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Abstract

Background: Peptide Mass Fingerprinting (PMF) is a widely used Mass Spectrometric (MS) method of analysis

of proteins and peptides. It relies on the comparison between experimentally determined and theoretical mass

spectra. The PMF process requires calibration, usually performed with external or internal calibrants of known

molecular masses.

Methods: We have introduced two novel MS calibration methods. The first method utilises the local similarity

of peptide maps generated after separation of complex protein samples by 2D-gel electrophoresis. It computes a

multiple peak-list alignment of the data set using a modified Minimum Spanning Tree (MST) algorithm. The

second method exploits the idea that hundreds of MS samples are measured in parallel on one sample support.

It improves the calibration coefficients by applying a two-dimensional Thin Plate Splines (TPS) smoothing

algorithm.

Results: We studied the novel calibration methods utilising data generated by three different MALDI-TOF-MS

instruments. We demonstrate that a PMF data set can be calibrated without resorting to external or relying on

widely occurring internal calibrants. The methods developed here were implemented in R and are part of the

BioConductor package mscalib available from http://www.bioconductor.org.
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Conclusions: As compared to other methods, our combined MS spectra calibration strategy increases the

peptide/protein identification rate by an additional 5− 15%.

Background

Proteomics inter-alia focuses on the identification [1] of peptides/proteins in complex biological samples.

Prior to the identification of the complex constituents, several separation steps are required to reduce the

sample complexity. This separation is performed by 2D-gel electrophoresis [2,3], followed by excision of the

detected spots from the gel, digestion with sequence specific proteases and extraction of the cleaved

proteins [4, 5]. Mass Spectrometric (MS) analysis [6–9] of the resulting mixture of peptides yields a peptide

mass fingerprint (PMF): a set of measured molecular masses of the proteolytic peptides derived from the

analysed protein [10,11].

PMF commonly requires Matrix Assisted Laser Desorption Ionisation (MALDI) Time of Flight (TOF)

instruments, capable of High Throughput (HT) analysis of complex samples with minimal pre-cleanup,

high femtomolar range sensitivity and accuracy of peptide molecular mass determination up to 5− 10 parts

per million (ppm) [12–15]. Due to the high ion transmission of the TOF mass analyser, this technique is

more sensitive compared with other MS techniques. In relation to Electrospray ionization (ESI), MALDI is

more tolerant to sample contamination, e.g. from salts and detergents often present in protein samples due

to the separation method. Therefore, MALDI MS has become the standard HT proteome analysis

technique in many research laboratories.

The experimental peptide mass lists are obtained from the analysis of TOF spectra [16]. Ideally, the TOF

is proportional to the square root of mass over charge (
√

m/z). Thus, in order to transform the spectrum

from TOF into m/z, two calibration constants A and B are required. These can be derived by measuring

the flight times t of at least two different ions with known masses and fitting them such that

TOF ≈ A
√

m
z + B. After the transformation from time into m/z, the mono-isotopic peptide signals in the

spectrum are identified and their intensity is determined by computational methods [17–20]. The lists of

the first mono-isotopic peptide peaks – further called peak-lists or short PLs – are used to identify the

protein of interest. In order to determine the protein sequence, database search algorithms use the match
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(within a given measurement accuracy) of theoretical peptide masses computed from protein sequence or

transcript databases [21] with observed MS masses [10,11].

Usually the scoring schemes model the mass frequencies of the proteins and peptides in the sequence

databases [18,22–24]. Other properties to consider include the different sensitivity of detection for

individual peptides, known protein modifications, and/or possible mutations [17,25–27], although generally,

all popular search scores depend on the precise assignment of experimental to theoretical peptide masses.

Two novel calibration methods

In a HT- setting [28,29], where the samples are placed on a moving sample support, the calibration

coefficients for transforming the TOF into m/z differ depending on sample position. This is due to

deviations in plate flatness, sample topography changing the size of the acceleration region [28,30], and

alterations in the strength of the electric field on the sample support borders which influences the drift

velocity of the ions [16]. Thus, when calibration constants determined from one position on the sample

support are used to calibrate TOF spectra acquired on other positions (a procedure known as external

calibration) the determined m/z values have errors of up to 500 ppm.

Calibration is usually performed using external [30,31] or internal calibrants [32,33], which rely on known

masses to calibrate the spectra to common co-ordinates. It must be stressed that when assigning internal

reference signals, the signals of a reference compound in some cases might be suppressed by the analyte

molecules, thus precluding internal calibration. In other cases, the reference signal may partially overlap

with an analyte signal, resulting in an erroneous assignment. A third category of calibration methods is

based on the peptide mass rule [17,18]. A major advantage of the latter method is that no internal

calibrants are required to calibrate the PLs. The limitation of this method is its sensitivity to the presence

of non-peptide peaks in the spectra, and that it completely fails if the number of peptide peaks in PLs are

small [17, 18,32]. Therefore, in practice this method usually is used only to pre-calibrate [18] or to support

the results of internal calibration [20,32].

We have developed two novel calibration methods for PMF data. Both calibration methods exploit

similarities of PLs due to closeness in the origin of the analysed samples. The first method combines the

computation of dissimilarities [34] between PLs with internal calibration. The second method employs

spatial statistical methods [35] to model systematic changes of the calibration-model over the MALDI

sample support. The major advantage of the presented methods originates from the fact that the MS

calibration derives from samples without internal standards or external calibrants positioned on each
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sample support.

Evaluating the methods

To demonstrate the accuracy of our methods, we studied one sample set of 380 mass spectra, consisting of

a part of the Arabidopsis thaliana proteome study [36]. For this purpose, a MALDI MS sample support in

pre-structured [29] (384-well) microtitre plate format was used. The measurements were performed using

the Autoflex MALDI-TOF MS [37] instrument.

To compare the performance of calibration methods described here with those already published [20,32],

we used two different data sets. The first set consisted of 1193 spectra deposited on 4 pre-structured

sample supports and measured on a Reflex MALDI-TOF MS [37] instrument (Reflex data set). Spectra

were generated via mass spectrometric analysis of the Rhodopirellula baltica proteome (unpublished data).

The second set was generated in connection with a proteome study of Mus musculus and consisted of 1882

spectra deposited on 5 pre-structured sample supports and measured on an Ultraflex MALDI-TOF MS [37]

instrument (Ultraflex data set).

