Hexagon Binning: an Overview

Nicholas Lewin-Koh*
May 14, 2004

1 Overview

Hexagon binning is a form of bivariate histogram useful for visualizing the struc-
ture in datasets with large n. The underlying concept of hexagon binning is
extremely simple;

1. the zy plane over the set (range(x), range(y)) is tessellated by a regular
grid of hexagons.

2. the counts of points falling in each hexagon are counted and stored in a
data structure

3. the hexagons with count > 0 are plotted using a color ramp or varying
the radius of the hexagon in proportion to the counts.

The algorithm is extremely fast and effective for displaying the structure of
datasets with n > 10°. If the size of the grid and the cuts in the color ramp are
chosen in a clever fashion than the structure inherent in the data should emerge
in the binned plots. The same caveats apply to hexagon binning as apply to
histograms and care should be exercised in choosing the binning parameters.

The hexbin package is a set of function for creating and plotting hexagon
bins. The package extends the basic hexagon binning ideas with several func-
tions for doing bivariate smoothing, finding an approximate bivariate median,
and looking at the difference between two sets of bins on the same scale. The
basic functions can be incorporated into many types of plots. This package is
based on the original package for splus by Dan Carr at George Mason University
and is mostly the fruit of his graphical genius and intuition.

2 Basic Hexagon Binning Functions

Using the basic hexagon binning functions are not much more involved than
using the basic plotting functions. The following little example shows the basic
features of the basic plot and binning functions. We start by loading the package
and generating a toy example data set.

*with minor assistance by Martin Méchler

> library("hexbin")

> x <- rnorm(20000)

> y <= rnorm(20000)

> hbin <- hexbin(x, y, xbins = 40)
> plot(hbin)

< Counts

124

116

109

101
93
86
78
70
62
55
a7
39
) 32
24

16
9
1

Note that the default color scheme for the hexplot is a gray scale, but that
there is an argument to plot.hexbin, colramp, that allows the use of any function
that excepts an argument n and returns n colors. Several functions are supplied
that provide alternative color-ramps to R’s built in color ramp functions.

nf <- layout (matrix(c(1, 1, 2, 2, 4, 3, 3, 4), ncol = 4, nrow = 2,
byrow = TRUE), widths = rep(l, 4), heights = rep(1, 2))

x <- rnorm(20000)

y <= rnorm(20000)

hbin <- hexbin(x, y, xbins = 40)

rx <- range(x)

ry <- range(y)

par(pty = "s")

plot(rx, ry, type = "n", xlab = "X", ylab = "Y")

hexagons (hbin)

plot(rx, ry, type = "n", xlab = "X", ylab = "Y")

hexagons (hbin, colramp = terrain.colors)

VVVVVVVVVYV+YV

> plot(rx, ry, type = "n", xlab = "X", ylab = "Y")
> hexagons (hbin, colramp = BTY)

The figure shows three examples of using hexagons in a plot for large n with
different color schemes. Upper left: the default gray scale, upper right: the R
base terrain.colors(), and lower middle: BTY(), a blue to yellow color ramp
supplied with hexbin.

The hexbin package supplies a plotting method for the hexbin data structure.
The plotting method plot.hexbin accepts all the parameters for the hexagon
function and supplies a legend as well, for easy interpretation of the plot. Fig-
ure 2 shows a hex binned plot with a legend. A function hex.legend is supplied
for creating user specified hexagon legends.

3 cDNA Chip Normalization

This example is taken from the marray package, which supplies methods and
classes for the normalization and diagnostic plots of cDNA microarrays. In
this example the goal is not to make any comments about the normalization
methodology, but rather to show how the diagnostic plots can be enhanced
using hexagon binning due to the large number of points (n = 8,448 ¢cDNA
probes per chip).

First we look at the diagnostic plot M vs A, where M is the log-ratio,

M =log < —2% and A is the overall intensity, A = log < —2v/RG. Figure 3
shows the plot using points and on the right hexagons. The hexagon binned
plot shows that most of the pairs are well below zero, and that the overall shape
is more like a comet with most of the mass at the bottom of the curve, rather
than a thick bar of points curving below the line.

library("marray")

data(swirl, package = "marray")

hbl <- hexbin(maA(swirl[, 1]), maM(swirl[, 1]), xbins = 40)

par(mfrow = c(1, 2), pty = "s")

maPlot (swirl[, 1], z = NULL, legend.func
main = "M vs A plot with points")

maPlot (swirl[, 1], z = NULL, legend.func = NULL, type = "n",
lines.func = NULL, main = "M vs A plot with hexagons")

hexagons (hbl, colramp = BTY)

NULL, lines.func = NULL,

VvV + VvV + VVVVy

M vs A plot with points M vs A plot with hexagons

6 8 10 12 14 6 8 10 12 14

A A

> par(mfrow = c(1, 2), pty = "s")

