
Using the PAnnBuilder Package

Hong Li‡∗

April 22, 2010

‡Key Lab of Systems Biology
Shanghai Institutes for Biological Sciences
Chinese Academy of Sciences, P. R. China

Contents

1 Overview 2

2 Getting Started 2
2.1 Requirements . 2
2.2 Installation . 3
2.3 Public Data Sources . 3
2.4 Annotation Packages Produced by PAnnBuilder 4

2.4.1 Packages produced by PAnnBuilder 4
2.4.2 Using annotation data package . 5

3 Function Description 13
3.1 Getting URL and Version . 13
3.2 Parsing and Writing Data . 14

3.2.1 Employing perl program to parse data 14
3.2.2 Writing data using R . 15

3.3 Writing Help Documents . 16
3.4 Building Data Packages . 16

4 Building Annotation Data Packages 17

5 Session Information 19

∗sysptm@gmail.com

1

1 Overview

In genomic era, genome-scale experiments and data analyses require genes to be annotated
from different sources, an R R Development Core Team (2008) package AnnBuilder was de-
velopped for this purpose Zhang et al. (2003). In post genomic era, advances in proteomics
highlight the urgence of understanding protein language Jensen (2006). However, relative to
genes, AnnBuilder is limited in protein annotation due to the complexity of proteins caused
by 3-D strucutre, alternative splicing, modification, dynamic location and other features. The
package PAnnBuilder focuses on assembling proteomic annotation data, which should be very
useful for proteomic data interpretation. It not only inherits the good features of AnnBuilder
such as automatically parsing protein annotation data and building R packages from selected
sources, but also emphasizes specific features of proteins. PAnnBuilder currently supports 16
databases involving diverse aspects of proteomics, such as protein primary data, protein do-
main/family, subcellular location, protein interaction, post-translational modifications, body
fluid proteomics, homolog/ortholog groups and so on. Additionally, PAnnBuilder allows an-
notation to unknown proteins based on sequence similarities to other well-annotated proteins.
To extend the use of PAnnBuilder, 54 standard R annotation packages are produced from
main protein databases, which are freely available for download via biocLite.

2 Getting Started

2.1 Requirements

PAnnBuilder requires the support from the following items:

1. For PAnnBuilder >= 1.3.0, R >=2.7.0 is needed for building SQLite-based pack-
age. Dependent R packages are needed to be installed: methods , utils , RSQLite,
Biobase (>= 1.17.0), AnnotationDbi (>= 1.3.12). If you use the installation script
”PAnnBuilder.R” to install PAnnBuilder (>=1.3.0), it will automatically check these
dependent packages and install missing packages from CRAN or Bioconductor.

2. Rtools is needed for Windows user. The matched version of Rtools with R can be
downloaded via http://www.murdoch-sutherland.com/Rtools/.

3. Perl is required to parse the rather large annotation source data files. It can be down-
loaded from http://www.perl.com/download.csp.

4. Program formatdb and BLASTP is needed for function crossBuilder, crossBuilder_DB,
pSeqBuilder, pSeqBuilder_DB.

BLAST can be downloaded from http://www.ncbi.nlm.nih.gov/BLAST/download.shtml.

Note: It is better to have enough space for the temporary directory. The path of the per-
session temporary directory can be acquired by:

2

http://www.murdoch-sutherland.com/Rtools/
http://www.perl.com/download.csp

> tempdir()

[1] "E:\\biocbld\\bbs-2.6-bioc\\tmpdir\\RtmpWFS4nk"

2.2 Installation

The biocLite script is used to install PAnnBuilder from within R:

> source("http://bioconductor.org/biocLite.R")

> biocLite("PAnnBuilder")

> library(PAnnBuilder)

Note: Web Connection is needed to install PAnnBuilder and its depended packages.

2.3 Public Data Sources

PAnnBuilder parses proteomics annotation data from public sources and build R annotation
packages. It also provides convenient functions to access these sources. For example, you
can get all supported databases for ”Homo sapiens” by:

> library(PAnnBuilder)

> getALLUrl("Homo sapiens")

> getALLBuilt("Homo sapiens")

Detail description of all supported public data sources in PAnnBuilder are as follows:

UniProt The data ftp://ftp.ebi.ac.uk/pub/databases/uniprot/knowledgebase will
be used to map protein UniProt identifiers to diverse annotation available in UniProt
database.

IPI The data ftp://ftp.ebi.ac.uk/pub/databases/IPI/current will be used to map
protein IPI identifiers to diverse annotation available in International Protein Index
database.

RefSeq The data ftp://ftp.ncbi.nih.gov/refseq will be used to map protein RefSeq
identifiers to diverse annotation available in NCBI RefSeq database.

Entrez Gene The data ftp://ftp.ncbi.nih.gov/gene/DATA will be used to annotate
genes after the Entrez Gene identifiers have been obtained.