During MS sample preparation of the Ultraflex data set, standard peptides of known masses (human

Angiotensin I- 1296.6853Da, human ACTH (18-39) 2, 465.1989Da) were added before the measurement to

the MS matrix. This was performed since the data sets were optimized for the calibration methods, which

required the internal calibrants. We examined if the standard peaks could be observed in more than 33% of

spectras and if so, we removed the peaks matching these masses from the data set. This procedure was

applied in order to simulate a data set not optimized for internal calibration.

The Rhodopirellula peptide PLs were searched against a Pirelulla database [38] with 13, 331 predicted

Open Reading Frames (ORFs). The Mus musculus samples underwent searches against the Mus musculus

entries (69, 343 -sequences) of the NCBI non-redundant protein database [39].

Results and Discussion
Internal calibration using a pre-calibrated list of calibration masses

Internal calibration is a widely used method in mass spectrometry. This method fails however, either if no

peaks matching known masses are present, or if MS peak assignment is false. A detailed description of the

application of internal calibration in a HT-MS setting, addressing the two points is given by e.g. Chamrad

et al. [32], Levander et al. [33] and Samuelson et al. [20]. In order to avoid the lack of MS peaks matching

the known calibration masses the authors used a pre-compiled list, e.g. trypsin autolysis peaks and
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Figure 1: Figure A: Histogram of masses present in the stick spectra in Figure B. In red, marked masses
recognised as ubiquitous. Figure B: Stick spectra of five hypothetical PLs. Red vertical lines mark the
position of ubiquitous masses determined using the histogram in Figure A. Figure C: Single linkage-clustering
dendrogram of the PLs in Figure B. As dissimilarity the mass measurement range (1500 Da) minus the range
enclosed by matching peaks. Figure D: Minimum spanning tree computed using the dissimilarities.

unidentified, frequently observed masses [40].

Chamrad et al. [32] initiated the calibration procedure with searches for matching masses using a relatively

large search window and iterated it with an increased accuracy. In this scheme, a large search window

allows false assignments for calibration masses to occur more frequently. If a false assignment occurs in the

first iteration, then the determined calibration constants are false and the entire calibration would be

wrong. In the next round of calibration, where a search for matching masses is performed with a higher

mass accuracy, the calibration will also fail. To prevent this, the authors [20,32] checked the obtained

calibration coefficients against the peptide mass rule (PM-rule) [18,41] and stopped further calibration

attempts in case of disagreement.

Levander et al. [33] introduced an adaptive method to eliminate low-sensitivity auto-proteolysis trypsin

peaks from the calibration mass list if no high-sensitivity trypsin peaks e.g.

(842.5099Da, 1045.5642Da, 2211.1046Da) were found to decrease the chance of false matches.

Unfortunately, this method can only be applied for “tryptic” calibration peaks.

Figures 1 A & B demonstrate the limitations of a calibration list compiled from ubiquitous masses of the

whole data set. One can recognise that out of three abundant masses (in red, Figure 1 A), only two can be
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practically used for calibration. Specifically, the first and the third abundant mass in the list of ubiquitous

masses (Figure 1 A) match simultaneously two peaks in PL 3,4 and 5 (Figure 1 B). Thus, out of five PLs,

only three could be calibrated. The second calibration mass is also of no use, since it is the only calibration

mass in the PLs 1 and 2 (although these PLs do contain other shared masses). This illustrates that the

usage of a global calibration list may fail to calibrate a set of PLs.

It is therefore feasible to address the following questions: How can one obtain a calibration list that is

short to avoid random matches while at the same time it matches a sufficient number of peaks in every PL

of the set? In addition, how can one minimise the initial search window to avoid random matches?

Finding the optimal multiple PL alignment using a modified Minimum Spanning Tree (MST) algorithm

In order to bypass the limitations imposed by global calibration we used an observation made by Schmidt

et al. [42]. They noticed that protein samples excised from high-resolution 2D-gels are usually not ideally

separated and therefore exhibit local similarities. Compiling a calibration list of abundant masses from a

whole data set obtained from a 2D-gel does not differentiate local spectra similarities. e.g. PLs 1, 2 and 3

(Figure 1 B) share peaks, which were not recognised as ubiquitous masses and hence not used further for

calibration using a global calibration list. The PL pairs (2, 3) and (1, 3) shared more then one peak, and

could thus easily be calibrated.

We explored the property of local pairwise PL similarities for calibration of data sets. To achieve it, we

used a modified minimum spanning tree (MST) [43] algorithm on the complete, weighted graph G(V,E, d),

where the vertex set V corresponds to the individual PLs, and the edges E are weighted by a dissimilarity

measure d. We defined the measure between two PLs p1 and p2 as d(p1, p2) = −s(p1, p2), where s

represented a similarity measure defined in Equation 10. This measure not only counts the number of

matching peaks, but also weights the mass range enclosed by them. Hence, it also considers that if the

matching masses lie very close to each other, the calibration model describes a small mass range only, and

can result in a large error when aligning masses that are out of this range.

Using the dissimilarities one can compute a MST (Figure 1 D). The algorithm to compute the MST of the

PL data set starts by choosing a PL (named s), which belongs to the PL pair of smallest dissimilarity, e.g.

PL 2 or 3 in Figure 1. This PL is the root of the growing tree T (Figure 8 line 1). Next, a PL v was chosen,

which easily could be aligned to PL u where u is a part of the growing tree i.e. u ∈ T (Figure 8 line 5), e.g.

PL v = 2 can easily be aligned to PL u = 3. Using linear regression, we computed the coefficients

c(v, u) = (c0, c1) of the affine function, modelling the absolute mass differences of the peaks matching in
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the PL pair (v, u). Having these coefficients one can compute the calibration coefficients c(v, s) using the

update rule in Equation 12, which described the mass measurement error (MME ) between the PL v and

the starting PL s. The calibration is not accomplished until the whole tree is built. We then added PL v to

the tree T and have iterated the procedure until all PLs were appended to the tree1 (Figure 1 D).

In the MST algorithm, the vertices are joined by edges of smallest dissimilarity. Consequently, the MST

algorithm connects all PLs in the data set in the way that the length of the path from the PL of origin

(root of the tree: PL 3 in Figure 1 D) to any PL in the data set is minimal. The algorithm for computing

the agglomerative clustering using the single linkage method [44,45] works similarly like the MST

algorithm and therefore the dendrogram (Figure 1 C) provides (as read from bottom to top) the order, by

which the PL pairs were chosen (Figure 1 C). The horizontal lines joining two dendrogram tree branches

were drawn at the height of the value of the minimal dissimilarity of two PLs in either branch.

