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Experimental Data

In this vignette, we will demonstrate how to use linear models and the package factDesign to
analyze data from a factorial designed microarray experiment. In this package, an exprSet
called estrogen contains gene expression levels for 500 genes from Affymetrix HGU95av2 chips
for eight samples from a breast cancer cell line. The expression estimates were calculated using
the PM-only model in dChip after normalization by the Invariant Set Method (Li and Wong,
2001).

> library(Biobase)

Welcome to Bioconductor
Vignettes contain introductory material. To view,
simply type: openVignette()
For details on reading vignettes, see
the openVignette help page.

> library(annotate)

> library(affy)

> library(mva)

> library(factDesign)

The investigators in this experiment were interested in the effect of estrogen on the genes
in ER+ breast cancer cells over time. After serum starvation of all eight samples, they exposed
four samples to estrogen, and then measured mRNA transcript abundance after 10 hours for
two samples and 48 hours for the other two. They left the remaining four samples untreated,
and measured mRNA transcript abundance at 10 hours for two samples, and 48 hours for
the other two. Since there are two factors in this experiment (estrogen and time), each at
two levels (present or absent,10 hours or 48 hours), this experiment is said to have a 2×2
factorial design. Table 1 shows the correspondence of the sample names in estrogen with the
experimental conditions.

> data(estrogen)

> estrogen

Expression Set (exprSet) with
500 genes
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Table 1: Experimental Conditions for .cel Files

time estrogen
absent present

10 hours et1 Et1
et2 Et2

48 hours eT1 ET1
eT2 ET2

8 samples
phenoData object with 2 variables and 8 cases

varLabels
ES: absence/presence of estrogen
TIME: 10/48 hours

> pData(estrogen)

ES TIME
et1 A 10h
et2 A 10h
Et1 P 10h
Et2 P 10h
eT1 A 48h
eT2 A 48h
ET1 P 48h
ET2 P 48h

Analysis Using Fold Change Criteria

A simple method for finding estrogen-affected genes would be to form a ratio of the mean
expression levels of the estrogen-treated samples to the mean of the expression levels for the
untreated samples. Suppose we consider only the 10-hour time point, calculate fold change
(FC) values for the estrogen-treated vs. untreated samples, and select genes for which we
observe FC>2. In the plots below, absence/presence of estrogen is represented by e/E and on
the horizontal axis. The proposed FC criteria would compare the mean of the green dots to
the mean of the red dots.

If we used a FC> 2 criteria to identify ES-affected genes in the estrogen data set, we
would successfully eliminate genes like gene 4 and select genes like gene 58; however, we might
include many false positive results. Gene 320 has a FC value greater than 2, but the variability
of the expression estimates causes some concern. Note that for gene 81, the FC value is quite
low due to the presence of a single outlier.

> par(mfrow = c(2, 2))

> par(las = 2)
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> for (i in c(4, 58, 320, 81)) {

+ index <- i

+ expvals <- exprs(estrogen)[index, ]

+ plot(expvals, axes = F, cex = 1.5, xlab = "Conditions", ylab = "Expression Estimate")

+ points(1:2, expvals[1:2], pch = 16, cex = 1.5, col = 2)

+ points(3:4, expvals[3:4], pch = 16, cex = 1.5, col = 3)

+ axis(1, at = 1:8, labels = rownames(pData(estrogen)))

+ axis(2)

+ FC <- round(mean(expvals[3:4])/mean(expvals[1:2]), 3)

+ title(paste("gene ", index, ", FC=", FC, sep = ""))

+ }
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gene 58, FC=3.035

●
●

●

●

●

●
●

●

Conditions

E
xp

re
ss

io
n 

E
st

im
at

e

●
●

●

●

et
1

et
2

E
t1

E
t2

eT
1

eT
2

E
T

1

E
T

2

3000

4000

5000

6000

7000

8000

gene 320, FC=2.45
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gene 81, FC=0.813

We would like to find genes with consistent expression estimates between replicate samples
that are either up- or down-regulated by estrogen, for example genes 85 and 97. We would
also like to find genes like gene 13 for which the magnitude of the effect of estrogen changes
over time. Furthermore, we would like to exclude genes like gene 26 that demonstrate change
primarily over time, and not necessarily due to estrogen.

