Using copa

James W. MacDonald

April 22, 2010

1 Overview

In certain cancers (lymphoma, sarcoma, leukemia), it is common to have
recurrent chromosomal rearrangements that may be a causal factor in the
progression of the disease [Rowley (2001). However, until recently these
rearrangements have not been commonly found in other carcinomas|lomlins
et al.| (2005). Tomlins et al. describe a method they call Cancer Outlier
Profile Analysis (COPA) that can be used to detect recurrent chromosomal
rearrangements using microarray data. Their method however is limited to
use with the Oncomine website www.oncomine.org, and does not at this
time either pre-filter the data for likely candidates, nor compute any sort of
inferential statistic.

2 Introduction

The idea behind COPA is very simple; it is well known that genetic translo-
cations occur in cancer cells, and that these translocations can result in the
up-regulation of oncogenes that may affect the progression of the cancer.
This happens when the 5’ activation domain of a constitutively expressed
(or up-regulated) gene is fused to the 3’ portion of a given oncogene, thus
increasing the expression of the oncogene. This translocation can happen be-
tween the activating gene and multiple oncogenes, as was shown by Tomlins
et al., as well as others |[Fonseca et al.| (2004).

Since a given translocation is only likely to occur once per sample,
if there were multiple partners for a given activating gene, we would expect
to see certain cancer samples with a high expression of say, gene A, whereas
other cancer samples might have high expression of gene B, but these samples
would be mutually exclusive. In addition, we would expect that the normal
samples would not have high expression for either gene A nor B. We can

www.oncomine.org

use this idea to both pre-filter genes as well as finding interesting genes that
may be involved in translocations.

Common methods for detecting differences between tumor and nor-
mal samples will not work for finding these genes (e.g., t-tests); we need to
find those genes where only a subset of the samples have high expression.
To do this, we center and scale the data (on a row-wise basis) using the
median and median average difference (MAD). We can then select a com-
mon value (default is 5) as a cutoff for ’outlier’ status and apply this to all
genes. We then simply look for pairs of genes that have a large number of
mutually exclusive outlier (cancer) samples, but few or no normal outliers.
The candidate gene pairs will be ranked based on the sum of outlier samples
for each pair, as this seems to be the most reasonable criterion for ranking.

Since there may be several gene pairs with the same number of out-
liers we need to add an additional criterion to rank the ties. We use a
modification of the ranking scheme used by Tomlins et al.. They simply
ranked the genes using the 75!, 95" and 99" percentiles of the centered
and scaled expression values. Since we are looking at pairs rather than indi-
vidual genes, we take the difference between the 75 percentile of the tumor
and normal samples, and then compute the sum of these differences for each
gene pair. This value quantifies how different the outlier pairs are from their
corresponding normals. We chose the 75" percentile for ranking rather than
say, the 95" because the values at the higher percentile are what caused the
gene pairs to be selected in the first place, so we want to use a less extreme
percentile to distinguish between the tied pairs.

3 Using copa

To search for gene pairs that may be involved in translocations is very simple.
Just load the copa package, and run the copa function using your microarray
expression values. For this vignette, we will be using the colonCA package,
which contains an ExpressionSet with normal and tumor colon expression
data.

> library(copa)

> library(colonCA)

> data(colonCA)

> head(pData(colonCA), 10)

expNr samp class
1 1 -1 t

2 2 1 n
3 3 -2 t
4 4 2 n
5 5 -3 t
6 6 3 n
7 7 -4 t
8 8 4 n
9 9 -5 t
10 10 5 n

We will use the third column of the phenoData object as our classla-
bel, which tells copa which samples are tumor and which are normal. There
is no need to pre-filter the expression data; copa has an internal pre-filtering
step that selects the top pct(percentile) of the data, based on the number of
outliers. The default is to use the 95" percentile as a cutoff; if this results
in more than 1000 genes, copa will give a warning and allow you to abort
the run (and presumably re-run with a higher value for pct).

One thing to keep in mind is that copa is going to be computing all
pairwise sums of outliers, which can get to be a large number of computations
really quickly (hence the warning at n = 1000). Although this portion of
the function is written in C, and is actually quite fast, a large number of
comparisons will tend to slow things down.

> rslt <- copa(colonCA, as.numeric(pData(colonCA)[, 31))

We can now look at a plot showing the number of outliers for each
gene.

