A note on esApply

exprSets are complex objects. We will think of them as linked arrays: the exprs element
of an exprSet is G x N, where (G is the number of genes on a chip and N is the number of
tissues analyzed, and the pData element of the associated phenoData element is N X p,
where p is the number of phenotypic or demographic, etc., variables collected.

Abstractly, we are often interested in evaluating functions f(y;x) where y is an N-
vector of expression results for a specific gene and z is an N-dimensional structure,
coordinated with y, that distinguishes elements of y for processing in the function f. A
basic problem is to guarantee that the jth element of y is correctly associated with the
jth component of x.

As an example, let’s consider eset which is an exprSet supplied with Biobase. We
will print a little report, then the first N-vector of gene expressions and some covariate
data:

> print (eset)

Expression Set (exprSet) with
500 genes
26 samples
phenoData object with 3 variables and 26 cases
varLabels
covl: Covariate 1; 2 levels
cov2: Covariate 2; 2 levels
cov3: Covariate 3; 3 levels

> print (exprs(eset) [1, 1)

A B C D E F G H
192.7420 85.7533 176.7570 135.5750 64.4939 76.3569 160.5050 65.9631
I J K L M N 0 P
56.9039 135.6080 63.4432 78.2126 83.0943 89.3372 91.0615 95.9377
Q R S T U v W X
179.8450 152.4670 180.8340 85.4146 157.9890 146.8000 93.8829 103.8550
Y Z

64.4340 175.6150
> print(pData(eset)[1:2, 1:3])

covl cov2 cov3
A 1 1 1
B 1 1 1

Now let’s see how expressions and a covariate are related:



> print(rbind(exprs(eset[1, ]), covl

A B C
AFFX-MurIL2_at 192.742 85.7533 176.757
covl 1.000 1.0000 1.000
I J K
AFFX-MurIL2_at 56.9039 135.608 63.4432
covl 1.0000 1.000 1.0000
Q R S
AFFX-MurIL2_at 179.845 152.467 180.834
covl 2.000 2.000 2.000
Y Z
AFFX-MurIL2_at 64.434 175.615
covl 2.000 2.000

t (pData(eset)) [1, 1))

D E F G H
135.575 64.4939 76.3569 160.505 65.9631
1.000 1.0000 1.0000 1.000 1.0000

L M N 0 P

78.2126 83.0943 89.3372 91.0615 95.9377

1.0000 1.0000 2.0000 2.0000 2.0000
T U v W X
85.4146 157.989 146.8 93.8829 103.855
2.0000 2.000 2.0 2.0000 2.000

A function that evaluates the difference in median expression across strata defined using

an abstract covariate x is

> medContr <- function(y, x) {

+ ys <- split(y, x)
+ median(ys[[1]]) - median(ys[[2]])
+ }

We can apply this to a small exprSet that gives back the data listed above:

> print(apply(exprs(eset[1, , drop = F]), 1, medContr, pData(eset)[["cov1"]]))

AFFX-MurIL2_at
-20.7607

That’s a bit clumsy. This is where esApply comes in. We pay for some simplicity by
following a strict protocol for the definition of the statistical function to be applied.

> medContrl <- function(y) {

+ ys <- split(y, covl)
+ median(ys[[1]]) - median(ys[[2]])
+ }

> print(esApply(eset, 1, medContrl) [1])

AFFX-MurIL2_at
-20.7607

The manual page on esApply has a number

of additional examples that show how

applicable functions can be constructed and used. The important thing to note is that
the applicable functions know the names of the covariates in the pData dataframe.
This is achieved by having an environment populated with all the variables in the

phenoData component of the exprSet put in as

the environment of the function that will

be applied. If that function already has an environment we retain that but in the second
position. Thus, there is some potential for variable shadowing.