> rng.x <- range(c(maA(swirll[, 11), maA(swirl[, 2])))

> rng.y <- range(c(maM(swirl[, 1), maM(swirl[, 2])))

> plot(rng.x, rng.y, type = "n", xlab = "M", ylab = "A", main = "Points showing difference
> points(maA(swirl[, 1]), maM(swirl[, 1]), pch = ".", col = "red")

> points(maA(swirl[, 2]), maM(swirl[, 2]), pch = ".", col = "blue")

hbl <- hexbin(maA(swirl[, 1]), maM(swirl[, 1]), xbins = 40)
hbl.e <- erode.hexbin(hbl)
hb2 <- hexbin(maA(swirl[, 2]), maM(swirl([, 2]), xbins = 40)

hb2.e <- erode.hexbin(hb2)
hdiffplot (hbl.e, hb2.e, main = "Difference plot of chip 1 and \n chip 2 using hexagon difi
xlab = "M", ylab = "A")

+ VVVVvyVv

Points showing difference Difference plot of chip 1 and
of chip 1 and chip 2 chip 2 using hexagon differences
- o |

@ - -]
7 o |

< o < °

- o

e Al

[|

™ - N T

I T T 1T 1 ! T T T T
6 8 10 12 14 10 11 12 13 14

M M

As a final example with the swirl data we use the hmatplot to demonstrate
the need for normalization of all four arrays to a common scale. The following
figure shows a matrix of figures. The four corner arrays are bivariate box plots
and the four plots between are the differences of the two distributions. The
arrows highlight the distance between the two bivariate medians.

To generate the figure takes a bit of explanation. Before we generate any
of the hexbin objects we need to make sure that all the hexagon grids have
the same range, otherwise we can get distortion in the hexagons, especially in
hdiffplots where two unequally scaled sets of hexagons will be plotted.

> hxrange <- range(c(maA(swirl[, 1]), maA(swirl[, 2]), maA(swirll[,

+ 3]), maA(swirl[, 4])))
> hyrange <- range(c(maM(swirl[, 1]), maM(swirl[, 2]), maM(swirl[,
+ 3]), maM(swirl[, 41)))

After we obtain the appropriate range of all the hexagons we need to generate
the hexagon bin objects and their erosion components. Note that we use the

extended ranges through the xbnds and ybnds arguments. Also note the use
of the cdf argument which gives the cut—off for bins that should be included in
the erosion component. Also we need to generate a matrix of the eroded hbin
names and row and column labels.

hb1
hb2
hb3
hb4

>
+
>
>
+
>
>
+
>
>
+
>
> nam
>
>

hb1.

hb2.

hb3.

hb4.

<- hexbin(maA(swirl[, 1]), maM(swirl[,
ybnds = hyrange)

e <- erode.hexbin(hbl, cdf = 0.25)

<- hexbin(maA(swirl[, 2]), maM(swirll[,
ybnds = hyrange)

e <- erode.hexbin(hb2, cdf = 0.25)

<- hexbin(maA(swirl[, 3]), maM(swirl[,
ybnds = hyrange)

e <- erode.hexbin(hb3, cdf = 0.25)

<- hexbin(maA(swirl[, 4]), maM(swirll[,
ybnds = hyrange)

e <- erode.hexbin(hb4, cdf = 0.25)

<- matrix(c("hbl.e", "hb2.e", "hb3.e",

rlab <- C("A”, HAH)
collab <- c("M", "M")

11,

21),

31,

41),

"hb4.

xbins = 22,
xbins = 22,
xbins = 22,
xbins = 22,
e"), ncol =

xbnds

xbnds

xbnds

xbnds

2)

Now we are ready to plot. Note we need to specify two lists of colors, one
for the borders and one for the hexagon fill. These lists need to be dived for the
hbox and hdiff component. Finally we add annotation using global parameters
since the original device parameters are restored on exit.

>
+
+
+
> tpo
+

>

hplt.par <- hmatplot(nam, rlab, collab, border
"white"), hdiff = rep("white", 6)), pen = list(hbox =
gray(0.4)), hdiff = c("#F4A582", gray(0.4), "#92C5DE", "#CA0020",

"#0571B0", "black")))

hxrange,

hxrange,

hxrange,

hxrange,

list(hbox = c("red",
c("yellow",

<- list(x = ¢(0.055, 0.77, 0.055, 0.77), y = c(0.98, 0.98,

0.18, 0.18))

text (tpo, c("Swirl 1", "Swirl 2", "Swirl 3", "Swirl 4"))

Swirl 2

Swirl 4

Swirl 1

(X IX1 1] 1-00

Swirl 3

There are many applications of hexagon binning, and this package in later
versions will give a set of methods and tools for extending hexagon binning to

many situations.

	Overview
	 Basic Hexagon Binning Functions
	 cDNA Chip Normalization

