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1 Introduction

Multiple types of genomic observations from the same patients are increasingly
available in biomedical studies, including measurements of gene- and miRNA
expression levels, gene copy number, and methylation status. By investigating
the dependencies between these data sets it is possible to discover functional
mechanisms and interactions that are not seen in the individual data sets. For
example, integration of gene expression and copy number has been shown to re-
veal cancer-associated chromosomal regions and associated genes with potential
diagnostic, prognostic and clinical impact [4].

We demonstrate how to integrate gene or micro-RNA expression with DNA
copy number (aCGH) measurements to discover functionally active chromoso-
mal aberrations. The models capture the shared signal in paired observations,
and indicate the affected genes and patients. The methods are potentially ap-
plicable also to other types of biomedical data, including methylation, SNPs,
alternative splicing and transcription factor binding, or in other application
fields.

The package provides general-purpose tools for the discovery and analysis
of statistical dependencies between co-occurring data sources. The methods are
based on a principled framework, probabilistic canonical correlation analysis [2]
and its extensions [1, 3, 4]. Probabilistic formulation deals rigorously with un-
certainty associated with small sample sizes common in biomedical studies, and
the package also provides tools to guide dependency modeling through Bayesian
priors [4].

2 Examples
This Section shows how to apply the methods for dependency detection in func-

tional genomics studies. The general dependency modeling framework and tools
are described in Section 3.
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2.1 Example data

Use of the package is demonstrated with an example data set containing paired
observations of gene expression and copy number from a set of gastric cancer
patients [5].

Load the package and example data:

> require(pint)
> data(chromosomel7)

Each example data set (gene Exp and geneCopyNum) consists of a list with
two items: data and info. The probes in gene expression and gene copy number
are assumed to be paired. data is a data matrix with gene expression or gene
copy number data. Genes are in rows and samples in columns and rows and
columns should be named. info is a data frame with additional information
about genes. It has three elements: loc, chr and arm. loc indicates the genomic
location of the probes in base pairs (numeric); chr and arm are factors indicating
the chromosome and chromosomal arm of the probe.

2.1.1 Modeling assumptions

Note that the currently implemented dependency models assume approximately
Gaussian distributed observations. With microarray data sets, this is typically
obtained by presenting the data in the logs domain; this is the default in many
microarray preprocessing methods.

2.2 Discovering functionally active copy number changes

Chromosomal regions with frequent copy number alterations and associated gene
expression changes are potential candidates for cancer genes. Such regions are
assumed to have high dependency between gene copy number and expression
levels. To detect these regions, we measure the dependency between expres-
sion and copy number for each region and pick the regions showing the highest
dependency. In practice, a sliding window over the genome is used.

The following example screens chromosome arm 17q for dependendent re-
gions.

> models <- screen.cgh.mrna(geneExp, geneCopyNum, windowSize = 10,
+ chr = 17, arm = "g")

The dependency is measured separately for each gene within a chromosomal
region ("window’) around the gene. A fixed dimensionality (window size) is
necessary to ensure comparability of the dependency scores between windows.
The scale of the chromosomal regions can be tuned by changing the window
size ("windowSize’). The default dependency modeling method is a constrained
version of probabilistic CCA; [4]. See help(screen.cgh.mrna) for further options.

2.3 Visualizing the results

A dependency plot reveals chromosomal regions with the strongest dependency
between gene expression and copy number:



> plot(models, showTop = 10)
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Figure 1: The dependency plot reveals chromosomal regions with the strongest
dependency between gene expression and copy number.

Here the highest dependency is between 30-40Mbp which is a known gastric
cancer-associated region. The top-5 genes with the highest dependency in their
chromosomal neighborghood can be retrieved with:

> topGenes (models, 5)

[1] "ENSG00000141738" "ENSG00000141736" "ENSG00000131748" "ENSG0O0000173991"
[5] "ENSG00000125686"

It is possible investigate the contribution of individual patients or probes on
the overall dependency (Fig. 2).

This is based on the model parameters W and the latent variable z that
are easily retrieved from the learned dependency model (see Section 3 for de-
scription of the model parameters). In 1-dimensional case the interpretation is
straightforward: z indicates the strength of shared signal in each sample (pa-
tient), and W describes how this signal is captured by each gene expression or
copy number probe. With multi-dimensional W and z, the variable- and sam-
ple effects are approximated (for visualization purposes) by the loadings and
projection scores corresponding of the first principal component of Wz which
describes the shared signal in each data set.