Gene Ontology The data ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/proteomes and
http://archive.geneontology.org/latest-termdb will be used to obtain gene on-
tology information.

KEGG Some data at ftp://ftp.genome.jp/pub/kegg will be used to obtain pathway
information.

3

ftp://ftp.ebi.ac.uk/pub/databases/uniprot/knowledgebase
ftp://ftp.ebi.ac.uk/pub/databases/IPI/current
ftp://ftp.ncbi.nih.gov/refseq
ftp://ftp.ncbi.nih.gov/gene/DATA
ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/proteomes
http://archive.geneontology.org/latest-termdb
ftp://ftp.genome.jp/pub/kegg

HomoloGene A data file provided by ftp://ftp.ncbi.nlm.nih.gov/pub/HomoloGene/

current/ will be used to extract mappings between GeneID/ProteinGI and Homolo-
Gene ids.

InParanoid The data http://inparanoid.sbc.su.se will be used to obtain ortholog pro-
tein groups between two organisms.

Gene Interaction The data ftp://ftp.ncbi.nih.gov/gene/GeneRIF will be used to ex-
tract protein-protein interactions between Entrez GeneID or Protein RefSeq ids.

IntAct The data ftp://ftp.ebi.ac.uk/pub/databases/intact/current/psimitab will
be used to extract protein-protein interactions between UniProt protein accession num-
bers.

MPPI The data http://mips.gsf.de/proj/ppi/data/mppi.gz will be used to extract
protein-protein interactions between UniProt protein accession numbers.

3DID The data http://gatealoy.pcb.ub.es/3did/download will be used to extract domain-
domain interactions between Pfam domain identifiers.

DOMINE The data http://domine.utdallas.edu will be used to extract domain-domain
interactions between Pfam domain identifiers.

DBSubLoc The data http://www.bioinfo.tsinghua.edu.cn/~guotao will be used to
obtain subcellular localization for protein from SWISS-PROT and PIR database.

BaCelLo The data http://gpcr2.biocomp.unibo.it/bacello will be used to map Swis-
sProt eukaryotes protein identifiers to subcellular localization.

SCOP The data http://scop.mrc-lmb.cam.ac.uk/scop will be used to map PDB struc-
ture identifiers to SCOP domain identifiers.

PeptideAtlas The data http://www.peptideatlas.org/builds will be used to obtain
experimentally identified peptides and their coordinates on chromosomes.

SysPTM The data http://www.biosino.org/papers/SysPTM will be used to obtain pro-
tein post-translational modifications information.

Sys-BodyFluid The data http://www.biosino.org/papers/Sys-BodyFluid will be used
to map IPI protein identifiers to body fluids.

2.4 Annotation Packages Produced by PAnnBuilder

2.4.1 Packages produced by PAnnBuilder

PAnnBuilder has powerful ability to build R package for assembling proteome annotation.
However, the process of building new package may be time-consuming because of the down-
loading and parsing of large data files. To make PAnnBuilder useful for any users, we have

4

ftp://ftp.ncbi.nlm.nih.gov/pub/HomoloGene/current/
ftp://ftp.ncbi.nlm.nih.gov/pub/HomoloGene/current/
http://inparanoid.sbc.su.se
ftp://ftp.ncbi.nih.gov/gene/GeneRIF
ftp://ftp.ebi.ac.uk/pub/databases/intact/current/psimitab
http://mips.gsf.de/proj/ppi/data/mppi.gz
http://gatealoy.pcb.ub.es/3did/download
http://domine.utdallas.edu
http://www.bioinfo.tsinghua.edu.cn/~guotao
http://gpcr2.biocomp.unibo.it/bacello
http://scop.mrc-lmb.cam.ac.uk/scop
http://www.peptideatlas.org/builds
http://www.biosino.org/papers/SysPTM
http://www.biosino.org/papers/Sys-BodyFluid

built many frequently used annotation packages in advance. These pre-built package can be
downloaded via biocLite.

These packages are divided into two classes: enviroment-based packages built by ”*Builder”
functions (see Table ??); SQLite based packages built by ”*Builder DB” functions (see Ta-
ble 1). They are widely used methods for building Bioconductor meta-data packages. Each
SQLite-based annotation package (identified by a ”.db” suffix in the package name) contains
a number of AnnDbBimap objects in place of the environment objects found in the old-style
environment-based annotation packages. In future, SQLite-based annotation package will
replace environment-based packages.

The pre-built packages provide a quick start for R beginners. If one wants to analyze
protein set in Human IPI database, the quickest way is to download and use SQLite based
package ”org.Hs.ipi.db”. However, if the package one wants has not been built or a new-
version database is released, new package should be built using functions in PAnnBuilder
(See Section 4 for methods of building annotation packages).