Selecting genes according to fold change estimates alone does not take advantage of the
measure of variability in gene expression offered by the replicate sampels. Furthermore, we
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cannot attach statistical significance (i.e., a p-value) to the fold change estimates computed in
this manner. It is also difficult to quantify any change in estrogen effect over time. Classical
statistical linear modeling with thoughtful biological interpretation of the parameters offers a
natural paradigm for the analysis of factorial designed microarray experiments.

> par(mfrow = c(2, 2))

> par(las = 2)

> for (i in c(85, 97, 13, 26)) {

+ index <- i

+ expvals <- exprs(estrogen)[index, ]

+ plot(expvals, axes = F, cex = 1.5, xlab = "Conditions", ylab = "Expression Estimate")

+ axis(1, at = 1:8, labels = rownames(pData(estrogen)))

+ axis(2)

+ FC <- round(mean(expvals[3:4])/mean(expvals[1:2]), 3)

+ title(paste("gene ", i, ", FC=", FC, sep = ""))

+ }
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gene 97, FC=0.597

●

●

●
●

●

●

●
●

Conditions

E
xp

re
ss

io
n 

E
st

im
at

e

et
1

et
2

E
t1

E
t2

eT
1

eT
2

E
T

1

E
T

2

600

700

800

900

1000

gene 13, FC=1.318
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Removing Outliers

Before defining the linear model for this particular experiment, we want to remove observations
that might be single outliers in the data set. The test we used is based on the differences
between replicates and is appropriate for small factorial experimental designs. First, we identify
replicate pairs with differences that are significantly larger than expected, and then we can
apply a median absolute deviation filter to make sure one of the observations is indeed the single
outlier. For example, gene 294 has a replicate pair with a large difference, but we wouldn’t
want to label either observation as the single outlier. Gene 81 has one observation that indeed
appears to be a single outlier.

> op1 <- outlierPair(exprs(estrogen)[294, ], INDEX = pData(estrogen),

+ p = 0.05)

> print(op1)

$test
[1] FALSE

$pval
[1] 0.0626216

$whichPair
[1] 3 4

> madOutPair(exprs(estrogen)[25, ], op1[[3]])

[1] "NA"

> op2 <- outlierPair(exprs(estrogen)[81, ], INDEX = pData(estrogen),

+ p = 0.05)

> print(op2)

$test
[1] TRUE

$pval
[1] 0.04561594

$whichPair
[1] 3 4

> madOutPair(exprs(estrogen)[81, ], op2[[3]])

[1] 4

> par(mfrow = c(1, 2))

> par(las = 2)
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> for (i in c(294, 81)) {

+ index <- i

+ expvals <- exprs(estrogen)[index, ]

+ plot(expvals, axes = F, cex = 1.5, xlab = "Conditions", ylab = "Expression Estimate")

+ points(3:4, expvals[3:4], pch = 16)

+ axis(1, at = 1:8, labels = rownames(pData(estrogen)))

+ axis(2)

+ title(paste("gene ", i))

+ }
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Describing the Linear Model

The 2×2 factorial design of this experiment allows us to use a statistical linear model to
measure the effects of estrogen and time on gene expression. In equation (1), yfull,ij is the
observed expression level for gene i in sample j (j = 1, ..., 8). xESj = 1 if estrogen is present
and 0 otherwise; xTIMEj = 1 if gene expression was measured at 48 hours and 0 otherwise. µi
is the expression level of untreated gene i at 10 hours. βESi and βTIMEi represent the effects
of estrogen and time on the expression level of gene i, respectively. βES:TIMEi is called an
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interaction term for gene i; this allows us to quantify any change in estrogen effect over time
for probes like 1700_at. εij represents random error for gene i and sample j, and is assumed to
be independent for each gene and sample, and normally distributed with mean 0 and variance
σ2
i . The biologically independent replicates of the experimental conditions in this study allow

us to estimate σ2
i .

