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Introduction

This vignette describes how to calibrate spectra using a adaptively determined
list of calibration masses and internal calibration. This procedure is iterated
with increasing mass accuracy. The performance of this pipeline was studied
e.g. by Wolski et al. [8] or Chamrad et al. [2].

The calibration sequence consists of:

� We first determine the abundant masses using two shifted overlapping
histograms, with a bandwidth of 0.6Da, and calibrate them by comparison
with a list of theoretical tryptic autolysis masses.

� Next we align the dataset to the calibration list using internal calibration
with an MME window of 450ppm.

� We remove the sinusoidal components of the MME by external calibration[3].

� Again we determine the abundant masses (bandwith accur = 0.3Da) and
use them as calibration list. The internal calibration is performed with an
MME of 200ppm.

� Prior to the database search we remove the ubiquitous masses.

Loading of packages and data

The package mscalib depends on the packages fields, XML and msbase. The
library gstat can be loaded because of the bpy.color scheme. To read the
Bruker Daltonics peaklist.xml file we use the function readBruker1.

library(gstat)

> rm(list = ls())

> library(msbase)

Loading required package: MASS
Loading required package: XML
[1] "test1"

1This function depends on the XML package
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> library(mscalib)

Loading required package: fields
fields is loaded use help(fields) for an overview of this library
Loading required package: spatial

To perform database searches against the Mascot search server 1.8.1 (www.matrixscience.com)
the package msmascot is required which can be downloaded from: r4proteomics.sourceforge.net.

library(msmascot)

To read files in peaklist.xml (Bruker Daltonics) format.

NPPG <- readBruker( new("Massvectorlist") , "brukersampledir" )
object <- readBruker( new("Massvectorlist") , "brukerppgdir" )
print(length(object))

> data(samples)

> data(NPPG)

We display the masses of the dataset using the function plot which is draw-
ing a strip-chart.

> plot(samples)

First calibration using abundant masses

To obtain the abundant masses in the dataset we use the function gamasses
and set the bandwidth accur = 0.6.

> abmasses <- gamasses(samples, accur = 0.6)

> data(cal2, package = "mscalib")

The histogram shows the mass frequencies. The green vertical lines indicate
the abundant masses.

> hist(samples, accur = 0.6)

> lines(abmasses, type = "h", col = 3, lwd = 1)

We calibrate the abundant masses using the function getintcalib and
applycalib. The function getintacalib compares the masses to theoretical
masses of tryptic autolysis products (dataset cal2) to determine the MME -
model. Function applycalib removes the MME to compile a new calibration
list.

> calib <- getintcalib(abmasses, cal2, error = 300, ppm = TRUE)

> abmasses <- applycalib(abmasses, calib)

We use the calibrated masses to determine the mass measurement error MME
of all samples in the dataset (function getintcalib). We search for matching
masses within a window of error = 450ppm.

> mmemod <- getintcalib(samples, abmasses, error = 450, ppm = T)
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The image plot visualizes how the MME -model coefficients depend on the
sample support position. While in case of the Slope coefficient we observe ran-
dom variation, in case of the intercept coefficient we observe its systematic
increase if getting closer to the sample support borders.

> par(mfrow = c(1, 2))

> image(mmemod, what = "Coeff.Slope", col = terrain.colors(100))

> image(mmemod, what = "Coeff.Intercept", col = terrain.colors(100))
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We use the MME -models to calibrate the peak-lists (function applycalib).

> data.calib <- applycalib(samples, mmemod)

The strip-chart (function plot) alows to asses how well the calibration is. By
the argument xlim we can select the mass range to be shown. In gray are the raw
data and in blue are the calibrated masses. The red vertical lines are indicating
the theoretical masses of tryptic autolysis products 842.508, 2211.100.

> par(mfrow = c(2, 1))

> mrang <- c(2210, 2212)

> par(mar = c(3, 3, 1, 1))

> plot(samples, xlim = mrang, main = "", pch = 2, col = "darkgray",

+ xlab = "", ylab = "", cex = 0.6)

> plot(data.calib, add = T, col = "blue", pch = 3, cex = 0.6)

> abline(v = cal2[, 1], col = 2)

> mrang <- c(842, 842.7)

> par(mar = c(3, 3, 1, 1))

> plot(samples, xlim = mrang, main = "", pch = 2, col = "darkgray",
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+ xlab = "", ylab = "", cex = 0.6)

> plot(data.calib, add = T, col = "blue", pch = 3, cex = 0.6)

> abline(v = cal2[, 1], col = 2)
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Validation of the MME-model

Chamrad et al.[2] suggest to check if the slope and intercept coefficient of the
obtained MME is within the expected range. To do it the function subset
can be used. We have observed that discarding the MME -model due to such
criterions does not increase the identification rate. The code here is only to
illustrate how the filtering can be performed using mscalib.

> mmemod2 <- subset(mmemod, Coeff.Intercept < 280 & Coeff.Intercept >

+ -280)

> mmemod2 <- subset(mmemod2, Coeff.Slope < 0.2 & Coeff.Slope >

+ -0.2)

> length(mmemod2)

[1] 344

> image(mmemod2, what = "Coeff.Intercept", col = terrain.colors(100))
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> rm(mmemod2)

Samuelsson et al. [6] suggest checking the obtained MME model against
the peptide mass (PM) role. This can be easily performed on the calibrated
peak-lists using the dissimilarity measure implemented in function distance.

> data.tmp <- applycalib(samples, mmemod)

> pr <- function(x) {

+ return(mean(distance(x[, 1, drop = T], 0)))

+ }

> hist(sapply(data.tmp, pr))

> mmemod2 <- mmemod[-which(sapply(data.calib, pr) > 0.22)]

> rm(mmemod2, data.tmp)

We do not going to use this filtering because we have not observed an increase
of the identification rate due to it.

