HowTo Render A Graph Using Rgraphviz

Jeff Gentry
May 14, 2004

1 Overview

This article will demonstrate how to easily render a graph from R into various
formats using the Rgraphviz. To do this, first we need to generate a R graph
using the graph package:

> library(Rgraphviz)

Creating a new generic function for "lines" in ".GlobalEnv"
Creating a new generic function for "plot" in ".GlobalEnv"

> set.seed(123)
> V <- letters[1:10]

> M<-1:4
> g1 <- randomGraph(V, M, 0.2)
> gl

A graph with undirected edges
Number of Nodes = 10
Number of Edges = 16

2 Plotting in R Using Different Layout Methods

It is quite simple to generate a R plot window to display your graph. Once you
have your graph object, simply use the plot method:



0’:

The Rgraphviz package allows you to specify varying layout engines, such
as “dot” (the default), "neato”, and "twopi”. This can be done using the call to
plot:

> z <- plot(gl, "neato")



The "twopi” layout method requires a graph to be fully connected. To de-
termine if your graph is fully connected:

> isConnected(gl1)
[1] FALSE

A working "twopi” layout can be seen with this graph:

> set.seed(123)

> V <- letters[14:22]

> g2 <- randomEGraph(V, 0.2)
> isConnected(g2)

[1] TRUE

> z <- plot(g2, "twopi')



_—F

O,
\/
®\

And finally, to demonstrate how the differing layout methods work on this
second graph:

> z <- plot(g2, "dot")



> z <- plot(g2, "neato")



>«

Note that there is an option, recipEdges that details how to deal with re-
ciprocated edges in a graph. The two options are combined (the default) and
distinct. This is mostly useful in directed graphs that have reciprocating edges
- the combined option will display them as a single edge with an arrow on both
ends while distinct shows them as two separate edges.

> rEG <- new("graphNEL", nodes = c("A", "B"), edgemode = "directed")
> rEG <- addEdge("A", "B", rEG, 1)

> rEG <- addEdge("B", "A", rEG, 1)

> plot (rEG)



In this first example above, the edges were combined, whereas below they
are showed separately.

> plot(rEG, recipEdges = "distinct")



3 SubGraphs

Rgraphviz supports the ability to define specific clustering of nodes. This will
instruct the layout algorithm to attempt to keep the clustered nodes close to-
gether. To do this, one must first generate the desired set (one or more) of
subgraphs with the graph object.

> Sgl <- subGraph(c("a“, "d", "j", "i"), gl)
> sgl

A graph with undirected edges
Number of Nodes = 4
Number of Edges = 1

> sg2 <- subGraph(c("b", "e", "h"), gl)
> sg2

A graph with undirected edges
Number of Nodes = 3
Number of Edges = 3

> sg3 <- subGraph(c("c“, nfn’ ngn)’ gl)
> sg3



A graph with undirected edges
Number of Nodes = 3
Number of Edges = 0

To plot using the subgraphs, one must use the subGList argument which
accepts a list of every subgraph.

> plot(gl, subGList = list(sgl, sg2, sg3))

To demonstrate the differences that will appear with different subgraph pat-
terns, another example is provided:

> sgl <_ SubGraph(C("a“, ”C", IVdII, Ile”, Hjll)’ g1)
> sg2 <- subGraph(c("f", "n", "i"), g1)
> plot(gl, subGList = list(sgl, sg2))



OPORORCO,
Oens®

of
\o)

4 Attributes
5 The Attributes List

There are many visualization options in Graphviz that can be set beyond those
which are given explicit options using Rgraphviz - such as colors of nodes and
edges, which node to center on for twopi plots, node labels, edge labels, edge
weights, arrow heads and tails, etc. A list of all available attributes is accessible
online at: http://www.research.att.com/ erg/graphviz/info/attrs.html”. (Note
that there are some differences between default values and also some attributes
will not have an effect in Rgraphviz. Please see the man page for graphvizAt-
tributes for more details)