yfull,ij = µi + βESixESj + βTIMEixTIMEj + βES:TIMEixESjxTIMEj + εij (1)

To proceed with the analysis, we estimate the β parameters for every gene using least squares,
and call the estimates β̂ESi, β̂TIMEi, and β̂ES:TIMEi. For gene i, the samples that were not
treated with estrogen and were measured at 10 hours will have estimated expression values
of µ̂i. The estrogen-treated, 10-hour samples will have estimates µ̂i + β̂ESi. The untreated,
48-hour samples will have estimates µ̂i + β̂TIMEi. The estrogen-treated, 48-hour samples will
have estimates µ̂i + β̂ESi + β̂TIMEi + β̂ES:TIMEi.

We will also form a reduced model with only an effect for time (2), and use this to decide
if a model including estrogen is appropriate for the gene of interest.

ytime,ij = µi + βTIMEixTIMEj + εi (2)

> lm.full <- function(y) lm(y ~ ES + TIME + ES * TIME)

> lm.time <- function(y) lm(y ~ TIME)

> lm.f <- esApply(estrogen, 1, lm.full)

> lm.t <- esApply(estrogen, 1, lm.time)

> summary(lm.f[[1]])

Call:
lm(formula = y ~ ES + TIME + ES * TIME)

Residuals:
1 2 3 4 5 6 7 8

-3.246 3.246 41.774 -41.774 13.413 -13.413 17.822 -17.822

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 790.83 23.73 33.321 4.84e-06 ***
ESP -38.03 33.56 -1.133 0.3205
TIME48h -74.22 33.56 -2.211 0.0915 .
ESP:TIME48h 99.76 47.47 2.102 0.1035
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 33.56 on 4 degrees of freedom
Multiple R-Squared: 0.5884, Adjusted R-squared: 0.2797
F-statistic: 1.906 on 3 and 4 DF, p-value: 0.27

> summary(lm.t[[1]])
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Call:
lm(formula = y ~ TIME)

Residuals:
Min 1Q Median 3Q Max

-60.79 -24.16 14.41 22.39 48.69

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 771.81 20.17 38.268 2.13e-08 ***
TIME48h -24.34 28.52 -0.853 0.426
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 40.34 on 6 degrees of freedom
Multiple R-Squared: 0.1082, Adjusted R-squared: -0.04039
F-statistic: 0.7282 on 1 and 6 DF, p-value: 0.4262

Selecting Genes of Interest using the Linear Model

We are only interested in genes which are affected by estrogen. One way to select such genes is
to compare the full linear model (lm.f) to the linear model consisting of only a term for time
(lm.t) using an ANOVA F -test. If the full model lm.f fits better than the reduced model
lm.t, then we know the gene must be affected by estrogen.

> Fpvals <- rep(0, length(lm.f))

> for (i in 1:length(lm.f)) {

+ Fpvals[i] <- anova(lm.t[[i]], lm.f[[i]])$P[2]

+ }

Since we have so many genes to consider, multiple comparisons is an obvious problem. We
can adjust the p-values resulting from the ANOVA F -test using a the False Discovery Method
for dependent hypothesis tests of Benjamini and Yekutieli (2001). If we select genes that have
a p-value < 0.10 after the adjustment, then we know the genes are significantly affected by
estrogen with a false positive rate of 0.10.