2.4.2 Using annotation data package

SQLite-based *.db packages are capable of flexible data queries, reverse mapping, and data
filtering. Vignette of ”AnnotationDbi”detailedly described how to use SQLite based packages
(http://www.bioconductor.org/packages/release/bioc/vignettes/AnnotationDbi/inst/
doc/AnnotationDbi.pdf). Here package ”org.Hs.ipi.db” produced by PAnnBuilder is illus-
trated as an example in the following code chuck.

1. Install and load annotation package. Package ”org.Hs.ipi” is used as an example, other
packages can be derived accordingly.

> biocLite("org.Hs.ipi.db")

> library(org.Hs.ipi.db)

2. Browse data in the package.

> `?`(org.Hs.ipiGENEID)

3. Convert the environment object into a ”list” object, and get values by index or name.

> xx <- as.list(org.Hs.ipiGENEID)

> xx[!is.na(xx)][1:3]

$IPI00000001.2

[1] "6780"

$IPI00000005.1

[1] "4893"

5

http://www.bioconductor.org/packages/release/bioc/vignettes/AnnotationDbi/inst/doc/AnnotationDbi.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/AnnotationDbi/inst/doc/AnnotationDbi.pdf

Table 1: SQLite-based Annotation Packges Produced by PAnnBuilder.

Description R Function Source Organism Package

complete and canonical
annotaion for all proteins
of a specific organism,
including protein
description, Entrez gene
identifier, KEGG pathway,
gene ontology, domain,
and so on.

pBaseBuilder DB

IPI
Homo sapiens org.Hs.ipi.db
Mus musculus org.Mm.ipi.db
Rattus norvegicus org.Rn.ipi.db

Swiss-Prot
Homo sapiens org.Hs.sp.db
Mus musculus org.Mm.sp.db
Rattus norvegicus org.Rn.sp.db

RefSeq
Homo sapiens org.Hs.ref.db
Mus musculus org.Mm.ref.db
Rattus norvegicus org.Rn.ref.db

protein indentifier
mapping

crossBuilder DB
Swiss-Prot, IPI,
RefSeq

Homo sapiens org.Hs.cross.db
Mus musculus org.Mm.cross.db
Rattus norvegicus org.Rn.cross.db

protein-protein or
domain-domain
interaction data

intBuilder DB

IntAct int.intact.db
NCBI Gene int.geneint.db
MPPI int.mppi.db
3did int.did.db
Domine int.domine.db

protein subcell location subcellBuilder DB
BaCelLo sc.bacello.db
DBSubLoc sc.dbsubloc.db

protein structure classifi-
cation

scopBuilder DB SCOP scop.db

protein post-
translational modifi-
cation

ptmBuilder DB SysPTM sysptm.db

body fluid protein bfBuilder DB Sys-
BodyFluid

Homo sapiens org.Hs.bf.db

homolog protein group HomoloGeneBuilder DBHomoloGene homolog.db
ortholog protein group InParanoidBuilder DBInParanoid Homo sapiens,

Mus musculus
org.HsMm.ortholog.db

peptides identified by
mass spectrometry

PeptideAtlasBuilder DBPeptideAtlas Homo sapiens org.Hs.pep.db

gene ontology GOABuilder DB GOA Homo sapiens org.Hs.goa.db
identifier and name dNameBuilder DB dName.db

6

$IPI00000006.1

[1] "3265"

> xx[["IPI00792103.1"]]

[1] "28957"

4. Specific utilities for SQLite-based *.db packages.

> toTable(org.Hs.ipiPATH[1:3])