Attributes can be set both globally (for the entire graph, for all edges, all
nodes, etc) as well as on a per-node and per-edge basis. Global attributes are
set via a list and passed in as the attrs argument to plot. A default set of
global attributes are used if nothing else is provided, using the function get-
DefaultAttrs - users are encouraged to work off of the return of this function
instead of creating their own from scratch as then attributes which they don’t
want to change from the defaults will still be kept intact. The getDefaultAttrs
function takes as a parameter the layout type to be used (dot, neato or twopi)
but defaults to dot. The attrs list is a four element list with element names of

10



‘graph’, ’cluster’, ’edge’ and 'node’. Within each element is another list, where
the names correspond to attributes and the values correspond to the value to
use globally on that attribute. An example of this structure can be seen with
the default list provided by getDefaultAttrs:

> defAttrs <- getDefaultAttrs()
> defAttrs

$graph
$graph$bgcolor
[1] "transparent"

$graph$fontcolor
[1] "black"

$graph$ratio
(1] "fill"

$graph$overlap
[1] nn

$graph$splines
[1] TRUE

$graph$rankdir
[1] IITBII

$cluster
$cluster$bgcolor
[1] "transparent"

$cluster$color

[1] "black"

$node
$node$shape
[1] "circle"

$nodePfixedsize
[1] TRUE

$node$fillcolor
[1] "transparent"

11



$node$label
[1] nn

$node$color
[1] "black"

$node$fontcolor
[1] "black"

$node$fontsize

[1] Il14l|

$edge
$edge$color
[1] "black"

$edgeddir
[1] "both"

$edgePweight
(11 1

$edge$label
[1] nn

$edge$fontcolor
[1] "black"

$edge$arrowhead
[1] "none"

$edge$arrowtail
[1] "none"

$edge$fontsize
[1] |l14l|

$edge$labelfontsize
[1] nyqn

$edgeSarrowsize
[1] |l1||

$edge$headport
[1] "center"

12



$edge$layer

[1] nn
$edgedstyle
[1] "solid"

Users can also set attributes per-node and per-edge. In this case, if an at-
tribute is defined for a particular node then that node uses the specified attribute
and the rest of the nodes use the global default. Note that any attribute that is
set on a per-node or per-edge basis must have a default set globally, due to the
way that Graphviz sets attributes. Both the per-node and per-edge attributes
are set in the same basic manner - the attributes are set using a list where the
names of the elements are the attributes, and each element contains a named
vector. The names of this vector correspond to either node names or edge names,
and the values of the vector are the values to set the attribute to for that node
or edge. The one place to take care about is with the edge names in that the
name of an edge is x y where x is the 'from’ node and y is the 'to’ node. Note
that even with an undirected graph that x y is not the same thing as y x as it
depends on how the edge was explicitly defined. These lists are then passed in
to plot as the arguments nodeAttrs and edgeAtirs. The following sections will
demonstrate how to set per-node and per-edge attributes for commonly desired
tasks. For these we will construct two lists, nAttrs and eAttrs to pass in to
plot.

> nAttrs <- list()
> eAttrs <- list()

6 Labels

By default, nodes use the node name as their label and edges do not have a
label. However, both can have custom labels supplied via attributes.

> nAttrs$label <- c(a = "labl", b = "lab2", g = "lab3")
> nAttrs

$label
a b g
Illabill lllab2l| |I1ab3|I
> eAttrs$label <- c("a"h" = "test", "h~c" = "test2")
> eAttrs
$label
a"h h~c

"test" "test2"

13



> plot(gl, nodeAttrs = nAttrs, edgeAttrs = eAttrs)

® O O

test

]

7 Adding Some Color

There are many areas where color can be specified to the plotted graph. Edges
can be drawn in a non-default color, as can nodes. Nodes can also have a specific
fillcolor defined, detailing what color the interior of the node should be. The
color used for the labels can also be specified with the fontcolor attribute.

