
How to use the MiPP Package

Mat Soukup, HyungJun Cho, and Jae K. Lee

May 18, 2005

Contents

1 Introduction 1

2 Misclassification-Penalized Posteriors (MiPP) 1

3 Examples 2
3.1 Acute Leukemia Data: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.2 Colon Cancer Data: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Introduction

The MiPP package is designed to sequentially add genes to a classification gene model
based upon the Misclassification-Penalized Posteriors (MiPP) as discussed in Section 2.
The construction of the model is based upon a training data set and the estimated actual
performance of the model is based upon an independent data set. When no clear distinc-
tion between the training and independent data sets exists, the cross-validation technique
is used to estimate actual performance. For the detailed algorithms, see Soukup, Cho,
and Lee (2005) and Soukup and Lee (2004). The MiPP package employs libraries MASS
for LDA/QDA (linear/quadratic discrimant analysis) and e1071 for SVM (support vec-
tor machine). Users should install the e1071 package from the main web page of R
(http://www.r-project.org/).

2 Misclassification-Penalized Posteriors (MiPP)

In the above section, estimated actual performance is mentioned a number of times.
Classically, the accuracy of a classification model is done by reporting its estimated
actual error rate. However, error rate fails to take into account how likely a particular
sample belongs to a given class and dichotomizes the data into yes the sample was
correctly classified or no the sample was NOT correctly classified. Although error rate,
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plays a key role in how well a classification model performs, it fails to take into account
all the information that is available from a classification rule.

The Misclassification-Penalized Posteriors (MiPP) takes into account how likely a
sample belongs to a given class by using a posterior probability of correct classification.
MiPP also adjusts its definition any time a sample is misclassified by subtracting a 1
from the posterior probability of correct classification resulting in a negative value of
MiPP. If we define the posterior probability of correct classification using genes x as
f̂(x), MiPP can be calculated as

ψp =
∑

correct

f̂(x) +
∑

wrong

(
f̂(x)− 1

)
. (1)

Here, correct refers to the subset of samples that are correctly classified and wrong refers
to the subset of samples that are misclassified. By introducing a random variable that
takes into account whether a sample is misclassified or not MiPP can be shown to be the
sum of posterior probabilities of correct classification minus the number of misclassified
samples. As a result, MiPP increases whenever the sum of posterior probabilities of
correction classification increase, the number of misclassified samples decreases, or both
of these occur.

We standardize the MiPP score divided by the number of samples in each data set,
denoted as sMiPP. Thus, the range of sMiPP is from -1 to 1. Note that as accuracy
increases, sMiPP converges to 1.

Some basic properties of MiPP are that the maximum value it can take is equal to
the sample size (or sMiPP = 1), and on the flip side, the minimum value is equal to
the negation of the sample size (or sMiPP = −1). Under a pure random model, the
expected value of MiPP is equal to zero (or sMiPP = 0). The variance is derived and is
available from the first author for the two class case, however an explicit value for more
than two classes can not be derived analytically. Thus, a bootstrapped estimate is the
preferred method of estimating the variance.

3 Examples

3.1 Acute Leukemia Data:

This data set has been frequently used for testing various methods in classification and
prediction of cancer sub-types. Two distinct subsets of array data for AML and ALL
leukemia patients are available: a training set of 27 ALL and 11 AML samples and
a test set of 20 ALL and 14 AML samples. The independent set was from adult bone
marrow samples, whereas the independent set was from 24 bone marrow samples, 10 from
peripheral blood samples, and 4 of the AML samples from adults. Gene expression levels
contain probes for 6817 human genes from Affymetrix�oligonucleotide microarrays. Note
that a subset of genes (713 probe sets) was stored into the MiPP package.
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To run MiPP , the data can be prepared as follows.

data(leukemia)

#IQR normalization

leukemia <- cbind(leuk1, leuk2)

leukemia <- mipp.preproc(leukemia, data.type="MAS4")

#Train set

x.train <- leukemia[,1:38]

y.train <- factor(c(rep("ALL",27),rep("AML",11)),levels=c("ALL","AML"),

labels=c("ALL", "AML"))

#Test set

x.test <- leukemia[,39:72]

y.test <- factor(c(rep("ALL",20),rep("AML",14)),levels=c("ALL","AML"),

labels=c("ALL", "AML"))