ipi_id path_id

1 IPI00000005.1 hsa04010

2 IPI00000005.1 hsa04012

3 IPI00000005.1 hsa04062

4 IPI00000005.1 hsa04360

5 IPI00000005.1 hsa04370

6 IPI00000005.1 hsa04530

7 IPI00000005.1 hsa04540

8 IPI00000005.1 hsa04650

9 IPI00000005.1 hsa04660

10 IPI00000005.1 hsa04662

11 IPI00000005.1 hsa04664

12 IPI00000005.1 hsa04720

13 IPI00000005.1 hsa04722

14 IPI00000005.1 hsa04730

15 IPI00000005.1 hsa04810

16 IPI00000005.1 hsa04910

17 IPI00000005.1 hsa04912

18 IPI00000005.1 hsa04916

19 IPI00000005.1 hsa05200

20 IPI00000005.1 hsa05211

21 IPI00000005.1 hsa05213

22 IPI00000005.1 hsa05214

23 IPI00000005.1 hsa05215

24 IPI00000005.1 hsa05216

25 IPI00000005.1 hsa05218

26 IPI00000005.1 hsa05219

27 IPI00000005.1 hsa05220

28 IPI00000005.1 hsa05221

29 IPI00000005.1 hsa05223

30 IPI00000006.1 hsa04010

31 IPI00000006.1 hsa04012

32 IPI00000006.1 hsa04062

7

33 IPI00000006.1 hsa04144

34 IPI00000006.1 hsa04360

35 IPI00000006.1 hsa04370

36 IPI00000006.1 hsa04510

37 IPI00000006.1 hsa04530

38 IPI00000006.1 hsa04540

39 IPI00000006.1 hsa04650

40 IPI00000006.1 hsa04660

41 IPI00000006.1 hsa04662

42 IPI00000006.1 hsa04664

43 IPI00000006.1 hsa04720

44 IPI00000006.1 hsa04722

45 IPI00000006.1 hsa04730

46 IPI00000006.1 hsa04810

47 IPI00000006.1 hsa04910

48 IPI00000006.1 hsa04912

49 IPI00000006.1 hsa04916

50 IPI00000006.1 hsa05200

51 IPI00000006.1 hsa05211

52 IPI00000006.1 hsa05213

53 IPI00000006.1 hsa05214

54 IPI00000006.1 hsa05215

55 IPI00000006.1 hsa05216

56 IPI00000006.1 hsa05218

57 IPI00000006.1 hsa05219

58 IPI00000006.1 hsa05220

59 IPI00000006.1 hsa05221

60 IPI00000006.1 hsa05223

61 IPI00000013.1 hsa04142

> tmp1 <- revmap(org.Hs.ipiPATH)

> class(tmp1)

[1] "AnnDbBimap"

attr(,"package")

[1] "AnnotationDbi"

> as.list(tmp1)[1]

$hsa00010

[1] "IPI00003925.6" "IPI00005118.2" "IPI00006663.1" "IPI00009744.3"

[5] "IPI00009790.1" "IPI00015911.2" "IPI00016768.3" "IPI00018031.1"

[9] "IPI00018246.5" "IPI00019500.3" "IPI00021338.2" "IPI00024087.3"

8

[13] "IPI00026663.2" "IPI00027165.3" "IPI00027497.5" "IPI00028155.2"

[17] "IPI00060200.3" "IPI00073772.5" "IPI00102864.3" "IPI00103467.4"

[21] "IPI00148061.3" "IPI00166751.3" "IPI00169383.3" "IPI00184775.3"

[25] "IPI00215979.3" "IPI00216171.3" "IPI00216792.2" "IPI00216932.4"

[29] "IPI00217872.3" "IPI00217966.9" "IPI00218407.6" "IPI00218474.6"

[33] "IPI00218570.6" "IPI00218767.1" "IPI00218768.1" "IPI00218896.3"

[37] "IPI00218899.6" "IPI00219018.7" "IPI00219217.3" "IPI00219526.6"

[41] "IPI00219568.4" "IPI00219585.4" "IPI00220271.3" "IPI00220644.8"

[45] "IPI00220663.3" "IPI00220665.6" "IPI00220667.3" "IPI00221234.7"

[49] "IPI00244083.4" "IPI00248961.1" "IPI00292698.4" "IPI00292709.2"

[53] "IPI00296183.7" "IPI00299456.4" "IPI00306044.3" "IPI00306301.2"

[57] "IPI00332371.9" "IPI00333619.4" "IPI00374975.2" "IPI00382746.1"

[61] "IPI00384116.3" "IPI00384883.3" "IPI00384967.3" "IPI00385347.1"

[65] "IPI00386733.2" "IPI00394758.1" "IPI00413730.4" "IPI00418262.5"

[69] "IPI00451401.3" "IPI00465025.1" "IPI00465028.7" "IPI00465179.4"

[73] "IPI00465248.5" "IPI00465343.3" "IPI00465439.5" "IPI00473031.6"

[77] "IPI00479186.7" "IPI00479877.4" "IPI00513830.1" "IPI00549564.6"

[81] "IPI00549725.6" "IPI00549885.4" "IPI00550364.8" "IPI00550486.1"

[85] "IPI00552290.3" "IPI00552617.3" "IPI00553155.1" "IPI00554498.3"

[89] "IPI00555601.1" "IPI00555722.1" "IPI00555728.1" "IPI00556013.1"

[93] "IPI00556284.2" "IPI00604528.3" "IPI00607708.3" "IPI00639981.1"

[97] "IPI00640568.1" "IPI00640862.1" "IPI00642546.1" "IPI00642664.1"

[101] "IPI00642732.2" "IPI00642820.1" "IPI00643196.1" "IPI00643575.1"

[105] "IPI00644994.1" "IPI00645848.1" "IPI00646468.1" "IPI00647702.1"

[109] "IPI00654709.1" "IPI00743142.2" "IPI00743713.3" "IPI00746777.3"

[113] "IPI00759806.1" "IPI00784216.3" "IPI00788640.1" "IPI00788737.1"

[117] "IPI00788836.1" "IPI00788938.1" "IPI00789081.1" "IPI00789134.4"

[121] "IPI00789171.1" "IPI00789173.1" "IPI00789301.1" "IPI00790892.1"