Finally, the algorithm returns a list of coefficients and a measure of confidence for all PLs equalling the

smallest similarity in the path from s to v.

Figure 2 A demonstrates how the samples on the target are connected by the edges. Green dots (brighter)

represent leaves 2, while blue dots (darker) denote interior vertices. The PL of origin s is marked with a red

cross-hairs (sample position D15). Note, that long PLs (brighter squares) are interior vertices of the MST.

The strip-charts of mass ranges including peaks of the trypsin autolysis products 842.508, 2211.100 are

given in Figure 2 C1 and C2. One can observe that the MST-method works robustly on raw data with a

mass measurement error of up to ±0.7Da (black crosses), even if the search for matching peaks when

computing the similarities and calibration coefficients was performed within a much smaller window of

±0.45Da. Notably, if the maximal error among two PLs is much larger than the search window, it is still

possible to find a path, thus allowing alignment of two extreme PLs.

Due to the fact that all PLs were aligned to the PL of origin s, which did not necessarily match to the

theoretical trypsin autolysis masses, a final correction was required to calibrate the whole tree to the

theoretical co-ordinate system before database search (not shown).

Determining the calibration model of the sample support using Thin-Plate Spline interpolation (TPS)

Because a large part of the MME is of systematic origin and depends on the sample support position, the

mapping of the calibration coefficients across the entire MALDI plate was introduced by Gobom et al. [30]

1e.g., by adding PL 4 then 5 and finally 1 to T (Figure 1)
2A leaf of a tree is a vertex with degree at most one. A vertex that is not a leaf is called an interior vertex.
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Figure 2: Figure A: BPY-colour scheme coded PL lengths in dependence of the sample support position.
Blue dots – interior vertex, Green dots – end vertex, white arrows – connecting edges of the MST. The red
hair-cross indicates the PL of origin s. Figure B: BPY-colour scheme coded slope coefficient of the mass-
dependent calibration function in relation to sample support position. Figure C1, C2: Strip chart of the
data set for a mass range of 2210− 2212Da (top) and 842− 843Da (bottom), including the tryptic autolysis
peaks 842.508 and 2211.100Da. Black hair-crosses – masses of peaks before calibration, red circles – masses
after calibration. Vertical blue line – the exact position of trypsin autolysis masses 842.508 and 2211.100Da.

and Moskovets et al. [31]. The calibration coefficients were determined using a standard mixture of

peptides with known masses. Subsequently, the calibration coefficients were used during MS analysis in

order to correct for the masses afterwards measured on the same plate.

We introduced here a method that derives the calibration model from calibration coefficients obtained from

MS analytes, which do not necessarily contain internal standards. Instead of refining e.g. the MST

calibration model, we chose the peptide mass rule based approach, namely Linear Regression on Peptide

Rule (LR/PR) (cf Methods), to obtain the calibration coefficients. The methods based on the peptide mass

rule do not rely on the specification of an initial search window or on internal calibrant masses. The

LR/PR method calibrates the PLs into the theoretical co-ordinate system and increases the mass accuracy

to approximately 0.1Da, but fails if the PL is too short, which indeed could be observed for several samples

(Figure 3 A and C). Figure 3 A provides the colour scheme coded slope coefficient c1 as determined by the

LR/PR-method in dependence of the target location. One can observe that some erroneous predictions

occur (Figure 3 C; black crosses marked by magenta triangles). However, it is unbiased to assume a

smooth transition between adjacent positions of the sample support. For example Figure 2 B,

8



demonstrates that the slope coefficient of the sample calibration-model obtained by the MST calibration

methods increases for samples close to the support border. This change is due to alterations in the electric

field E (Equation 1) influencing the flight velocity given by

uD =
√

2Esa
z

m
, (1)

where sa is the size of the acceleration region, z is the ion charge and m is the mass of the ion. We

determined the systematic change of the slope using the Thin-Plate Spline(TPS) interpolation

method [35,46]. At first, we computed the TPS with a degree of smoothing λ = 5 · 10−2 (see Equation 17).

Calibration models with slope coefficient c1 that varies more than ±1 · 10−4 or with intercept coefficient c0

varying more than 0.2Da from the one estimated by the TPS, were discarded. Using the remaining

calibration models, the TPS was recomputed with smaller degree of smoothing λ = 1 · 10−3. Figure 3 B,

demonstrates the BPY-colour scheme coded slope coefficient c1, as estimated by the refined TPS. This

model resembles the one generated by the MST method (Figure 2 B). We corrected the PLs masses (black

cross hairs, Figure 3 C), using the TPS values as estimates of the slope coefficients, and as intercept

estimate we used the average intercept of all coefficients of the refined calibration models to obtain the

calibrated masses (red circles).

The TPS method reduced the MME of a PL compared to any other PL in the data set (vertical red,

dashed line in Figure 3 C) down to 0.3Da, as compared to 1.5Da for raw data. This is an ≈ 5- fold

increase of a mass measurement accuracy. This decrease of the MME enabled to utilise the MST-algorithm

with an accuracy of ±0.15Da, reducing further the probability of false assignments of calibration masses.

In addition, the histogram of dissimilarities computed for all PL pairs (Figure 4, A) shows for TPS

calibrated data lower values of dissimilarity (in red) as compared to the raw data (in grey), even if the first

dissimilarities were computed with a search window of 0.15Da and the second with a search window of

0.45Da. A subsequent calibration using the MST method further decreased the MME (Figure 4 B).

The mass measurement error

Prior to the calibration, the main error source is due to different drift velocities of the ions causing an

increase of the absolute MME, proportional to mass and best described by the slope coefficient c1 6= 0 and

measured as relative error using parts per million ppm (Table 1 row 1 and 2). After removal of this error

using calibration methods, e.g. TPS calibration (Table 1 row 3,4) or TPS with subsequent MST calibration

9
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Figure 3: Figure A : BPY - colour scheme coded slope coefficients c1 of the MME determined by LR/PR-
method. Figure B: The slope coefficient as predicted from the refined samples determined by TPS with
λ = 0.001. Figure C: Strip chart of the data set for a mass range of 2210− 2212Da (C1) and 842− 843Da
(C2), including the tryptic autolysis peaks 842.508 and 2211.100Da. Black crosses – masses of peaks predicted
by LR/PR-calibration method, red circles – masses predicted by the TPS calibration method. Vertical blue
line – exact position of trypsin autolysis masses 842.508 and 2211.100Da. Dashed red vertical line – mass
of the extreme peptide masses after TPS calibration.