Since two distinct data sets exist, the model is constructed on the training data and
evaluated on the test data set as follows.

out <- mipp(x=x.train, y=y.train, x.test=x.test, y.test=y.test,

nfold=5, percent.cut=0.05, rule="lda")

This sequentially selects genes one gene at a time with the LDA rule (rule=”lda”)
and 5-fold cross-validation (nfold=5 ) on the training set. To reduce computing time,
it pre-selects the most plausuable 5% out of 713 genes by the two-sample t-test (per-
cent.cut=0.05 ), and then performs gene selection. To utilize all genes without pre-
selection, set the argument percent.cut=1 . The above command generates the following
output.

out$model

Order Gene ErrorRate MiPP sMiPP Select

1 1 571 0.11764706 23.91891 0.7034973

2 2 436 0.02941176 30.41434 0.8945395

3 3 366 0.02941176 31.35401 0.9221767

4 4 457 0.02941176 32.14149 0.9453380

5 5 413 0.02941176 32.17713 0.9463862

6 6 635 0.00000000 33.75339 0.9927467 **

7 7 648 0.00000000 33.63446 0.9892489

8 8 181 0.02941176 31.98469 0.9407261
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The gene model with the maximum sMiPP is indicated by one star (*) and the
parsimonious model (indicated by **) contains the fewest number of genes with sMiPP
greater than or equal to (max sMiPP - 0.01). In this example, the maximum and
parsimonious models (indicated by **) are the same. Thus, the final model with sMiPP
0.993 contains genes 571, 436, 366, 457, 413, and 635. Note that genes listed in the
output correspond to the column number of the matrices.

3.2 Colon Cancer Data:

The colon cancer data set consists of the 2000 genes with the highest minimal intensity
across the 62 tissue samples out of the original 6, 500+ genes. The data set is filtered
using the procedures described at the author’s web site. The 62 samples consist of 40
colon tumor tissue samples and 22 normal colon tissue samples (Alon et al., 1999). Li
et al. (2001) identified 5 samples (N34, N36, T30, T33, and T36) which were likely to
have been contaminated. As a result, these five samples are excluded from any future
analysis; our error rate would be higher if they were included.

Since we are working with a small data set (57 samples), we will be implementing
cross-validation techniques. With the lack of a ’true’ independent test set, we randomly
create a training data set with 38 samples (25 tumor and 13 normal) and an independent
data set with 19 samples (12 tumor and 7 normal). Since this is a random creation of
the data set, it would be of interest to see what model is selected based upon a different
random split of the data. Note that the choice of the sizes of the training and independent
test set is somewhat arbitrary, but consistent results were found using a training and test
set of sizes 29 (19 tumor and 10 normal) and 28 (18 tumor and 10 normal), respectively.
The colon data set of the MiPP package contains only 200 genes as an example. For the
colon data with no independent test set, MiPP can be run as follows.

data(colon)

x <- mipp.preproc(colon)

y <- colnames(colon)

#Deleting comtaminated chips

x <- x[,-c(51,55,45,49,56)]

y <- y[ -c(51,55,45,49,56)]

out <- mipp(x=x, y=y, nfold=5, p.test=1/3, n.split=20, n.split.eval=100,

percent.cut = 0.1 , rule="lda")

This divides the whole data into two groups for training (two-third) and testing (one-
third) (p.test = 1/3 ) and performs the forward gene selection as done with the acute
leukemia data. Splitting of the data set into training and independent dat seta and then
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selecting a model for a given split are repeated 20 times (n.split=20 ). This generates
the following output.

out$model

Split Order Gene ErrorRate MiPP sMiPP Select

1 1 1 29 0.05263158 16.032732 0.8438280

2 1 2 177 0.00000000 18.458082 0.9714780

3 1 3 163 0.00000000 18.832489 0.9911836 **

4 1 4 36 0.00000000 18.978443 0.9988654 *

5 1 5 51 0.00000000 18.972158 0.9985346

6 1 6 95 0.00000000 18.969822 0.9984117

7 2 1 29 0.10526316 14.512517 0.7638167

8 2 2 102 0.10526316 15.420517 0.8116061

9 2 3 36 0.05263158 16.652730 0.8764595

10 2 4 185 0.05263158 16.929696 0.8910366

11 2 5 76 0.00000000 18.562381 0.9769674 **

12 2 6 78 0.05263158 17.446542 0.9182391

13 2 7 95 0.05263158 17.138486 0.9020256

14 3 1 28 0.21052632 10.993642 0.5786127

15 3 2 36 0.10526316 15.323195 0.8064840

16 3 3 78 0.00000000 18.692086 0.9837940 **

17 3 4 51 0.05263158 17.047799 0.8972526

18 3 5 29 0.00000000 18.095243 0.9523812

.

