Transcripts per million (TPM) single cell RNA-Seq data for 5,902 cells from 18 patients–oral cavity head and neck squamous cell carcinoma (HNSC)– are available from GEO GSE103322. These data are also available as a SingleCellExpression from ExperimentHub.
In the example below, we show how this dataset can be dwnloaded from ExperimentHub.
library(ExperimentHub)
## Loading required package: BiocGenerics
## Loading required package: generics
##
## Attaching package: 'generics'
## The following objects are masked from 'package:base':
##
## as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
## setequal, union
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
## as.data.frame, basename, cbind, colnames, dirname, do.call,
## duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
## mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
## rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
## unsplit, which.max, which.min
## Loading required package: AnnotationHub
## Loading required package: BiocFileCache
## Loading required package: dbplyr
library(SingleCellExperiment)
## Loading required package: SummarizedExperiment
## Loading required package: MatrixGenerics
## Loading required package: matrixStats
##
## Attaching package: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
##
## colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
## colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
## colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
## colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
## colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
## colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
## colWeightedMeans, colWeightedMedians, colWeightedSds,
## colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
## rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
## rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
## rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
## rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
## rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
## rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
## rowWeightedSds, rowWeightedVars
## Loading required package: GenomicRanges
## Loading required package: stats4
## Loading required package: S4Vectors
##
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:utils':
##
## findMatches
## The following objects are masked from 'package:base':
##
## I, expand.grid, unname
## Loading required package: IRanges
## Loading required package: GenomeInfoDb
## Loading required package: Biobase
## Welcome to Bioconductor
##
## Vignettes contain introductory material; view with
## 'browseVignettes()'. To cite Bioconductor, see
## 'citation("Biobase")', and for packages 'citation("pkgname")'.
##
## Attaching package: 'Biobase'
## The following object is masked from 'package:MatrixGenerics':
##
## rowMedians
## The following objects are masked from 'package:matrixStats':
##
## anyMissing, rowMedians
## The following object is masked from 'package:ExperimentHub':
##
## cache
## The following object is masked from 'package:AnnotationHub':
##
## cache
eh = ExperimentHub()
dset <- query(eh , "GSE103322")
dset
## ExperimentHub with 1 record
## # snapshotDate(): 2025-04-11
## # names(): EH5419
## # package(): GSE103322
## # $dataprovider: GEO
## # $species: Homo sapiens
## # $rdataclass: SingleCellExperiment
## # $rdatadateadded: 2021-03-04
## # $title: Single cell RNA-seq data for human head and neck squamous cell car...
## # $description: scRNA-Sequencing data and metadata for 5902 cells from 18 p...
## # $taxonomyid: 9606
## # $genome: hg19
## # $sourcetype: tar.gz
## # $sourceurl: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103322
## # $sourcesize: NA
## # $tags: c("CancerData", "DNASeqData", "ExpressionData", "Genome",
## # "GEO", "Homo_sapiens_Data", "RNASeqData", "SingleCellData")
## # retrieve record with 'object[["EH5419"]]'
One can then extract the data for this using
