NormMixClus {coseq} | R Documentation |
Perform co-expression and co-abudance analysis of high-throughput
sequencing data, with or without data transformation, using a Normal
mixture models. The output of NormMixClus
is an S4 object of
class RangedSummarizedExperiment
.
NormMixClus(y_profiles, K, subset = NULL, parallel = TRUE, BPPARAM = bpparam(), ...)
y_profiles |
(n x q) matrix of observed profiles for n observations and q variables |
K |
Number of clusters (a single value or a sequence of values). |
subset |
Optional vector providing the indices of a subset of
genes that should be used for the co-expression analysis (i.e., row indices
of the data matrix |
parallel |
If |
BPPARAM |
Optional parameter object passed internally to |
... |
Additional optional parameters to be passed to |
An S4 object of class coseqResults
, with conditional
probabilities of cluster membership for each gene in each model stored as a list of assay
data, and corresponding log likelihood, ICL value, number of
clusters, and form of Gaussian model for each model stored as metadata.
Andrea Rau, Cathy Maugis-Rabusseau
## Simulate toy data, n = 300 observations set.seed(12345) countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4) countmat <- countmat[which(rowSums(countmat) > 0),] profiles <- transformRNAseq(countmat, norm="none", transformation="arcsin")$tcounts conds <- rep(c("A","B","C","D"), each=2) ## Run the Normal mixture model for K = 2,3 ## Object of class coseqResults run <- NormMixClus(y=profiles, K=2:3, iter=5) run ## Run the Normal mixture model for K=2 ## Object of class SummarizedExperiment0 run2 <- NormMixClusK(y=profiles, K=2, iter=5) ## Summary of results summary(run) ## Re-estimate mixture parameters for the model with K=2 clusters param <- NormMixParam(run, y_profiles=profiles)