> nAttrs$color <- c(a = "red", b = "red", g = "green", d = "blue")
> eAttrs$color <- c("a"d" = "blue", "h"c" = "purple")
> nAttrs$fillcolor <- c(j = "yellow")
> nAttrs$fontcolor <- c(e = "green", f = "red")
> eAttrs$fontcolor <- c("a~h" = "green", "h"c" = "brown")
> nAttrs
$label
a b g

Illablll lllab2ll lllab3|I

$color
a b g d



llredll llredll Ilgreenll Ilbluell

$fillcolor
J
"yellow"

$fontcolor
e f
Ilgreenll llredll

> eAttrs
$label

a"h h™c
"test" "test2"

$color
a"d h™c
"blue" "purple"
$fontcolor
a"h h™c
"green" "brown"

> plot(gl, nodeAttrs = nAttrs, edgeAttrs = eAttrs)

15



8 Node Shapes

The Rgraphviz package allows you to specify different shapes for your nodes.
Currently, the only shapes allowed are circle (the default), ellipse and bozx. As
with previous attributes, the shape can be set globally or for specific nodes.
Here is the same graph from the previous example, with the default shape as
ellipse and with two nodes specified as being box and two as circle:

> defAttrs$node$shape <- "ellipse"
> nAttrs$shape <- c(e = "box", g = "circle", j = "box", d = "circle")
> plot(gl, attrs = defAttrs, nodeAttrs = nAttrs)

16



9 Setting attributes via node and edge lists

The user can take a different direction in setting up attributes and laying out
the graph then the one presented above. The following method can be used to
replicate exactly the same sorts of behaviour described above, but can be more
flexible in some other cases. The functions buildNodeList and buildEdgelList
will generate a list of pNode and pFEdge objects respectively. These are used
to provide the information for the actual Graphviz layout (and by default are
generated automatically). By generating these manually before the layout, one
can edit these objects and perform the layout with these edited lists.
For example:

> nodes <- buildNodeList(gl)
> edges <- buildEdgeList(gl)
> nodes[[1]]

An object of class "pNode"
Slot '"name":
[1] Ilall

Slot "attrs":
$label

17



[1] Ilall

Slot "subG":
[1] O

> edges[[1]]

An object of class "pEdge"

Slot "from":
[1] Ilall

Slot "to":
[1] Ilbll

Slot "attrs":
$arrowhead
[1] "none"
Slot "subG":
(11 0

You can now see the contents of the first pNode and first pEdge objects in
their respective lists. Now, to demonstrate some simple attribute examples such
as node and edge color, perhaps we’d like to have the "¢” node be blue and the
between ”"a” and "b” to be colored green, we can set it up as such:

> nodes$cattrs$fillcolor <- "blue"
> nodes$c

An object of class "pNode"
Slot "name":
[1] nen

Slot "attrs":
$label
[1] IICII

$fillcolor
[1] "blue"

Slot "subG":
[1] ©

> edges$"a"b"@attrs$color <- "green"
> edges$"a"b"

18



An object of class "pEdge"
Slot "from":
[1] Ilall

Slot "to":
[1] np"

Slot "attrs":
$arrowhead
[1] "none"
$color

[1] "green"
Slot "subG":
[11 o

You can see that the attrs slot now has a ’color’ element to it.

> vv <- agopen(name = "testl", nodes = nodes, edges = edges, edgeMode = "undirected")
> plot(vv)

19



Note that the name argument is required by Graphviz but is not currently
used for anything in Rgraphviz. The edgeMode argument is required in this case
because Graphviz needs to know if this graph is directed or not and Rgraphuviz
can’t necessarily determine the status of the graph from the node and edge
lists. One could suggest to look at the arrowhead/tails (or lack thereof) and
derive it that way, but the arrowhead/tails are completely independent from the
edgemode of the graph:

> edges$"a"e"@attrs$arrowhead <- "open"

> edges$"a"h"@attrs$arrowhead <- "open"

> edges$"a"h"@attrs$arrowtail <- "open"

> vv <- agopen(name = "testl", nodes = nodes, edges = edges, edgeMode = "undirected")
> plot(vv)

Here we’ve added our own arrowheads to the a e and a h edges as well
as added an arrowtail to the graph - while visually indicating direction, these
will have no bearing on the layout itself as Graphviz will view these edges as
undirected. This same technique can be used in the case where a directed graph
has reciprocated edges and one wants to combine those edges into single edges
with arrows in both directions.