(Table 1 row 5,6), the main contribution to the MME was due to peak detection performance 3. The

change of peak-detection quality was negligible in the range of 500− 4000Da. Figure 5, as well as Table 1

illustrates that after calibration the absolute MME was smaller for the peak with higher mass (2211.1)

than that of the peak with a lower mass (842.508) if the peak intensity, and consequently the Signal to

noise ratio, remained sufficiently high. Therefore, we performed the database searches by specifying the

search window in Da instead of ppm.

The optimal size of the search window

The optimal size of the search window was determined by searching of four internally calibrated data sets

with five different search window sizes, namely 0.5, 0.2, 0.1, 0.05 and 0.02Da using the Mascot [48] search

algorithm. The search window of 0.2Da generated the highest identification rate. Figure 6 shows the

relative identification rate (identification rate / max( identification rate ) ·100%). Allowing the search

window to be larger e.g. 0.5Da, decreases the identification rate by increasing the rate of false negatives,
3We were aware however, of systematic changes of the MME, which can be described using higher order polynomials [47].

We have removed higher order terms of the MME, by applying external calibration prior to other calibration procedures (see
Methods : Data Set).
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Figure 4: Figure A: Histogram of pairwise PL’s similarities. In gray – raw data and similarities computed
with an accuracy of ±0.4Da. In red – similarities computed with accuracy of ±0.15Da using LR/PR-TPS
calibrated data. Figure B: Strip chart of PLs. Grey triangles – masses after TPS-calibration, green circles
– data after TPS-MST- calibration, red circles – data calibrated into the theoretical co-ordinate system,
defined by theoretical tryptic autolysis masses (blue vertical lines.)

while a smaller window e.g. ±0.05Da decreases it by rejecting true matches [48]. Because the identification

rate for a search window of 0.1Da is only slightly worse than one of 0.2Da, and since it minimises the risk

of false positive matches, we further compared the practical performance of the calibration methods with a

search window of 0.1Da.

Prior to the database searches we removed all masses that occur in more than 8% of spectra, as it

significantly increased the identification rate [32,33] (cf Methods – Filtering of ubiquitous masses prior to

database search). The sequence data base search was performed using the Mascot [48] search software

version 1.8.1. We interfaced the search server from within R using the in-house developed R package

msmascot [49].

Combining different calibration methods and their comparison

All parameters were fitted to a data set optimised for internal calibration, measured on an Autoflex

MALDI-TOF MS [37] instrument. We applied the calibration methods introduced (MST and TPS based

calibration) without changing the parameters to two sample sets obtained using two different instruments,

namely a Reflex MALDI-TOF MS and a Ultraflex MALDI-TOF MS instrument. This was executed to

illustrate that our methods are robust with respect to different instruments even if the parameters were not
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Calibration Mass SN [Da] SN [ppm]
Raw data 842.508 0.1 118
Raw data 2211.1 0.3 135

TPS 842.508 0.03 37
TPS 2211.1 0.057 26

TPS-MST 842.508 0.012 14.5
TPS-MST 2211.1 0.01 4.6

Table 1: Mass Measurement Error. Standard deviation observed for the trytpic autolysis peaks 842.508 and
2211.1. Raw data; TPS - Thin-Plate Spline (TPS) calibrated data; TPS-MST - The data, which undergone
Thin-Plate Spline (TPS)(pre-processing), followed by Maximum Spanning Tree (MST) calibration
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Figure 5: Stick Spectrum of the merged data set of 380 PLs. The black vertical lines represent peaks
calibrated using the TPS and MST method. Their height equals their intensity. Green line – average mass
of all peaks in the region 842 − 843Da (Figure A) and 2210.5 − 2211.6Da (Figure B). The orange vertical
lines represent the average mass ±, the standard deviation of the peak masses in each region. Magenta line
– density of peak-masses.

optimised for the respective machines.

We combined the different pre-calibration and calibration methods resulting in six different calibration

sequences, summarised in Table 2. We compared the performance of the MST and TPS calibration

sequence to the internal calibration (IC), and the peptide rule based calibration methods (LR/PR).

Furthermore, we investigated if the identification rate of the TPS based method could be improved further

by subsequent internal (P-IC) or MST calibration (P-MST). The R [50] scripts implementing each sequence

can be found in the samples directory of the mscalib BioConductor [51] package.

The only calibration method for which parameters were optimised with respect to the instrument, was the

standard internal calibration (IC) method, which employs a pre-compiled calibration list of theoretical
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Figure 6: The optimal search window. Comparison of the relative identification rates of internally calibrated
data (Y-axis) given a search window size of 0.5Da, 0.2Da, 0.1Da, 0.05Da and 0.02Da, respectively (X -axis).
Red – Two Reflex (Pirellula) dataset, Black – Two Ultraflex (Mus Musculus) datasets

Abbreviation Description
1 LR/PR peptide rule calibration.
2 IC internal calibration 450 ppm and 250 ppm.
3 MST minimum spanning tree calibration.
4 TPS LR/PR and subsequent Thin-plate spline calibration.
5 P-IC TPS calibration and subsequent internal calibration.
6 P-MST TPS calibration and subsequent MST calibration.

Table 2: Calibration sequences. LR/PR – linear regression on peptide role, IC – Internal calibration with two
iterations. (Bruker Reflex – mass measurement error (MME) window of 450 and 250ppm, Bruker Ultraflex
– 250 and 125ppm); MST – MST calibration method computed with an search window of ±0.4Da; P-IC
- Pre-processing (TPS calibration) and subsequent internal calibration with a MME window of 250ppm;
P-MST - pre-processing and an MST with a search window of ±0.25Da;

trypsin autolysis peaks and a calibrated set of ubiquitous masses (cf Methods – Standard internal

calibration). In case of the LR/PR calibration method we applied an additional filtering of the

calibration-models. Only models with an intercept coefficient c0 satisfying −0.4Da < c0 < 0.4Da and slope

coefficients c1 with −5 · 10−3 < c1 < 5 · 10−3 were kept. In order to avoid falsely calibrated PLs we

performed the filtering.

The identification rates, defined as the number of identified samples by at least one of the calibration

sequences divided by the number of samples submitted for searches

#{CS1 ∪ CS2 ∪ · · · ∪ CS6}
number of samples submitted for search

, (2)

where CSi indicates the set of identified samples by one of the calibration sequences (Table 2), and #{A}
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denotes the number of elements in a set A, were in case of a) the Pirellula (Reflex) data set 74%, 87%,

79%, 85%, with an overall identification rate of 82% whereas b) in case of the Mus musculus (Ultraflex)

data set: 51%, 72%, 35%, 51%, 27%, with an overall identification rate of 58%, respectively. The lower

identification rate of the Mus musculus data set can possibly be explained by the fact that it was matched

with a larger database. Therefore, more matching peaks are required to make significant assignments to a

data base entry.