[125] "IPI00791170.1" "IPI00791428.2" "IPI00791564.2" "IPI00791666.1"

[129] "IPI00792207.2" "IPI00792375.1" "IPI00792448.1" "IPI00792655.1"

[133] "IPI00792715.1" "IPI00793665.1" "IPI00793922.1" "IPI00794508.1"

[137] "IPI00794605.1" "IPI00794991.1" "IPI00795075.1" "IPI00795257.3"

[141] "IPI00795549.1" "IPI00795622.2" "IPI00795914.1" "IPI00796111.1"

[145] "IPI00796116.1" "IPI00796333.1" "IPI00796633.1" "IPI00796735.1"

[149] "IPI00796823.1" "IPI00796852.1" "IPI00797038.1" "IPI00797221.7"

[153] "IPI00797270.4" "IPI00797580.1" "IPI00798351.1" "IPI00815786.1"

[157] "IPI00815793.1" "IPI00815950.1" "IPI00830064.1" "IPI00844133.1"

[161] "IPI00847989.3" "IPI00871353.1" "IPI00872487.1" "IPI00872991.2"

[165] "IPI00873455.1" "IPI00902542.1" "IPI00903226.1" "IPI00908386.1"

[169] "IPI00908791.2" "IPI00908881.2" "IPI00908927.1" "IPI00909143.1"

[173] "IPI00909158.1" "IPI00909256.1" "IPI00909325.1" "IPI00909560.1"

[177] "IPI00909595.1" "IPI00909694.1" "IPI00909829.1" "IPI00909949.1"

9

[181] "IPI00910420.1" "IPI00910642.1" "IPI00910754.1" "IPI00910781.1"

[185] "IPI00910974.1" "IPI00910979.1" "IPI00915933.1" "IPI00916206.1"

[189] "IPI00916818.1" "IPI00916990.1" "IPI00916994.1" "IPI00917139.1"

[193] "IPI00917193.1" "IPI00917237.1" "IPI00917473.1" "IPI00917841.1"

[197] "IPI00922697.1" "IPI00925520.1" "IPI00926110.1" "IPI00926319.1"

[201] "IPI00926810.1" "IPI00927039.1" "IPI00927177.1" "IPI00927398.1"

[205] "IPI00927598.1" "IPI00927949.1" "IPI00930416.1" "IPI00936002.1"

[209] "IPI00939286.1" "IPI00939339.1" "IPI00939637.1" "IPI00940003.1"

[213] "IPI00940201.1" "IPI00941093.1" "IPI00941338.1" "IPI00941899.1"

[217] "IPI00942494.1" "IPI00942961.1" "IPI00945309.1" "IPI00945466.1"

[221] "IPI00945625.1" "IPI00945694.1" "IPI00945766.2" "IPI00945873.1"

[225] "IPI00946018.1" "IPI00946160.1" "IPI00946173.1" "IPI00946252.1"

[229] "IPI00946400.1" "IPI00946404.1" "IPI00946812.1" "IPI00947127.1"

[233] "IPI00947129.1" "IPI00947319.1" "IPI00952697.1" "IPI00952747.1"

[237] "IPI00952964.1" "IPI00955788.1" "IPI00955815.1" "IPI00955977.1"

> tmp2 <- reverseSplit(as.list(org.Hs.ipiPATH))

> class(tmp2)

[1] "list"

> tmp2[1]

$hsa00010

[1] "IPI00003925.6" "IPI00005118.2" "IPI00006663.1" "IPI00009744.3"

[5] "IPI00009790.1" "IPI00015911.2" "IPI00016768.3" "IPI00018031.1"

[9] "IPI00018246.5" "IPI00019500.3" "IPI00021338.2" "IPI00024087.3"

[13] "IPI00026663.2" "IPI00027165.3" "IPI00027497.5" "IPI00028155.2"

[17] "IPI00060200.3" "IPI00073772.5" "IPI00102864.3" "IPI00103467.4"

[21] "IPI00148061.3" "IPI00166751.3" "IPI00169383.3" "IPI00184775.3"

[25] "IPI00215979.3" "IPI00216171.3" "IPI00216792.2" "IPI00216932.4"

[29] "IPI00217872.3" "IPI00217966.9" "IPI00218407.6" "IPI00218474.6"

[33] "IPI00218570.6" "IPI00218767.1" "IPI00218768.1" "IPI00218896.3"

[37] "IPI00218899.6" "IPI00219018.7" "IPI00219217.3" "IPI00219526.6"

[41] "IPI00219568.4" "IPI00219585.4" "IPI00220271.3" "IPI00220644.8"

[45] "IPI00220663.3" "IPI00220665.6" "IPI00220667.3" "IPI00221234.7"

[49] "IPI00244083.4" "IPI00248961.1" "IPI00292698.4" "IPI00292709.2"