> plotCopa(rslt, idx = 1, col = c("lightgreen", "salmon"))

Figureshows the outlier status of the "top’ gene pair (based on hav-
ing the most outlier samples). If using an Affymetrix GeneChip for which
there is an annotation package, one can label the plots with the correspond-
ing gene symbol by specifying the lib argument. Unfortunately, the colonCA
data is based on a Hum6000 Affy chip, for which there is no annotation pack-
age.

This plot doesn’t look that impressive, as there are only a few sam-
ples that fulfill the criterion for outlier status. We can look at how many
gene pairs there are with a given number of outliers using the tableCopa
function.

> plotCopa(rslt, idx = 1, col = c("lightgreen", "salmon"))

Hsa.891
[ee]
<
o
Hsa.19784
©
<t
N
o

Figure 1: Plot of 'Top’ Gene Pair

> tableCopa(rslt)

9 8 7 6
24 130 254 894

We might then want to know which genes have 9. We can list them
out using the summaryCopa function.

> summaryCopa(rslt, 9)

Number.of .pairs Probe.ID.1 Probe.ID.2

1 9 Hsa.891 Hsa.19784
2 9 Hsa.21562 Hsa.891
3 9 Hsa.140 Hsa.891
4 9 Hsa.22762 Hsa.891
5 9 Hsa.1765 Hsa.891
6 9 Hsa.1862 Hsa.891
7 9 Hsa.l17564 Hsa.891
8 9 Hsa.891 Hsa.8831
9 9 Hsa.41247 Hsa.891
10 9 Hsa.23249 Hsa.891
11 9 Hsa.25536 Hsa.891
12 9 Hsa.21847 Hsa.891
13 9 Hsa.627 Hsa.8214
14 9 Hsa.20324 Hsa.891
15 9 Hsa.27085 Hsa.891
16 9 Hsa.891 Hsa.22614
17 9 Hsa.627 Hsa.b94
18 9 Hsa.1331 Hsa.891
19 9 Hsa.2739 Hsa.891
20 9 Hsa.1799 Hsa.891
21 9 Hsa.3969 Hsa.891
22 9 Hsa.1574 Hsa.891
23 9 Hsa.627 Hsa.2772
24 9 Hsa.845 Hsa.891

We might now want to know how significant this result is. We can
test this hypothesis by permuting the class labels of the samples many times
and then checking to see how often we see pairs of genes with a certain
number of outliers. By permuting the class labels we are mixing up the
tumor and normals, so any pair with a large number of outliers by definition

has arisen by chance. If we get many gene pairs with say, 9 outliers then
it is fairly likely that our observed results could have arisen by chance as
well. However, if the opposite is true, then we have some reassurance that
the observed results are not a chance event, and these gene pairs may well
be undergoing some sort of recombination.

> prm <- copaPerm(colonCA, rslt, 9, 24)

Counting permutations...
100

> sum(prm >= 9)
(1] 1

In this instance, there are 1 times that the permuted data resulted in
a number of outliers as large or larger than what we observed. This indicates
that there may well be some recombination going on here, and it might be
worthwhile to explore further.

A few notes about this function. First, it repeatedly re-runs the
copa function after permuting the classlabels, so any caveats that 1 gave
above about the number of genes to use above applies a hundred fold here.
Note that the percentile cutoff used to create the copa object will be re-used
for the permutations, so if the cutoff is too lenient, you may repeatedly be
queried because of too many genes.

Second, the default for this function is 100 permutations. This is
enough to get a basic idea, but is far too few to calculate a p-value or
false discovery rate (FDR). For that, one should use at least 500 - 1000
permutations. Even at 1000 permutations, the smallest p-value will be 0.001
(actually the smallest will be 0, but the second smallest will be 0.001).
Running copaPerm here on approximately 91 genes takes about 90 seconds.
Increasing either the number of genes or the permutations may necessitate
an overnight run.

References

R. Fonseca et al. Genetics and cytogenetics of multiple myeloma: a workshop
report. Cancer Research, 64:1546-1558, 2004.

J.D. Rowley. Chromosome translocations: dangerous liaisons revisited. Na-
ture Reviews Cancer, 1:245-250, 2001.

S.A. Tomlins et al. Recurrent fusion of tmprss2 and ets transcription factor
genes in prostate cancer. Science, 310:644-648, 2005.

	Overview
	Introduction
	Using copa