> library(multtest)

> F.res <- mt.rawp2adjp(Fpvals, "BY")

> F.adjps <- F.res$adjp[order(F.res$index), ]

> numgenes.Fsub <- sum(F.adjps[, 2] < 0.1)

> Fsub <- which(F.adjps[, 2] < 0.1)

> estrogen.Fsub <- estrogen[Fsub]

> lm.f.Fsub <- lm.f[Fsub]

> estrogen.Fsub
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Expression Set (exprSet) with
31 genes
8 samples

phenoData object with 2 variables and 8 cases
varLabels

ES: absence/presence of estrogen
TIME: 10/48 hours

Suppose we want to identify genes that are affected by estrogen at 10 hours. In our linear
model, this corresponds to testing a null hypothesis H0ES : βES = 0, and if the hypothesis
rejected, concluding that the gene has a main estrogen effect.

> betaNames <- names(lm.f[[1]][["coefficients"]])

> lambda <- par2lambda(betaNames, c("ESP"), c(1))

> mainES <- function(x) contrastTest(x, lambda)[[1]]

> mainESgenes <- sapply(lm.f.Fsub, FUN = mainES)

> sum(mainESgenes == "REJECT")

[1] 25

Heatmaps can be a useful way to visualize genes that are selected according to a certain
criteria. In the first heatmap that follows, we see genes for which the null hypothesis H0ES

was rejected at a 0.01 significance level. In the second heatmap, we see the genes for which
the main estrogen effect was not statistically significant; it appears that estrogen affected these
genes only after 48 hours.

> heatmap(exprs(estrogen.Fsub)[mainESgenes == "REJECT", ], Colv = 1:8)
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> heatmap(exprs(estrogen.Fsub)[mainESgenes == "FAIL TO REJECT",

+ ], Colv = 1:8)
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Selecting genes according to p-value can produce some possibly misleading results. For
example, the 17th gene with a main ES effect had a p-value for βES less than 0.01, but the
estimate of fold change at 10 hours is only 1.42. While this small effect is statistically significant,
it may not be biologically interesting.

> lambdaNum <- par2lambda(betaNames, list(c("(Intercept)", "ESP")),

+ list(c(1, 1)))

> lambdaDenom <- par2lambda(betaNames, list(c("(Intercept)")),

+ list(c(1)))

> FCval <- findFC(lm.f.Fsub[[17]], lambdaNum, lambdaDenom)

> print(FCval)

[,1]
[1,] 1.422268

Now suppose we want to find genes that are affected by estrogen after 48 hours. We want
to compare the gene expression levels of the untreated samples that were measured at 48 hours
with the estrogen-treated samples at 48 hours. In terms of our linear model, for each gene, we
want to test the null hypothesis H0ES,TIME in (3).

H0ES,TIME : µ+ βTIME = µ+ βES + βTIME + βES:TIME (3)

Testing the null hypothesis H0ES,TIME is equivalent to testing the linear contrast H0ES,TIME∗
in (4).

H0ES,TIME∗ : βES + βES:TIME = 0 (4)

The technique for testing this linear contrast follows from straightforward linear model theory.

> lambdaEST <- par2lambda(betaNames, list(c("ESP", "ESP:TIME48h")),

+ list(c(1, 1)))
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> ESTcontrast <- function(x) contrastTest(x, lambdaEST)[[1]]

> ESTgenes <- sapply(lm.f.Fsub, FUN = ESTcontrast)

> sum(ESTgenes == "REJECT")

[1] 18

Again, we can use a heatmap to look at genes for which we rejected HES,TIME∗.

> heatmap(exprs(estrogen.Fsub)[ESTgenes == "REJECT", ], Colv = 1:8)
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After genes are selected according to contrast tests of interest, the annotation information
available in other Bioconductor packages allows for more in-depth research on specific genes.

Using linear models for factorial designed microarray experiments enables investigators to
extend analyses beyond basic gene filtering according to fold change. Genes can be selected in a
high-throughput manner with biologically interpretable parameters and quantifiable measures
of confidence. This lab investigated the effects of estrogen on breast cancer cells, but the
principles behind this specific example are applicable to any carefully designed microarray
study.
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