20



10 Plotting with non-standard nodes

The Rgraphviz package provides for non-standard node drawing. Note that
these nodes are shaped the same as standard nodes, but are able to provide for
richer information in the actual display.

To do this, lay out the graph using the shape desired - then, when plotting
the laid out graph, one can use the drawNode argument to plot to define how
the nodes are drawn. This argument can be either of length one (in which case
all nodes are drawn with it) or a list of length equal to the number of nodes in
the graph (in which case the first element of the list is used to draw the first
node, etc). To work correctly, the function will take three arguments - the first
node is an object of class AgNode, which describes the node’s location and other
information and the second parameter, ur is of class X YPoint and describes the
upper right hand point of the bounding box (where the lower left is 0,0). The
third parameter, attrs, is a node attribute list as discussed in the "Attributes”
section and represents post-layout attribute changes where the user wants to
override values present in the layout. A custom drawing function is free to
ignore these values, but the argument must exist in the function declaration to
at least accept the value being passed in. The default function for node drawing
on all nodes is drawAgNode, so if one wants to use a custom function for some
nodes but the standard function for others, the list passed in to drawNode can
have the custom functions in the elements corresponding to those nodes desired
to have special display and drawAgNode in the elements corresponding to the
nodes where standard display is desired.

One function included with the Rgraphviz package that can be used for such
alternate node drawing is pieGlyph. This allows users to put arbitrary pie
charts in as circular nodes. As an example, we will take the eset dataset from
the Biobase package and will create a graph where each node corresponds to one
of a set of Affymetrix probes represented in that exprSet and draw each node
with a pie chart representing the expression levels of the samples in the exprSet
for that probe.

> require("Biobase") || stop("Biobase needed for this example")

Loading required package: Biobase
Welcome to Bioconductor
Vignettes contain introductory material. To view,
simply type: openVignette()
For details on reading vignettes, see
the openVignette help page.
[1] TRUE

data(eset)

exprs <- exprs(eset)[100:109, ]

probes <- rownames (exprs)

set.seed(123)

pieGraph <- randomGraph(probes, 1:4, 0.2)

vV V. Vv VvV

21



> pgLayout <- agopen(pieGraph, "foo")
> counts <- apply(exprs, 1, function(x) {
+ table(cut (x, breaks = c(-Inf, 100, 500, Inf)))
»
plotPieChart <- function(curPlot, counts) {
buildDrawing <- function(x) {
force (x)
y <-x * 100 + 1
function(node, ur, attrs = list()) {
nodeCenter <- getNodeCenter (node)
pieGlyph(y, xpos = getX(nodeCenter), ypos = getY(nodeCenter),
radius = getNodeRW(node), col = c("blue", "green",
"red"))

}

drawing <- vector(mode = "list", length = length(probes))

for (i in 1:length(drawing)) {

drawing[[i]] <- buildDrawing(counts[, i])

}

plot(curPlot, drawNode = drawing, main = "Example Pie Chart Plot")
legend (310, 100, legend = c("No Data", "0-100", "101-500",
"500+"), fill = c("white", "blue", "green", "red"))

}

+
>
+
+
+
+
+
+
+
+
+ }
+
+
+
+
+
+
+
+
+
> plotPieChart (pgLayout, counts)

22



Example Pie Chart Plot

®®@®

mmomr

To perform this plot, we constructed a complete function, although this is
not necessary - one can take any path they desire to build the list of drawing
functions. Also note that in this plot the nodes do not have labels as it would
look confusing, but those could be easily added with a line such as drawTxtLa-
bel(tztLabel(node), getX(nodeCenter), getY(nodeCenter)) in the buildDrawing
sub-function above. The drawAgNode should be used as a guide for basic activ-
ities such as this.

23



	Overview
	Plotting in R Using Different Layout Methods
	SubGraphs
	Attributes
	The Attributes List
	Labels
	Adding Some Color
	Node Shapes
	Setting attributes via node and edge lists
	Plotting with non-standard nodes

