.4261, df = 260, p-value = 9.778e-11

upper tail p value when df= 260 : pearson.p.val.PBdf= 9.778019e-11
> summary (PB.combined)

Test of distribution difference: Probability Binning & PB metric

Null Hypothesis: Unstimulated/Control Data Histogram/Bins are the
statistically the same as the Stimulated Data Histogram/Bins;
both samples are from the same distribution
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Alternative Hypothesis: Unstimulated/Control Data Histogram/Bins
are significantly different from the Stimulated Data Histogram/Bins;
the stimulated and unstimulated samples are from different distributions

Bins obtained from Probability binning with 100
in each bin in the combined (control & stimulated) dataset
Note: The counts in the first bin may be greater than 100
because of abundance of zero data.
The counts in the bins are not shown because there are too many bins.
Number of Control: 38380
Number of Stimulated: 48304

Testl: T.chi.unadj
=max (0, (PBmetric-mean(PBmetric.unadj))/ SD(PBmetric.unadj)) statistic

standard normal approximation test: Mario Roederer:

unadjusted PB metric (PBmetric.unadj): 0.01259746

Statistic used to assess significance of PB metric= max(0, unadjusted PB metric)

= (T.chi.unadj): 9.209693
one-sided p value (p.val.ltail.z.unadj): 1.635294e-20
two-sided p value (p.val.2tail.z.unadj): 3.270588e-20

Test2: Adjusted PB metric statistic chi-squared test: Keith A. Baggerly:
adjusted PB metric (PBmetric.adj): 538.8427
degrees of freedom (PB.df): 318
upper tail p value (p.val.ltail.chi.adj): 1.289152e-13

Test3: Adjusted T.chi.unadj standard normal approximation test: Keith A. Baggerly:
Adjusted T.chi.unadj (T.chi.adj): 8.756982
one-sided p value (p.val.ltail.z.adj): 1.002741e-18
two-sided p value (p.val.2tail.z.adj): 2.005483e-18

Test4: Pearson's Chi-Squared Test:
Pearson's Chi-squared test

data: cbind(c.i, s.i)
X-squared = 522.0144, df = 318, p-value = 4.044e-12

upper tail p value when df= 318 : pearson.p.val.PBdf= 4.044095e-12

5.2 Testing for the difference between two univariate dis-
tributions

This section describes the tools used to test for the difference between the HIV-
protein stimulated sample and the HIV-protein unstimulated sample in terms of
the distribution of an immunofluoroescence measurement and, in particular, of
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the IFN-gamma measurement. There have been four main testing approaches
that are outlined belowed. The null hypothesis is the assumption that both
samples originate from the same distribution (ie, there is no difference in two
distributions), and the alternative is that they are from different distributions
(ie, the stimulated scenario compared to the unstimulated scenario are different
in terms of cell densities).

WLR.flowcytest The weighted log rank test (by default when rho=0) tests the
difference in survival curves of the stimulated and unstimulated scenarios
when all measurements are regarded as having the "event” and "time” is
considered to be the IFN-gamma or other immunofluorescence measure-
ment. Thus, at every point on the immunofluorescence, the curves are
tested for differences. A plot of the survival curves for both samples is
also optionally output.

KS.flowcytest Kolmogorov-Smirnoff test also evaluates the difference in dis-
tributions for the control and the stimulated samples, but may be more
sensitive and result in a higher false positive rate when there are a larger
number of data points.

ProbBin.flowcytest Statistics proposed by Keith A. Baggerly and Mario Roed-
erer include Chi-squared and Normal tests for the PB metric via probabil-
ity binning (both based on the control data only ("by.control”) and based
on the combined dataset of both the stimulated and the control samples
("combined”) (Roederer et al., 2001} Baggerly, 2001)).

pkci2.flowcytest The method, proposed by Zoe Moodie, PhD, tests the dif-
ference of the upper tails of the two distributions rather than the range of
the distribution for IFN-gamma or other univariate immunofluorescence
measurement.

runflowcytests This function will run all of the aforementioned tests either
separately or together in one call.

As a single example implementing all of the testing tools, we will only demon-
strate the testing with the "runflowcytests”. Further documentation for each in-
dividual test can be obtained in the help documentation for the following tests:
"WLR.flowcytest”, "KS.flowcytest”, "ProbBin.flowcytest”, "pkci2.flowcytest”. Please
note that "ProbBin.flowcytest” provides the same statistical output as "sum-
mary.ProbBin.FCS”.