[53] "IPI00296183.7" "IPI00299456.4" "IPI00306044.3" "IPI00306301.2"

[57] "IPI00332371.9" "IPI00333619.4" "IPI00374975.2" "IPI00382746.1"

[61] "IPI00384116.3" "IPI00384883.3" "IPI00384967.3" "IPI00385347.1"

[65] "IPI00386733.2" "IPI00394758.1" "IPI00413730.4" "IPI00418262.5"

[69] "IPI00451401.3" "IPI00465025.1" "IPI00465028.7" "IPI00465179.4"

[73] "IPI00465248.5" "IPI00465343.3" "IPI00465439.5" "IPI00473031.6"

10

[77] "IPI00479186.7" "IPI00479877.4" "IPI00513830.1" "IPI00549564.6"

[81] "IPI00549725.6" "IPI00549885.4" "IPI00550364.8" "IPI00550486.1"

[85] "IPI00552290.3" "IPI00552617.3" "IPI00553155.1" "IPI00554498.3"

[89] "IPI00555601.1" "IPI00555722.1" "IPI00555728.1" "IPI00556013.1"

[93] "IPI00556284.2" "IPI00604528.3" "IPI00607708.3" "IPI00639981.1"

[97] "IPI00640568.1" "IPI00640862.1" "IPI00642546.1" "IPI00642664.1"

[101] "IPI00642732.2" "IPI00642820.1" "IPI00643196.1" "IPI00643575.1"

[105] "IPI00644994.1" "IPI00645848.1" "IPI00646468.1" "IPI00647702.1"

[109] "IPI00654709.1" "IPI00743142.2" "IPI00743713.3" "IPI00746777.3"

[113] "IPI00759806.1" "IPI00784216.3" "IPI00788640.1" "IPI00788737.1"

[117] "IPI00788836.1" "IPI00788938.1" "IPI00789081.1" "IPI00789134.4"

[121] "IPI00789171.1" "IPI00789173.1" "IPI00789301.1" "IPI00790892.1"

[125] "IPI00791170.1" "IPI00791428.2" "IPI00791564.2" "IPI00791666.1"

[129] "IPI00792207.2" "IPI00792375.1" "IPI00792448.1" "IPI00792655.1"

[133] "IPI00792715.1" "IPI00793665.1" "IPI00793922.1" "IPI00794508.1"

[137] "IPI00794605.1" "IPI00794991.1" "IPI00795075.1" "IPI00795257.3"

[141] "IPI00795549.1" "IPI00795622.2" "IPI00795914.1" "IPI00796111.1"

[145] "IPI00796116.1" "IPI00796333.1" "IPI00796633.1" "IPI00796735.1"

[149] "IPI00796823.1" "IPI00796852.1" "IPI00797038.1" "IPI00797221.7"

[153] "IPI00797270.4" "IPI00797580.1" "IPI00798351.1" "IPI00815786.1"

[157] "IPI00815793.1" "IPI00815950.1" "IPI00830064.1" "IPI00844133.1"

[161] "IPI00847989.3" "IPI00871353.1" "IPI00872487.1" "IPI00872991.2"

[165] "IPI00873455.1" "IPI00902542.1" "IPI00903226.1" "IPI00908386.1"

[169] "IPI00908791.2" "IPI00908881.2" "IPI00908927.1" "IPI00909143.1"

[173] "IPI00909158.1" "IPI00909256.1" "IPI00909325.1" "IPI00909560.1"

[177] "IPI00909595.1" "IPI00909694.1" "IPI00909829.1" "IPI00909949.1"

[181] "IPI00910420.1" "IPI00910642.1" "IPI00910754.1" "IPI00910781.1"

[185] "IPI00910974.1" "IPI00910979.1" "IPI00915933.1" "IPI00916206.1"

[189] "IPI00916818.1" "IPI00916990.1" "IPI00916994.1" "IPI00917139.1"

[193] "IPI00917193.1" "IPI00917237.1" "IPI00917473.1" "IPI00917841.1"

[197] "IPI00922697.1" "IPI00925520.1" "IPI00926110.1" "IPI00926319.1"

[201] "IPI00926810.1" "IPI00927039.1" "IPI00927177.1" "IPI00927398.1"

[205] "IPI00927598.1" "IPI00927949.1" "IPI00930416.1" "IPI00936002.1"

[209] "IPI00939286.1" "IPI00939339.1" "IPI00939637.1" "IPI00940003.1"

[213] "IPI00940201.1" "IPI00941093.1" "IPI00941338.1" "IPI00941899.1"

[217] "IPI00942494.1" "IPI00942961.1" "IPI00945309.1" "IPI00945466.1"

[221] "IPI00945625.1" "IPI00945694.1" "IPI00945766.2" "IPI00945873.1"

[225] "IPI00946018.1" "IPI00946160.1" "IPI00946173.1" "IPI00946252.1"