In order to directly compare the identification rates for both data sets and each calibration sequence, we

computed the relative identification rate. It was defined as the ratio of the number of identified samples

calibrated by a sequence (numerator) and of the number of identified samples, which could be identified by

at least one method (denominator):

#{CSi}
#{CS1 ∪ CS2 ∪ · · · ∪ CS6}

. (3)

The relative identification rate is indicated by the dots, joined by continuous lines for readability purposes

only, in Figure 7. The dashed lines denote the average of the sequence coverage of all identified samples4.

Figure 7A presents the results for the four Pirellula data sets, while Figure 7B shows the results of five Mus

musculus data sets.

Only in one case of one data set was a single calibration sequence P-MST (see Table 2) able to identify all

PLs (100% identification rate) and therefore it completely dominated over the other methods (black line,

Figure 7 A). In case of the Ultraflex data set (Figure 7 B) we observed that the P-MST method had the

highest identification rate, while in Reflex data set (Figure 7 A) it achieved the highest performance for

approximately half of the data sets.

Figure 7 C illustrates the averaged relative identification rate of the calibration methods for the Ultraflex

and Autoflex data sets. In addition, it demonstrates that the ordering of the calibration methods according

to the relative identification rate does not depend on the value of the Probability Based Mowse Score [48]

(PBMS) used as identification threshold. The dashed lines (Figure 5) indicate the identification rates

obtained for a PBMS 5 units higher than the one used to identify the samples with a 0.5% significance

level (continuous lines).

Interestingly, the TPS smoothing method resulted in an overall higher identification rate than the other

methods tested on raw data (LR/PR, IC, MST), except for one case of the Ultraflex data set.

4We compute the average sequence coverage for all spectra that were identified by at least one of the methods.
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Figure 7: Relative identification rate in % (continuous line – left y-axis) and sequence coverage in % (dashed
lines - right y-axis). LR/PR – linear regression on peptide rule, IC – two step internal calibration, MST –
minimum spanning tree calibration, P – TPS calibration, P-IC – TPS calibration and subsequent internal
calibration, P-MST - TPS calibration and subsequent MST calibration.

Furthermore, a combination of the internal calibration with TPS calibration (P-IC) did not increase either

the sequence coverage (dashed lines) or the identification rate of the TPS method applied alone.

In two out of the four Reflex data sets the MST method applied on TPS-processed data (P-TPS Figure 7

A, dashed lines) slightly decreased the sequence coverage indicating a reduction of calibration accuracy. In

case of the Ultraflex data sets, the sequence coverage correlated well with the identification rate and the

P-MST-method accomplished the highest performance.

Moreover, if similar identification rates of the LR/PR and the IC method were observed, the LR/PR

method provided higher sequence coverage (Figure 7 B). This could be explained by the fact that the

LR/PR method calibrated well the PLs possessing many peptide peaks. Such PLs potentially contain the

higher sequence coverage.

The BioConductor package mscalib

All of the calibration methods are part of the mscalib programme, which is available as a

BioConductor [52] package. The Bioconductor project is an initiative for the collaborative creation of

extensible software for computational biology and bioinformatics [51]. The scripts carrying out the

calibration sequences tested, can be found in the subdirectory /samples of the package. Furthermore, in

the same directory and in the directory /doc there are two vignettes [53] with detailed descriptions of two

selected calibration sequences.
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Conclusions

Usage of TPS calibration results in up to 10% higher identification rates than the internal calibration. The

TPS calibration procedure enables, for most of the samples deposited on the sample support, to obtain

mass accuracy in the range of ±0.1Da. Moreover, the TPS method does not require the presence of

internal calibrants since it relies on the peptide mass rule. The MST method is able to increase the

identification rates obtained by the TPS-method. Furthermore, the parameters optimised for one

instrument (Autoflex) can be directly utilised for other instruments (Reflex, Ultraflex).

In this work, we have only examined a version of the MST algorithm that builds a single tree for all PLs.

This is adequate if the data are a set of PLs with smooth transitions in the similarity values. If this is not

the case, it might be more appropriate to compute a forest of several MSTs. We have examined, however,

only a single PL similarity measure Equation 11 for PLs calibration. It is possible that better similarity

measures can still be generated and subsequently applied for PLs calibration.

Complete utilisation of microtitre plates and sample supports is not only rational with respect to increased

accuracy of the TPS method, but also with respect to the idea of HT experiments – maximal utilisation of

energy and resources. Dense excision of spots from 2D-gels not only increases the performance of the MST

method, but also identifies novel proteins. Hence, the main contribution of this manuscript is to present

two calibration methods, compatible with the principle of HT sample processing and aims to identify a

maximum of the proteins resolved on 2D-gels.

However, there is no single best calibration method. Each of the methods utilises different properties of the

PLs. Consequently, applying these methods in parallel and determining the total of identified samples

provides the highest identification rate.

Methods
Data sets

In this study, we used three data sets generated in different proteome analyses:

1. A bacterial proteome Rhodopirellula baltica (unpublished data) (1, 193 spectra) measured on a Reflex

III [37] MALDI-TOF instrument.

2. A mammalian proteome Mus musclus (1, 882 spectra) measured on Ultraflex [37] MALDI-TOF

instrument.

3. A plant proteome Arabidopsis thaliana [36] measured on an Autoflex [37] MALDI-TOF instrument.
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All PMF MS spectra derive from tryptic protein digests of individually excised protein spots. For this

purpose, the whole tissue/cell protein extracts of the former mentioned organisms were separated by

two-dimensional (2D) gel electrophoresis [3] and visualised with MS compatible Coomassie brilliant blue

G250 [36]. The MALDI-TOF MS analysis was performed using delayed ion extraction and by employing

the MALDI AnchorChip TMtargets (Bruker Daltonics, Bremen, Germany). Positively charged ions in the

m/z range of 700− 4, 500m/z were recorded. Subsequently, the SNAP algorithm of the XTOF spectrum

analysis software (Bruker Daltonics, Bremen, Germany) detected the monoisotopic masses of the measured

peptides. The sum of the detected monoisotopic masses constitutes the raw peak-list (PL). Processed PLs

were then used for the protein database searches with the Mascot search software (Version 1.8.1) [48],

employing a mass accuracy of ±0.1Da. Methionine oxidation was set as a variable and

carbamidomethylation of cysteine residues as fixed modification. We allowed only one missed proteolytic

cleavage site in the analysis.