2.4 Additional parameters

The dimensionality of the shared latent variable Z and the dependency modeling
method can also be set by the user. For example, use probabilistic CCA with
1-dimensional Z:

> model17qpCCA <- screen.cgh.mrna(geneExp, geneCopyNum, windowSize = 10,

+ chr = 17, arm = "q", method = "pCCA", params = list("zDimension = 1"))

> model <- topModels(models, 1)[[1]]
> plot(model, geneExp, geneCopyNum)

pSimMCCA model around gene ENSG00000141738 at 35.155936 Mbp
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Figure 2: Samples and variable contribution to the dependencies around the
gene with the highest dependency score between gene expression and copy num-
ber measurements in the chromosomal region. The visualization highlights the
affected patients and genes.

3 Dependency modeling framework

Modeling of dependencies is based on the probabilistic canonical correlation
analysis framework [2] and its extensions [1, 4]. This is a latent variable model
that assumes that the two data sets, X and Y can be decomposed in shared and
data set-specific components (Figure 3). Our task is to discover these compo-
nents, given modeling assumptions.
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Figure 3: Graphical description of the shared latent variable model showing

generation of data sets X and Y from latent shared variable z through W, and
W,

The shared signal is modeled with a shared latent variable z. Intuitively, this
measures the strength of the shared signal in each patient. While the variation
is shared, it can have different manifestation in each data set. This is described
by Wyz and Wyz where W,, W, indicate how the shared signal is observed
in the individual data sets. Assuming a Gaussian model for the shared latent
variable and data set-specific effects, this leads to the following model:

Y ~ N(Wyz,¥,) (2)

The latent variable z is assumed to follow standard multivariate normal
distribution, i.e. z N(0,I). The data set-specific effects are described by the
covariance matrices ¥, and ¥,. The model parameters are estimated with an
expectation-maximization (EM) algorithm (see ’fit.dependency.model’). After
fitting the model parameters W, ¥, a maximum-likelihood estimate of z can be
calculated (see ’z.expectation’).

3.1 Special cases

Particular models are obtained as special cases of the above modeling framework.
This leads to a set of alternative models for dependency detection, including

e probabilistic PCA (pPCA)
e probabilistic factor analysis (pFA)
e probabilistic CCA (pCCA)

e similarity-constrained probabilistic CCA (pSimCCA)

These correspond to different assumptions regarding the structure of the
data set-specific effects and types of dependency. While PCA and factor analysis
are typically used for analysing individual data sets, they are special cases of
the described framework and can therefore also be used to model dependencies
between data sets. For discussion of the differences between these models, see
2, 4].



3.1.1 Probabilistic PCA

Probabilistic PCA (pPCA) assumes an isotropic model for the data set-specific
effects, with identical covariance matrices:

U, =V, =o0l. (3)
This model is called pPCA since it is identical to concatenating X, Y, and
fitting ordinary probabilistic PCA on the concatenated data set.

3.1.2 Probabilistic factor analysis

Probabilistic factor analysis (pFA) assumes a diagonal model for ¥, ¥,. Note
that in general, ¥, # W¥,. The package also implements a special case with
isotropic but not necessarily identical (as in pPCA) covariance matrices.

This model is called pFA since it is identical to concatenating X, Y, and
fitting ordinary probabilistic factor analysis on the concatenated data set.

3.1.3 Probabilistic CCA

Probabilistic CCA (pCCA) assumes full covariance matrices ¥, ¥, , giving the
most detailed model for the data set specific effects in the described modeling
framework. The connection of this latent variable model and the traditional
canonical correlation analysis has been established in [2].

3.1.4 Probabilistic SimCCA

We also provide toos to guide dependency modeling through Bayesian priors
[4]. Similarity-constrained probabilistic CCA (pSimCCA) imposes a prior on
the relation between W, and W,. This can be used to guide modeling to focus
on certain types of dependencies, and to avoid overfitting.

The relationship between W, and W), is described with W, = T'W,. A prior
on T can be used to focus the modeling on certain types of dependencies. We
use matrix normal prior distribution:

P(T):Nm(H,J%I,CT%I) (4)
By default, H = I and 0% = 0, which results in identical manifestation of the
shared signal in the two data sets: W, = W,. This model is denoted pSimCCA
in the package. However, the prior can be loosened by tuning sigma%. With
sigma? — oo, estimation of W, and W, become independent, which leads to
ordinary probabilistic CCA. It is also possible to tune the mean matrix H. This
would set a particular relationship between the manifestations of the shared
component in each data set, and sigma? is again be used to tune the strength
of such prior.

3.2 Measuring the dependency

Dependency between the data sets X, Y is measured by the ratio of shared vs.
data set-specific signal (see ’?dependency.score’):

Tr(WwT)

Tr(0) (5)



3.3 Functions for dependency modeling

The package implements the dependency modeling framework (see 'fit.dependency.model’),
and provides wrappers for the special cases of the model.
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