[229] "IPI00946400.1" "IPI00946404.1" "IPI00946812.1" "IPI00947127.1"

[233] "IPI00947129.1" "IPI00947319.1" "IPI00952697.1" "IPI00952747.1"

[237] "IPI00952964.1" "IPI00955788.1" "IPI00955815.1" "IPI00955977.1"

> Lkeys(org.Hs.ipiPATH)[1:3]

11

[1] "IPI00000005.1" "IPI00000006.1" "IPI00000013.1"

> Rkeys(org.Hs.ipiPATH)[1:3]

[1] "hsa00010" "hsa00020" "hsa00030"

> org.Hs.ipi_dbschema()

--

-- IPI_DB schema

-- ===============

--

CREATE TABLE basic (

ipi_id CHAR(13) NOT NULL, -- IPI Protein Identifier

ipi_ac VARCHAR(20) NOT NULL, -- IPI Acession Number in current version

len INTEGER NOT NULL,

mw INTEGER NOT NULL,

de VARCHAR(255) NOT NULL, -- Protein Description

symbol VARCHAR(80) NOT NULL,

sp_ac VARCHAR(20) NOT NULL, -- Swiss-Prot Primary Acession Number

sp_id VARCHAR(20) NOT NULL, -- Swiss-Prot Protein Identifier

ref_id VARCHAR(20) NOT NULL, -- RefSeq accession number

gi VARCHAR(10) NOT NULL, -- NCBI Protein GI

gene_id VARCHAR(10) NOT NULL -- Entrez Gene ID

unigene_id VARCHAR(10) NOT NULL, -- UniGene ID

kegg_id VARCHAR(20) NOT NULL, -- KEGG gene ID

FOREIGN KEY (ipi_id)

);

CREATE TABLE seq (

ipi_id CHAR(13) NOT NULL, -- IPI Protein Identifier

seq text NOT NULL, -- Protein Sequence

FOREIGN KEY (ipi_id)

);

CREATE TABLE ipiac (

ipi_id CHAR(13) NOT NULL, -- IPI Protein Identifier

ipi_acs CHAR(11) NOT NULL, -- IPI Protein Acession Number

FOREIGN KEY (ipi_id)

);

CREATE TABLE go (

ipi_id CHAR(13) NOT NULL, -- IPI Protein Identifier

12

go_id CHAR(10) NOT NULL, -- GO ID

evidence CHAR(3) NOT NULL, -- GO evidence code

ontology CHAR(2) NOT NULL, -- GO ontology

FOREIGN KEY (ipi_id)

);

CREATE TABLE path (

ipi_id CHAR(13) NOT NULL, -- IPI Protein Identifier

path_id CHAR(5) NOT NULL, -- KEGG pathway short ID

FOREIGN KEY (ipi_id)

};

CREATE TABLE pfam (

ipi_id CHAR(13) NOT NULL, -- IPI Protein Identifier

pfam_id CHAR(7) NULL, -- Pfam ID

FOREIGN KEY (ipi_id)

);

CREATE TABLE interpro (

ipi_id CHAR(13) NOT NULL, -- IPI Protein Identifier

interpro_id CHAR(9) NOT NULL, -- InterPro ID

FOREIGN KEY (ipi_id)

);

CREATE TABLE prosite (

ipi_id CHAR(13) NOT NULL, -- IPI Protein Identifier

prosite_id CHAR(7) NULL, -- PROSITE ID

FOREIGN KEY (ipi_id)

);

> selectSQL <- paste("SELECT ipi_id, de", "FROM basic", "WHERE de like '%histone%'")

> tmp3 <- dbGetQuery(org.Hs.ipi_dbconn(), selectSQL)

> tmp3[1:3,]

ipi_id de

1 IPI00001830.1 HETEROCHROMATIN-SPECIFIC NONHISTONE PROTEIN (FRAGMENT).

2 IPI00002831.4 HISTONE DEACETYLASE COMPLEX SUBUNIT SAP30L.

3 IPI00002929.2 ISOFORM 3 OF HISTONE-LYSINE N-METHYLTRANSFERASE SUV39H2.

3 Function Description

3.1 Getting URL and Version

To download data file from public database, the first step is getting its URL and re-
lease/version information. URLs of supported databases are stored in ”data/sourceURLs.txt”.
Following functions are used to get the url:

13

� getSrcUrl - return url according given database.

� getALLUrl - return urls for all databases used in PAnnBuilder packages.

� getSrcBuilt - return release/version according given database.

� getALLBuilt - return release/version information for all databases used in PAnnBuilder
packages.

3.2 Parsing and Writing Data

Parsing is a key step to convert original data file to R object. Sometimes R is directlly used
to parse and write data. But for large data file or complicated data format, perl is firstly
employed to quickly process data, and then R function reads the result file into R objects.