Describing the Mass Measurement Error (MME) and predicting the correct mass

A mass difference can be described either in absolute ∆A = my −mx[m/z] or in relative

∆R = (my −mx) · 106/my[ppm] units. The masses in two PL’s X, Y were compared to each other and we

considered two peaks to match, in case of the absolute error if ∆A < a[m/z] and in case of the relative

errors if ∆R < a[ppm]. If we plotted ∆A or ∆R as a function of mtheo, we observed, besides a white noise

component ε ∈ N(0, σ), a systematic dependence. This dependence we modelled using a function f̂(m).

Given f̂(m) we corrected the experimental masses using equations:

mcorr =
mexp

1− f̂R(mexp) · 1/106
, or (4)

mcorr = mexp + f̂A(mexp), (5)

in case of the relative or absolute error respectively, to attain corrected masses mcorr.

Affine MME model

In the first approximation, the MME can be described by an affine function f̂A/R(mi) = c1 ·mi + c0, where

mi is the mass of the matching peaks5. The intercept and slope coefficients of this function can be

determined using linear regression.
5Because the mass m is much larger then ∆, in practice it does not matter whether we choose the average mass of the

matching peaks, the theoretical mass mtheo, or the experimental mass mexp
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If only one matching peak was found or the mass range enclosed by the matching masses was small (e.g.

less than 200Da), as a remedy one can fix:

• the intercept at 0, in case of absolute ∆A[Da]

• the slope coefficient at 0, in case of relative ∆R[ppm]

and determine the slope or intercept respectively from the data.

To correct the experimental masses mexp we used Equation 5 for the absolute differences ∆A of matching

peaks and Equation 4 in case of relative differences ∆R.

The difference between theoretical and measured masses is called mass measurement error MME, while the

alignment of mexp on mtheo an internal calibration [17,47,54].

Determining ubiquitous masses and their filtering

To determine the abundant masses we computed two histograms for each data set. The origin of the first

histogram f̂1
h is x0 = min (M)− h and of the second f̂2

h x0 = min (M)− h/2, where M are all masses in the

data set and the bandwidth h equals the measurement accuracy (in Da). We divided the range of M into

bins of bandwidth h

Bj = [x0 + (j − 1)h, x0 + jh], with j ∈ 1, . . . , l , (6)

where l = (max(M)− x0) mod h. Formally the histogram of counts f is given by [55]

f̂h(x) =
n∑

i=1

l∑
j

I(Xi ∈ Bj)I(x ∈ Bj) , (7)

where n represented the number of masses in M . If a bin had more counts than a given threshold, the

average mass m̄ of all peaks in the bin was computed. In the case of two adjacent or overlapping bins

B1, B2 with a significant number of counts c, we first computed a weighted average of the bin midpoints

using the number of counts in each bin as weight

m =
m1 · c1 + m2 · c2

c1 + c2
, (8)

where m1 and m2 are the bin mid. Afterwards, the average mass m̄ of all peaks in the range m± h/2 was

computed. All peaks with mass m ∈ [m̄± h/2] were subsequently removed from the data set. Usage of two

overlapping histograms allows the detection of clusters that are scattered over two adjacent bins in one of

the histograms. Different ways to determine ubiquitous masses were used and reported by Levender et

al. [33] and Kreitler [56].
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Standard internal calibration - Alignment to a pre-compiled list of calibration masses

Instead of using a predefined list of calibration masses, we chose the calibration masses adaptively. The

calibration list consisted of ubiquitous masses determined for the data set (cf Determining ubiquitous

masses). Some of the peaks in the list of ubiquitous masses could be assigned to tryptic autolysis products.

These matches were used to calibrate the abundant masses. The PLs in the data set were then aligned to

the calibrated list of ubiquitous masses.

Filtering of ubiquitous masses prior to database search.

We removed ubiquitous masses that occurred in more than 7.7% of PLs [32,33]6. Filtering of ubiquitous

masses was performed on a calibrated set of PLs. As a result, we could use a small bandwidth of

h = 0.2Da (Equation 6) to determine ubiquitous masses. Next, we checked which of them can be assigned

with a significant Probability Based Mascot Score (PBMS ) to a sequence database entry and subsequently

removed these masses from the filtering list 7. Finally, we removed all peaks within the range ±0.1Da

around the ubiquitous masses.

Linear Regression and Peptide mass Rule - LR/PR algorithm.

Wolski et al. (publication in preparation) defined the distance measure

dλ(mi,mj) =
{
|mi −mj | mod λDB if |mi −mj | mod λDB < 0.5
−(1− |mi −mj | mod λDB) if |mi −mj | mod λDB ≥ 0.5 ,

(9)

which computes given λDB (the average peptide cluster distance for a sequence database DB against

which the search is performed, e.g. λDB = 1.000495) the deviation of a peptide mass difference |mi −mj |

from the closest monoisotopic mass predicted by the PM-rule [41]. If there was a linear dependence

between |mi −mj | and dλ(mi,mj), then it was caused by the slope of the MME. If we computed all

differences |mj −mi| and dλ(mi,mj) for peak pairs mi,mj with |mi,mj | < 1400, we could determine the

slope coefficient c1 using linear regression, while fixing the intercept to zero [57]. In order to make the

prediction robust against e.g. non-peptide peaks, we used a robust linear regression [58]. We removed the

6Levander et al. suggested to use as a threshold the function considering the distribution of peptides in the protein database
normalised by the mass range and the number of peptides in the data set. The package mscalib implements this function.
We did not use it because in our experience the frequency distribution of peptides in the data set depends much more on the
mass-spectrometric matrix used than it is influenced by the theoretical peptide distribution determined for a database.

7Abundant masses assigned to a database entry usually result from proteins multiply detected on a 2D-gel. The multiple
identification is due to different localisation of the protein on the 2D-gel caused by: protein modifications (phosphorylation,
glycosylation), different splice variants or by partial protein degradation
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slope by multiplying each mass mi in the PL by (1− c1). Next, we identified the intercept, which was the

average of the distance dλ(mi, 0), and corrected for it.

Higher order Calibration Function

In order to model higher order systematic changes of mass dependent differences ∆ of experimental mexp

and reference masses mtheo, the measurements must be evenly distributed over the whole measurement

range [59]. To model the dependence ∆ ∝ m we used a cubic smoothing spline function [60,61], given by

∆ = f(m) + εi, where f is a smooth function, and εi ∼ N(0, σ2).