.

.

128 20 1 163 0.10526316 13.724261 0.7223295

129 20 2 177 0.00000000 18.774879 0.9881515 **

130 20 3 185 0.00000000 18.825061 0.9907927 *

131 20 4 182 0.05263158 17.033708 0.8965109

132 20 5 29 0.00000000 18.676012 0.9829480

For each split, the parsimonious model identified (denoted as **) is evaluated by an
independent 100 splits (n.split.eval=100) generating the following output.
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out$model.eval

Split G1 G2 G3 G4 G5 G6 G7 mean ErrorRate mean MiPP mean sMiPP

S1 1 29 177 163 NA NA NA NA 0.0084210526 18.57919 0.9778522

S2 2 29 102 36 185 76 NA NA 0.0173684211 18.26665 0.9614028

S3 3 28 36 78 NA NA NA NA 0.0005263158 18.74241 0.9864428

S4 4 141 185 49 91 177 36 30 0.0026315789 18.84880 0.9920420

S5 5 163 177 84 185 NA NA NA 0.0010526316 18.70606 0.9845295

S6 6 163 177 36 NA NA NA NA 0.0000000000 18.74260 0.9864524

S7 7 30 36 78 185 NA NA NA 0.0000000000 18.93579 0.9966204

S8 8 51 185 49 29 36 76 NA 0.0247368421 17.96189 0.9453627

S9 9 30 36 NA NA NA NA NA 0.0015789474 18.68832 0.9835957

S10 10 29 177 NA NA NA NA NA 0.0110526316 18.28892 0.9625746

S11 11 29 102 163 36 NA NA NA 0.0263157895 17.86323 0.9401701

S12 12 29 177 182 NA NA NA NA 0.0052631579 18.60552 0.9792380

S13 13 29 177 182 NA NA NA NA 0.0052631579 18.60552 0.9792380

S14 14 30 36 NA NA NA NA NA 0.0015789474 18.68832 0.9835957

S15 15 29 177 185 NA NA NA NA 0.0042105263 18.76306 0.9875297

S16 16 29 177 36 NA NA NA NA 0.0063157895 18.66415 0.9823239

S17 17 163 177 NA NA NA NA NA 0.0021052632 18.51119 0.9742732

S18 18 163 177 36 NA NA NA NA 0.0000000000 18.74260 0.9864524

S19 19 28 36 185 177 NA NA NA 0.0000000000 18.91219 0.9953783

S20 20 163 177 NA NA NA NA NA 0.0021052632 18.51119 0.9742732

5% sMiPP 50% sMiPP 95% sMiPP

S1 0.8832269 0.9956378 0.9997555

S2 0.8904381 0.9907046 0.9979650

S3 0.9717611 0.9888683 0.9954501

S4 0.9720076 0.9982314 0.9997744

S5 0.9677334 0.9877863 0.9977993

S6 0.9696978 0.9889706 0.9973368

S7 0.9888911 0.9976407 0.9993538

S8 0.8734358 0.9763289 0.9983271

S9 0.9612196 0.9894887 0.9957796

S10 0.8723262 0.9770533 0.9935208

S11 0.8241824 0.9776791 0.9974065

S12 0.9103882 0.9888216 0.9986135

S13 0.9103882 0.9888216 0.9986135

S14 0.9612196 0.9894887 0.9957796

S15 0.9004550 0.9968640 0.9989926

S16 0.8970961 0.9937537 0.9984018

S17 0.9576879 0.9776923 0.9936058
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S18 0.9696978 0.9889706 0.9973368

S19 0.9871570 0.9970437 0.9992126

S20 0.9576879 0.9776923 0.9936058
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