> output.runflowcytests <- runflowcytests(IFN.unst, IFN.st, KS.plotted = FALSE,
+ WLR.plotted = FALSE, PBobj.plotted = FALSE)

FLOWCYTEST: Weighted Log Rank Test

experimental.status=0 (control)
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experimental.status=1 (stimulated)

Call:
survdiff (formula = Surv(fluorescence) ~ experimental.status,
data = my.dataframe, na.action = na.action.WLR, rho = rho.test)

N Observed Expected (0-E)~2/E (0-E)~2/V
experimental.status=0 38380 38380 38094 2.15 3.93
experimental.status=1 48304 48304 48590 1.68 3.93

Chisq= 3.9 on 1 degrees of freedom, p= 0.0475

FLOWCYTEST: KOLMOGOROV-SMIRNOV
Two-sample Kolmogorov-Smirnov test

data: controldata and stimuldata
D = 0.0178, p-value = 2.625e-06
alternative hypothesis: two.sided

FLOWCYTEST: BAGGERLY & ROEDERER STATS

Number of observations in each bin: 100
Dataset used for Probability Binning: by.control

Test of distribution difference: Probability Binning & PB metric

Null Hypothesis: Unstimulated/Control Data Histogram/Bins are the
statistically the same as the Stimulated Data Histogram/Bins;
both samples are from the same distribution
Alternative Hypothesis: Unstimulated/Control Data Histogram/Bins
are significantly different from the Stimulated Data Histogram/Bins;
the stimulated and unstimulated samples are from different distributions

Bins obtained from Probability binning with 100
in each bin in the control dataset
Note: The counts in the first bin may be greater than 100
because of abundance of zero data.
The counts in the bins are not shown because there are too many bins.
Number of Control: 38380
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Number of Stimulated: 48304

Testl: T.chi.unadj
=max (0, (PBmetric-mean(PBmetric.unadj))/ SD(PBmetric.unadj)) statistic

standard normal approximation test: Mario Roederer:

unadjusted PB metric (PBmetric.unadj): 0.01033143

Statistic used to assess significance of PB metric= max(0, unadjusted PB metric)

= (T.chi.unadj): 8.388503
one-sided p value (p.val.ltail.z.unadj): 2.461853e-17
two-sided p value (p.val.2tail.z.unadj): 4.923706e-17

Test2: Adjusted PB metric statistic chi-squared test: Keith A. Baggerly:
adjusted PB metric (PBmetric.adj): 441.916
degrees of freedom (PB.df): 260
upper tail p value (p.val.ltail.chi.adj): 1.357756e-11

Test3: Adjusted T.chi.unadj standard normal approximation test: Keith A. Baggerly:
Adjusted T.chi.unadj (T.chi.adj): 7.977543
one-sided p value (p.val.ltail.z.adj): 7.46373e-16
two-sided p value (p.val.2tail.z.adj): 1.492746e-15

Test4: Pearson's Chi-Squared Test:

Pearson's Chi-squared test

data: cbind(c.i, s.i)
X-squared = 432.4261, df = 260, p-value = 9.778e-11

upper tail p value when df= 260 : pearson.p.val.PBdf= 9.778019e-11

FLOWCYTEST: BAGGERLY & ROEDERER STATS

Number of observations in each bin: 100
Dataset used for Probability Binning: combined

Test of distribution difference: Probability Binning & PB metric

Null Hypothesis: Unstimulated/Control Data Histogram/Bins are the
statistically the same as the Stimulated Data Histogram/Bins;
both samples are from the same distribution
Alternative Hypothesis: Unstimulated/Control Data Histogram/Bins
are significantly different from the Stimulated Data Histogram/Bins;
the stimulated and unstimulated samples are from different distributions

o4



Bins obtained from Probability binning with 100
in each bin in the combined (control & stimulated) dataset
Note: The counts in the first bin may be greater than 100
because of abundance of zero data.
The counts in the bins are not shown because there are too many bins.
Number of Control: 38380
Number of Stimulated: 48304

Testl: T.chi.unadj
=max (0, (PBmetric-mean(PBmetric.unadj))/ SD(PBmetric.unadj)) statistic

standard normal approximation test: Mario Roederer:

unadjusted PB metric (PBmetric.unadj): 0.01259746

Statistic used to assess significance of PB metric= max(0, unadjusted PB metric)

= (T.chi.unadj): 9.209693
one-sided p value (p.val.ltail.z.unadj): 1.635294e-20
two-sided p value (p.val.2tail.z.unadj): 3.270588e-20

Test2: Adjusted PB metric statistic chi-squared test: Keith A. Baggerly:
adjusted PB metric (PBmetric.adj): 538.8427
degrees of freedom (PB.df): 318
upper tail p value (p.val.ltail.chi.adj): 1.289152e-13

Test3: Adjusted T.chi.unadj standard normal approximation test: Keith A. Baggerly:
Adjusted T.chi.unadj (T.chi.adj): 8.756982
one-sided p value (p.val.ltail.z.adj): 1.002741e-18
two-sided p value (p.val.2tail.z.adj): 2.005483e-18

Test4: Pearson's Chi-Squared Test:

Pearson's Chi-squared test

data: «c¢bind(c.i, s.1i)
X-squared = 522.0144, df = 318, p-value = 4.044e-12

upper tail p value when df= 318 : pearson.p.val.PBdf= 4.044095e-12

FLOWCYTEST: PKCI2
Test pkci2: Standard Normal approximation of two-sample binomial statistics

[1] "k.hat, 377 ,is the gate/percentile based on the control data"