In our study, we used an implementation of the smoothing spline function, provided by B.D. Ripley and

Martin Mächler (based on Fortran code of T. Hastie and R. Tibshirani) as part of the R-stats package.

Other non-parametric regression methods like local polynomial regression [62] generated similar results for

all types of instruments used in this study.

To obtain equidistantly spaced measurements of known masses External calibration was employed. Some

sample spots on the sample support are dedicated to calibration only. Calibration samples, of polymer

mixtures [30], which yield equidistant peaks were used to precisely estimate the mass-dependent difference

function.

Similarity/Quality measures for internal calibration

PLs can be easily aligned if they contain many matching peaks and the masses of these peaks span a wide

mass range. The alignment of a PL pair (X, Y ) fails if no matching peaks are found. We described these

properties mathematically by the following similarity measures:

SX,Y =

 n∑
i=1

n∑
j=i+1

(|mj −mi|)p

1/p

, and (10)

FX,Y =
SA,B

min(|X|,|Y |)·(min(|X|,|Y |)−1)
2 · (max(X ∪ Y )−min(X ∪ Y ))

, (11)

where n represented the number of matches, while mi and mj were the masses of matching peaks. This

measure computed the sum of all mass differences of the matching peaks. The power p could be used to

weight the large differences stronger. To normalise SX,Y , we divided the similarity by the product of the

maximal possible number of matching peaks (min(|X|, |Y |)) times the mass range bracketed by the peaks

of both PLs. Consequently, FX,Y ∈ [0, 1] since the denominator is always larger or equal to SX,Y . ‘
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Input: A graph G with m edges; each edge e has a given length l(e).

Initialise:

1 Pick a vertex s, which is incident to the edge with smallest distance D(e).

2 Set U := s and let T be a tree with one vertex, namely s.

3 Set the calibration coefficients C of s zero, C(s) := (0, 0).

4 Set measure of path weight W (s) := ∞.

Grow Tree: While U 6= V ,

5 Among all edges uv with u ∈ U and v ∈ V \U pick that one with smallest D(uv).

6 Add uv to T and remove it from G by setting D(uv) = ∞.

7 Add v to U .

8 Compute C(v, u) where u is used as calibration PL. Assign
C(v, s) := C(v, u) ◦ C(u, s).

9 Set the measure of path weight W (v, s) = min(S(uv),W (u, s)) (S - similarity).

Output:

10 T – which is a maximum spanning tree.

11 C – which is the calibration list to align all PLs (vertices) to the starting PL (vertex)
s.

12 W – which are the weights of the path from s → v ∈ F .

13 S – modified similarity matrix.

Figure 8: Modified Dijkstra-Prim MST algorithm. The algorithm starts with vertex s (peak-list) belonging
to the PL pair with smallest distance (line 1) (the standard algorithm starts with an arbitrary pair). In
addition to computing the MST T , the algorithm computes the calibration constants C(v, s) (line 8) and
the connection weight W (u) (line 9).

Alignment of a set of PL using a Minimum Spanning Tree

To align a whole data-set to a single PL and to align the PLs with the highest similarity given by Equation

10, first we computed for all PLs pairs a distance matrix D by casting the similarities into dissimilarities.

This distance matrix can be represented by a complete, weighted graph G, where the vertices V correspond

to PLs and the edges are weighted with the pairwise dissimilarity. To connect all vertices in the graph G

with edges e of maximal similarity, the Dijkstra-Prim algorithm for finding the Minimum Spanning

Tree(MST) [43] was implemented. We present here a modified version of this algorithm (see Figure 8). The

algorithm was modified with respect to the starting conditions. As a starting vertex s we chose a vertex

incident to an edge of smallest distance. In addition to the MST tree T , the algorithm returns also a list of

calibration coefficients C, which align all PLs V in the data set to the starting vertex (PL) s, and a list

with connection weights W .
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By traversing the edges in T , we reached each vertex in G, starting at s via edges with the highest possible

calibration similarity (smallest distance). This is because we picked D(uv) with the smallest possible

distance (Figure 8, line 5).

To align PL v to the starting PL s we needed to determine the coefficients C(v, s) of the difference function

f̂(v, s) (Equation 5). We could obtain them from the coefficients C(v, u) and C(u, s) of the pairwise

difference function f̂(v, u) and f̂(u, s) by:

C(v, s) = C(v, u) ◦ C(u, s) =
{

cvs
1 = cvu

1 + cus
1 + cvu

1 cus
1

cvs
0 = cus

0 + cvu
0 + cvu

1 cus
0

, (12)

where e.g. cus
1 denotes the slope coefficient, and cus

0 the intercept of the function f̂(u, s).

Proof: The masses of the PL pairs (v,u), as well as (u,s) can be aligned given the C(v, u) and C(u, s) using

the equations

mu = mv + f̂A(v, u) = mv + cvu
1 ·mv + cvu

0 , and

ms = mu + f̂A(u, s) = mu + cus
1 ·mu + cus

0 (see Equation 5).

Hence,

∆A(v, s) = ms −mv

= mu + cus
1 ·mu + cus

0 −mv

= (mv + cvu
1 ·mv + cvu

0 ) + cus
1 · (mv + cvu

1 ·mv + cvu
0 ) + cus

0 −mv

= (cus
1 + cvu

1 + cvu
1 cus

1 )︸ ︷︷ ︸
cvs
1

·mv + cus
0 + cvu

0 + cvu
1 cus

0︸ ︷︷ ︸
cvs
0

.

C(v, s) was computed online using Equation 12, while growing the tree (Figure 8, line 8). Subsequently,

the algorithm returned a list C of calibration constants, where C(v, s) described the calibration coefficients

allowing to transform PL v into the co-ordinate system of the PL of origin s.

In order to gain more confidence in the calibration constants in C, the MST algorithm was iterated n

times. For computing the consecutive Ti, Ci,Wi, Di with i = 2, .., n we applied the dissimilarity matrix

Di−1 and set as a starting vertex si = s1 – the vertex incident to the edge of highest similarity in D1. The

returned Ti, Ci,Wi, Di differed since we removed in iteration i− 1 each visited edge (Figure 8, line 6).

The calibration constants Ci(v, s) with i = 1, .., n should ideally be the same. It is known that Ci(v, s)

differ due to alignment errors. Therefore, we computed a weighted average of the coefficients of the
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difference model. As weight of each model Ci(v, s) we utilised the smallest pairwise calibration similarity

Wi(v) (Figure 8, line 9), on the path from s to v.