Removing higher order calibration errors

To remove higher order MME Šs we use external samples on which poly-(propylen
glycol) (PPG) was measured [3]. Residuals of the experimental and matching
theoretical ppg masses after removal of the intercept and slope MME are shown
on the scatter plot below. We model this MME using internally the function
smooth.spline[1, 7].

> extcalib <- getextcalib(NPPG)
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> plot(extcalib)
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> abmasses <- gamasses(data.calib, accur = 0.4, abund = length(samples)/13)

> data.calib <- applycalib(data.calib, extcalib)

> abmasses2 <- gamasses(data.calib, accur = 0.4, abund = length(samples)/13)

To what extend this calibration increases the MME can be examined by
determining the abundant masses and comparing them with theoretical masses
of tryptic autolysis. The plot on the left is showing the residuals previous to
external calibration, that one on the right the residuals after external calibration.

> par(mfrow = c(1, 2))

> plot(abmasses, cal2)

> plot(abmasses2, cal2)
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Second calibration using abundant masses

We do a second calibration with a smaller mass range to search for matching
internal calibration masses (200ppm).

> abmasses <- gamasses(data.calib, accur = 0.4, abund = length(samples)/13)

> calib <- getintcalib(abmasses, cal2, error = 200, ppm = TRUE)

> abmasses <- applycalib(abmasses, calib)

> mmemod <- getintcalib(data.calib, abmasses, error = 200, ppm = TRUE)

We apply the MME -models to correct for the MME.

> data.calib <- applycalib(data.calib, mmemod)

We use the strip-chart to visualize the MME. The gray triangles show the
masses of the raw data, while the blue crosses show the masses after the second
internal calibration.

> par(mfrow = c(2, 1))

> mrang <- c(2210, 2212)

> par(mar = c(3, 3, 1, 1))

> plot(samples, xlim = mrang, main = "", pch = 2, col = "darkgray",

+ xlab = "", ylab = "", cex = 0.6)

> plot(data.calib, add = T, col = "blue", pch = 3, cex = 0.6)

> abline(v = cal2[, 1], col = 2)

> mrang <- c(842, 842.7)
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> par(mar = c(3, 3, 1, 1))

> plot(samples, xlim = mrang, main = "", pch = 2, col = "darkgray",

+ xlab = "", ylab = "", cex = 0.6)

> plot(data.calib, add = T, col = "blue", pch = 3, cex = 0.6)

> abline(v = cal2[, 1], col = 2)
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Removal of ubiquitous masses

To increase the identification rate we remove masses that occur in more than
7.7% (abund = length(samples)/13) of samples[2, 4]. To determine the abun-
dant masses we use the function gamasses.

> abmasses <- gamasses(data.calib, accur = 0.25, abund = length(samples)/13)

We check which of them can be assigned with a significant Probability Based
Mascot Score (PBMS )[5] to a, in the context of the experiment biologically
significant, sequence database entry. We remove these masses from the filtering
list. We configure the database search by choosing e.g. the database name and
measurement accuracy.

(To execute the following code you need to have a running installation of
the MASCOT search server 1.8.1 www.matrixscience.com an the pacakge ms-
mascot installed http://r4proteomics.sourceforge.net)

searchconfig <- getSearchconfig()
searchconfig$"DB" = "ARABI"
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searchconfig$"TOL" = 0.2
searchconfig$"TOLU" <- "Da"
#search the abundant masses
res<-mascotSearch(abmasses,searchconfig,hits=5,research=TRUE)
summary(res)
tmp <- as.data.frame(res)
if(subset(tmp, research==1 & hitid==1)$score > 65)
{
tmp <- getMatchedMass( res[[as.numeric(rownames(subset(tmp, research==1 & hitid==1)))]] )
plot(tmp)
fmasses <- fsetdiff(abmasses,tmp)

}

Finally, we remove the ubiquitous masses from the dataset using the function
fsetdiff.

data.cfilter <- fsetdiff(data.calib,abmasses,error=0.15,ppm=F)

The histogram shows in green the frequencies of masses in the filtered dataset.
In black are the frequencies of the removed masses.

hist(data.calib,accur=0.3)
hist(data.cfilter,col=3,add=T,accur=0.3)

The sequence database search

The calibrated and filtered dataset is submitted for search.

searchconfig$"DB"="ARABI"
searchconfig$"TOL"=0.15
searchconfig$"TOLU"<-"Da"
searchres <- mascotSearch(data.cfilter,searchconfig,hits=5,minscore=55,research=TRUE,host="localhost")
save(searchres,file=paste(folderD,"searchres1cc.rda",sep=""))

The function summary creates a table. The table entries display the number
of highest scoring DB hits (h1, h2, h3) with an significant PBMS (sigscore=60).
The columns (s2, s3) show how many of the PL’s resubmitted for search, after
removal of the peaks matching a theoretical peptide mass in the first search s1,
had a significant PBMS.

load(file=paste(folderD,"searchres1mst.rda",sep=""))
summary(searchres,sigscore=60)
tmp <- as.data.frame(searchres)
tmp <- subset(tmp, research==1 & hitid==1)$score
\begin{verbatim}

\begin{verbatim}
hist(tmp,breaks=seq(0,max(tmp)+1,by=1))
abline(v=60,col=2)

The histogram shows the distribution of the PBMS determined for the pro-
tein sequences ranked highest in the first search. They were retrieved from the
MascotResultList object by the function subset. The red line is indicating
the significance threshold of 60.
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