(1] and the user specified critical proportion of, crit"

[1] "0.00629 ,ps.hat is the proportion of stimulated data above k.hat"
[1] "0.00099 , pc.hat is the proportion of the control data above k.hat,"
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Null: HO: ps.hat = pc.hat OR ps.hat-pc.hat = 0
One-sided Alternative: H1.1: ps.hat - pc.hat > O OR ps.hat > pc.hat
Two-Sided Alternative: H1.2: ps.hat - pc.hat != 0

Standard Normal Z Statistic: 13.4601429047812
One sided p-value: 1.34198315289743e-41
Two sided p-value: 2.68396630579485e-41

95 % Confidence Interval: ( 0.004531 , 0.006076 )

One sided Test:H1.1 (1=reject HO, O=cannot reject HO): 1
Two sided Test:H1.2 (l=reject HO, O=cannot reject HO): 1

The plots and output for the "KS.flowcytest” and the "WLR.flowcytest”
are shown with the code on the following pages. The plots for the "Prob-
Bin.flowcytest” is similar to those shown in Figure and Figure
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> output.KSflowcytest <- KS.flowcytest(IFN.unst,

:Density Curve

IFN.st, KS.plotted = TRUE,

+ MY.DEBUG = FALSE)
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Figure 17: KS.flowcytest plot shows the distributions of the stimulated and

unstimulated samples.
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> output.WLRflowcytest <- WLR.flowcytest(IFN.unst, IFN.st, WLR.plotted = TRUE,
+ MY.DEBUG = FALSE)

:Survival Curve
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Figure 18: WLR.flowcytest plot shows the survival curves for the two distribu-

tions if every data point was regarded as being an event, and time was regarded
as the IFN-gamma measurement.

5.3 ROC curves for testing tails of two distributions

For each individual there is a pair of data corresponding to a HIV-protein stim-
ulated sample and a HIV-protein unstimulated/control sample. For each in-
dividual who is either HIV-positive or negative, the 99.9-th percentile for the
unstimulated sample and the percent positive for the stimulated sample based
on this control-based 99.9-th percentile was calculated. Here we exemplify the
calculations for the "IFN.st” and the "IFN.unst” obtained from the gating for
the HIV-negative individual 1829.

First, using "percentile. FCS”, we obtain the 99.9-th percentile based on the
control, unstimulated sample.

> unst.percentile <- percentile.FCS(IFN.unst, percent = 0.999)

Now using "PercentPos.FCS”, we obtain the percent positives for both the
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unstimulated and the stimulated samples, respectively, using the "unst.percentile”.
Note that the percent positive for the control sample is about 1 - 0.999.

> PercentPos.FCS(IFN.unst, percentile = unst.percentile)$percent.pos
[1] 0.001068265

> PercentPos.FCS(IFN.st, percentile = unst.percentile)$percent.pos
[1] 0.006417688

To evaluate which HIV-protein stimulation results in the most sensitive
detection of HIV-positive status as well as the lowest chance of falsely con-
cluding HIV-positive status based on a stimulated sample’s higher 99.9th per-
centile control-based percent positive (ie, according to the approach used in
"pcki2.floweytest”). Zoe Moodie, PhD, constructed the ROC (Receiver Operat-
ing Characteristic) HIV-protein-specific curves in which the cut-offs are based
on the combined stimulated and unstimulated percent positives obtained by the
previous methods.

The "PerPosROCmin” data in the "rfcdmin” package exemplifies the percent
positives obtained to plot the ROC curve.

Here we retrieve the example data provided by Zoe Moodie, PhD.

> data(PerPosROCmin, package = "rfcdmin")

The function "ROC.FCS” shows the ROC curve and sensitivity, specificity
output after the implementation of the functions "percentile. FCS” and "Percent-
Pos.FCS” to obtain the percentiles and the percent positives, respectively, for
each individual’s HIV-protein stimulated and unstimulated pair for a particular
immunofluorescence measurement.

6 Future Updates

Most notable future updates include converting the testing and the gating into
generic 34 class objects. Currently these objects are all S3.

The dynamic plotting functions will also be converted to S4 generic objects
with additional visualization tools and methods.

Future work with PRIM include using the algorithm with real datasets and
displaying the results with the tools provided in the "rflowcyt” package.
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GAG <- ROC.FCS(hivpos.gag, hivneg.gag)

POLA <- ROC.FCS(hivpos.pola, hivneg.pola, lineopt = 2, colopt
overlay = TRUE)

POLB <- ROC.FCS(hivpos.polb, hivneg.polb, lineopt
overlay = TRUE)

legend (0.7, 0.7, c("gag", "polA", "polB"), col = c(1, 2, 3),
1ty = c(1, 2, 4))
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Figure 19: The ROC curves are based on the different HIV-proteins used
for the stimulation of immune responses. Here the GAG appears to achieve
greater sensitivity at a lower 1-specificity when evaluating the difference in im-
mune responses between an HIV-infected and HIV-noninfected profiles using
the pkci2.flowcytest approach.
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