Cw(v, s) =
n∑

i=1

Wi(v) · Ci(v, s)
Wi(v)

. (13)

We applied the calibration constants in Cw to align all PLs to the PLs s1.

Appendix
Smoothing spline function

To model the dependence yi ∼ xi we used a cubic smoothing spline function [55,60,61]. Specifically, we let

yi = f(xi) + εi, where εi ∼ N(0, σ2) and f was a smooth function estimated by

f̂(x) = argminf∈C2[x1,xn]

(
n∑

i=1

(yi − f(xi))2 + λ

∫ xn

x1

(f ′′(x))2dx

)
(14)

The first term measures the closeness to the data, while the second penalises curvatures in the function and

λ established a trade off between the two. If λ →∞, then f̂(x) becomes a linear function. As λ → 0, f̂(x)

is merely an cubic interpolating spline of the observations of Y . The unique solution of Equation 14 is a

natural cubic spline (NCS).

A different way to specify the degree of smoothing is by fixing the effective degrees of freedom, which equal

the trace of the smoother matrix trace(Sλ) = dfλ, where Sλ is f̂(xi) = Sλyi. Since dfλ = trace(Sλ) is

monotone in λ for smoothing splines. Thus, we could specify λ by fixing the degrees of freedom [63].

Thin-plate spline

The thin-plate spline is the two-dimensional analogue to the cubic spline in one dimension [35,64]. Let vi

denote one of the error model coefficients, e.g. intercept, at a target location (xi, yi). A thin-plate spline

f(x, y) is a smooth function which interpolates a surface that is fixed at the landmark points Pi = (xi, yi)

at a specific height hi. A thin-plate spline interpolation function can be written as

f(x, y) = a1 + axx + ayy +
p∑

i=0

wiU(||(xi, yi)− (x, y)||) , (15)

where U(r) = r2 ln(r) is the radial basis function with r =
√

x2 + y2. This equation is used to predict an

unknown v for location (x, y), and is the unique solution [35,64] which minimises the equation:
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I[f(x, y)] =
∫ ∫

R2

((
∂2f

∂x2

)2

+ 2
(

∂2f

∂x∂y

)2

+
(

∂2f

∂x2

)2
)

dxdy (16)

This quantity was called the bending energy of the thin-plate spline function. If noise in the determined

coefficients vi is detected, one may wish to relax the exact interpolation requirement (Equation 16). This

can be accomplished by multiplying equation 16 with a regularization parameter λ, a positive scalar, and

by adding the residual sum of squares (RSS), which gives:

H[f(x, y)] =
n∑

i=1

(vi − f(xi − yi))2 + λ · I[f(x, y)] (17)

Again, as in case of the cubic smoothing spline by the parameter λ, the degree of smoothing can be

determined. In our study, we utilised an implementation of the TPS [65], according to Doug Nychka [46].

Agglomerative Clustering

At the beginning of the clustering algorithm we had a Pn = v1, . . . , vn clustering solution, where each PL

vi in the data set belonged to a separate cluster Ci. We iteratively constructed a solution P k from P k + 1,

by choosing two clusters Ch and Cl from P k+1. We removed Ch and Cl and added the merged cluster

C = Ch ∪ Cl. The clusters Ch and Cl were selected according to the chosen linkage method. Single linkage

defines the distance between any two clusters as the minimum distance between them (Equation 18), i.e.

the distance between the two closest points (entities) Cl and Ch, given by

dsingle(Cl, Ch) = min
x∈Ch,y∈Cl

d(x, y) (18)

dcomplete(Cl, Ch) = max
x∈Ch,y∈Cl

d(x, y) . (19)

Usage of a single linkage method often causes the chaining phenomenon: forcing clusters together due to

single entities being close to each other, regardless of the positions of other entities in the cluster. Equation

19 defines the distance for the complete linkage method. Consequently, the complete linkage minimised the

diameter of the new cluster C = Ch ∪ Cl.

Abbreviation

• MME - mass measurement error

• HT - high throughput.

• BPY - blue-pink-yellow colour scheme that prints well as grey tone.
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• MST - minimum spanning tree.

• MS - Mass Spectrometry.

• TOF - Time of Flight.

• MALDI - Matrix Assisted Laser Desorption Ionization.

• mod - modulo operator.

• RSS - residual sum of squares.

• PL - peak-list

Authors contributions

ML and PJ gave initial input to the research.

WEW implemented the BioConductor package mscalib,msmascot, carried out the analysis, visualised the

results and wrote the manuscript.

ML wrote essential parts of the manuscript

All authors contributed to the final version of the manuscript and approved it.

Acknowledgements

We would like to thank the members of Algorithmic Bioinformatics group at FU-Berlin for valuable
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44. Härdle W, Simar L: Applied Multivariate Statistical Analysis. Springer, Heidelberg 2003,

[http://www.quantlet.com/mdstat/scripts/mva/htmlbook/mvahtml.%html].

45. Handl A: Multivariate Analysemethoden - Theorie und Praxis multivariater Verfahren unter besonderer
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59. Gobom J, Schürenberg M, Mueller M, Theiss D, Lehrach H, Nordhoff E:

alpha-cyano-4-hydroxycinnamic acid affinity sample preparation. A protocol for

MALDI-MS peptide analysis in proteomics. Analytical Chemistry 2001, 73(3):434–438.

60. Chambers JM, Hastie TJ: Statistical Models in S. London: Chapman & Hall 1992.

61. Hastie T, Tibshirani R: Generalized Additive Models. Chapman and Hall 1990.

62. Cleveland W, Grosse E, Shyu W: Local Regression Models. In Statistical Models in S.. Edited by

Chambers J, Hastie T, Wadsworth & Brooks/Cole 1992.

63. Hastie T, Tibshirani R, Friedman J: The Elements of Statistical Learning. Springer 2001.

[ISBN:0387952845].

64. Donato G, Belongie S: Approximation Methods for Thin Plate Spline Mappings and

Principal Warps. In Computer Vision - ECCV 2002: 7th European Conference on Computer Vision,

Copenhagen, Denmark, May 28-31, 2002. Proceedings, Part III, Lecture Notes in Computer Science.

Edited by Heyden A, Sparr G, Nielsen M, Johansen P, Springer-Verlag Heidelberg 2002:21–31.

65. Green P, Silverman B: Nonparametric Regression and Generalized Linear Modes: A Roughness Penalty

Approach. Chapman and Hall 1994.

31


