
Textual Description of Biobase

June 1, 2004

Introduction

Biobase is part of the Bioconductor project. It is meant to be the location of any reusable (or non–
specific) functionality. Biobase will be required by most of the other Bioconductor libraries.

1 Data Structures

Part of the Biobase functionality is the standardization of data structures for genomic data. Currently
we have designed some data structures to handle microarray data.

The exprSet class has the following slots:

exprs A matrix of expression levels. Arrays are columns and genes are rows.

se.exprs A matrix of standard errors for expressions if they are available. It will have length 0 if they
are not.

phenoData An object of class phenoData that contains phenotypic and/or experimental data.

description A description of the experiment (object of class MIAME)

annotation A character string indicating the base name for the associated annotation.

notes A set of notes describing aspects or features of the data, the analysis, processing done, etc.

These data are extremely large and complex. To deal with them effectively we will need better
tools for combining data and documentation. The exprSet class represents an initial attempt by the
Bioconductor project to provide better tools for documenting and handling these large and complex
data sets.

The expression data represent experimentally derived data. In most cases these data will benefit
from making use of biologically relevant meta-data. The meta-data are very large and diverse. In order
to facilitate interactions and explorations we have taken the approach of constructing a specialized meta-
data package for each chip or instrument. Many of these packages are available from the Bioconductor
web site. These packages contain information such as the gene name, symbol and chromosomal location.
There are other meta-data packages that contain the information that is provided by other initiatives
such as GO and KEGG. These data can then be linked to the exprSet via the annotation slot.

The annotate package provides basic data manipulation tools for the meta-data packages.
The phenoData class has the following slots:

pData A dataframe where the rows are cases and the columns are variables.

varLabels A list of labels and descriptions for the variables represented by the columns of pData.

1



Instances of this class are essentially data.frame’s with some additional documentation on the
variables stored in the varLabels slot.

A mechanism for ensuring that the elements of the phenoData slot of an instance of exprSet are
in the same order as the columns of the exprs array is needed. It is important that these be properly
aligned since analyses will require this and automatic tools for checking will probably be better than
ad hoc ones.

In addition to the class definitions a number of special methods (or functions) have been defined to
operate on instances of these classes. Some particular attention has been paid to subsetting operations.
Instances of both phenoData and exprSet are closed under subsetting operations. That is, any subset
of one of these objects retains its class. There are also specialized print methods for objects of both
classes.

We consider an instance of an exprSet to be an expression array with some additional information.
Thus there are two subscripts, one for the rows and one for the columns. For that reason subsetting
works in the following ways:

� If the first subscript is given then the appropriate subset of rows from exprs and se.exprs is
taken. All the data in phenoData is propagated since no subset of cases was made.

� If the second subscript is given then the appropriate set of columns from exprs and se.exprs is
taken. At the same time the corresponding set of rows of phenoData are taken.

1.1 An exprSet Vignette

In the data directory for Biobase there is a small anonymized data set. It consists of expression level
data for 500 genes on 26 patients. The data can be accessed with the command data(geneData). There
are three artificial covariates provided as well. These can be accessed using data(geneCov) once the
Biobase library is attached.

The following vignette shows how to read in these data and to create an instance of the exprSet
class using those data.

> data(geneCov)

> data(geneData)

> covN <- list(cov1 = "Covariate 1; 2 levels", cov2 = "Covariate 2; 2 levels",

+ cov3 = "Covariate 3; 3 levels")

> pD <- new("phenoData", pData = geneCov, varLabels = covN)

> eSet <- new("exprSet", exprs = geneData, phenoData = pD)

2 Aggregate

When performing an interative computation such as cross–validation or bootstrapping it is often useful
to be able to aggregate certain intermediate results. The Aggregate functions (and soon the Aggregate
class) provide some simple tools for doing this.

The strategy employed is to maintain the summary statistics in an environment. This is passed to
the iterative function. It does not need to be returned since environments have a pass–by–reference
semantic. Once the function has finished the environment can be queried for the summary statistics.

One simple task that people often want to carry out is to determine in a cross–validation calculation
which genes are selected the most often. In some sense these genes may form a more stable basis for
inference. Achieving that using an Aggregator is very straight forward.

At each iteration we will pass the names of the selected genes to the Aggregator. It has two functions,
one for initializing and one for updating (or aggregating). The aggregator also has an environment.
This environment stores the data that is being aggregated.

For our cross–validation example the process goes as follows:

2



1. At each iteration Aggregate is called with the list of genes selected.

2. For each gene in that list we check to see if it was selected before.

(a) If not then initfun is called with that gene name. The value returned by initfun is then
associated with the gene name in the aggregation environment.

(b) If so, then the current value is obtained and agfun is called with the the gene name and the
current value. This returns a new value that is then associated with the gene name in the
aggregation environment.

Basically we are using this as a form of updating hash table. At the same time we are slightly
subverting R’s usual pass–by–value semantics.

3


	Data Structures
	An exprSet Vignette

	Aggregate