sce <- dset[[1]]
## see ?GSE103322 and browseVignettes('GSE103322') for documentation
## loading from cache
The metadata is available from the SingleCellExpression object with
head(SummarizedExperiment::colData(sce))
## DataFrame with 6 rows and 5 columns
## processed.by.Maxima.enzyme Lymph.node
## <character> <character>
## HN28_P15_D06_S330_comb 1 1
## HN28_P6_G05_S173_comb 1 0
## HN26_P14_D11_S239_comb 1 1
## HN26_P14_H05_S281_comb 1 1
## HN26_P25_H09_S189_comb 1 1
## HN26_P14_H06_S282_comb 1 1
## classified..as.cancer.cell
## <character>
## HN28_P15_D06_S330_comb 0
## HN28_P6_G05_S173_comb 0
## HN26_P14_D11_S239_comb 1
## HN26_P14_H05_S281_comb 0
## HN26_P25_H09_S189_comb 1
## HN26_P14_H06_S282_comb 1
## classified.as.non.cancer.cells non.cancer.cell.type
## <character> <character>
## HN28_P15_D06_S330_comb 1 Fibroblast
## HN28_P6_G05_S173_comb 1 Fibroblast
## HN26_P14_D11_S239_comb 0 0
## HN26_P14_H05_S281_comb 1 Fibroblast
## HN26_P25_H09_S189_comb 0 0
## HN26_P14_H06_S282_comb 0 0
For example, to obtain the number of cells classified as non-tumor types
table(SummarizedExperiment::colData(sce)$non.cancer.cell.type)
##
## -Fibroblast 0 B cell Dendritic Endothelial Fibroblast
## 18 2539 138 51 260 1422
## Macrophage Mast T cell myocyte
## 98 120 1237 19
The data can be extracted from the SingleCellExpression object with
dset <- SummarizedExperiment::assays(sce)$TPM
dim(dset)
## [1] 21341 5902
dset[1:4, 1:3]
## HN28_P15_D06_S330_comb HN28_P6_G05_S173_comb HN26_P14_D11_S239_comb
## 401546 0.0000 0.0000 0.42761
## 6205 6.0037 7.3006 7.28850
## 63916 0.0000 0.0000 0.00000
## 90993 0.0000 0.0000 0.00000
sessionInfo()
## R version 4.5.0 beta (2025-04-02 r88102)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] GSE103322_1.15.0 GEOquery_2.77.0
## [3] SingleCellExperiment_1.31.0 SummarizedExperiment_1.39.0
## [5] Biobase_2.69.0 GenomicRanges_1.61.0
## [7] GenomeInfoDb_1.45.0 IRanges_2.43.0
## [9] S4Vectors_0.47.0 MatrixGenerics_1.21.0
## [11] matrixStats_1.5.0 ExperimentHub_2.17.0
## [13] AnnotationHub_3.17.0 BiocFileCache_2.17.0
## [15] dbplyr_2.5.0 BiocGenerics_0.55.0
## [17] generics_0.1.3 BiocStyle_2.37.0
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.2.1 dplyr_1.1.4 blob_1.2.4
## [4] filelock_1.0.3 Biostrings_2.77.0 fastmap_1.2.0
## [7] XML_3.99-0.18 digest_0.6.37 mime_0.13
## [10] lifecycle_1.0.4 statmod_1.5.0 KEGGREST_1.49.0
## [13] RSQLite_2.3.9 magrittr_2.0.3 compiler_4.5.0
## [16] rlang_1.1.6 sass_0.4.10 tools_4.5.0
## [19] yaml_2.3.10 data.table_1.17.0 knitr_1.50
## [22] S4Arrays_1.9.0 bit_4.6.0 curl_6.2.2
## [25] DelayedArray_0.35.0 xml2_1.3.8 abind_1.4-8
## [28] withr_3.0.2 purrr_1.0.4 grid_4.5.0
## [31] cli_3.6.4 rmarkdown_2.29 crayon_1.5.3
## [34] httr_1.4.7 tzdb_0.5.0 DBI_1.2.3
## [37] cachem_1.1.0 AnnotationDbi_1.71.0 BiocManager_1.30.25
## [40] XVector_0.49.0 vctrs_0.6.5 Matrix_1.7-3
## [43] jsonlite_2.0.0 bookdown_0.43 hms_1.1.3
## [46] bit64_4.6.0-1 limma_3.65.0 jquerylib_0.1.4
## [49] tidyr_1.3.1 glue_1.8.0 BiocVersion_3.22.0
## [52] UCSC.utils_1.5.0 tibble_3.2.1 pillar_1.10.2
## [55] rappdirs_0.3.3 htmltools_0.5.8.1 GenomeInfoDbData_1.2.14
## [58] R6_2.6.1 evaluate_1.0.3 lattice_0.22-7
## [61] readr_2.1.5 rentrez_1.2.3 png_0.1-8
## [64] memoise_2.0.1 bslib_0.9.0 SparseArray_1.9.0
## [67] xfun_0.52 pkgconfig_2.0.3