3.2.1 Employing perl program to parse data

Segment of perl program is written into file in ”inst/scripts”. Name and function of these
parser files are as follows:

� spParser - parse protein data from SwissProt or TrEMBL

� ipiParser - parse protein data from IPI

� refseqParser - parse protein data from NCBI RefSeq

� equalParser - find protein ID mapping with equal sequences

� mergeParser - merge different ID mapping files

� mppiParser - parse protein protein interaction data from MIPS

� paParser - parse data from PeptideAtlas

� dbsublocParser - parse data from DBSubLoc

� pfamNameParser - parse domain id and name from Pfam

� blastParser - filter the results of blast

Function fileMuncher and fileMuncher_DB perl file based on given parser file and additional
input data file, then perform this perl program via R.

14

3.2.2 Writing data using R

Besides using perl program, R functions also parse data from simple data file and store them
as R environment objects or Bimap objects.

� createEmptyDPkg - create an empty R packge at given directory.

� writeSQ - write sequence data into R package.

� writeName - parse mulitple data file, and write the mapping of id and name into R pack-
age. It employs writeGOName, writeKEGGName, writePFAMName, writeINTERPROName
and writeTAXName to respectively write data from GO, KEGG, Pfam, InterPro and
TAX.

� writeSCOPData - parse structural classification of proteins from SCOP database.

� writeSubCellData - parse data from protein subcellular location databases, and write
into R package. It employs writeBACELLOData and writeDBSUBLOCData to respectively
write data from BaCelLo and DBSubLoc.

� writeIntData - parse data from protein-protein/domain-domain interaction databases,
and write into R package. It employs writeGENEINTData, writeINTACTData, writeMP-
PIData, write3DIDData and writeDOMINEData to respectively write data from NCBI
gene interaction data file, EBI intact, MIPS interaction data, 3DID database and
DOMINE database.

� writePtmData - parse database involving protein post-translational modifications, and
write into R package. It employs writeSYSPTMData to write data from SysPTM
database.

� writeBfData - write data involving body fulids proteomics into R package. It employs
writeSYSBODYFLUIDData to write data from Sys-BodyFluid database.

� writeGOAData - write gene ontology terms from GOA database into R package.

� writeHomoloGeneData - write homolog groups from NCBI HomoloGene into R pack-
age.

� writeInParanoidData - write paralog groups from InParanoid into R package.

� writePeptideAtlasData - write peptides identified by Mass Spectrometry from Pep-
tideAtlas database into R package.

� writeMeta_DB - write meta information about the annotation package into SQLite-
based package.

15

� writeData_DB - parse data from databases, and write data as tables into SQLite-based
R package. It employs writeSPData_DB, writeIPIData_DB, writeREFSEQData_DB,
writeGENEINTData_DB, writeINTACTData_DB, writeMPPIData_DB, write3DIDData_DB,
writeDOMINEData_DB, writeSYSBODYFLUIDData_DB, writeSYSPTMData_DB, writeSCOP-
Data_DB, writeBACELLOData_DB, writeDBSUBLOCData_DB, writeGOAData_DB, write-
HomoloGeneData_DB, writeInParanoidData_DB, and writePeptideAtlasData_DB to
respectively write data from Swiss-Prot, IPI, NCBI RefSeq database, and so on.

� writeName_DB - parse mulitple data file, and write the mapping of id and name into
SQLite-based R package. It employs writeGOName_DB, writeKEGGName_DB, writeP-
FAMName_DB, writeINTERPROName_DB and writeTAXName_DB to respectively write data
from GO, KEGG, Pfam, InterPro and TAX.

� createSeeds - define a list of AnnDbBimap objects which indicates key and value of .

� createAnnObjs - produce AnnDbBimap objects based on the definiation in create-

Seeds.

3.3 Writing Help Documents

Help documents is an important part for new package. Diverse templates of help documents
are stored in the ”inst/templates” directory. When building new package, R functions use
these templates to create ”*.rd” help file in the ”man” directory:

� getRepList - return a list which will replace the symbols in template file.

� copyTemplates_DB - implement similar function with copyTemplates, and is specially
developped for SQLite-based annotation package.

� writeDescription_DB - implement similar function with writeDescription, and is
specially developped for SQLite-based annotation package.

3.4 Building Data Packages

Basic functions described above make it possible to build proteomic annotation data pack-
ages. Based on these, PAnnBuilder develops multiple sophisticated functions to assemble
proteomic annotaion data. Each function is implemented by the ”*Builder DB” R function.

� pBaseBuilder_DB - build annotation data packages for primary protein database such
as SwissProt, TREMBL, IPI or NCBI RefSeq protein data.

� pSeqBuilder_DB - build annotation data packages for query protein sequences based
on sequence similarity.

� crossBuilder_DB - build annotation data packages for protein id mapping in Swis-
sProt, Trembl, IPI and NCBI Refseq databases.

16

� subcellBuilder_DB - build annotation data packages for protein subcellular location
from BaCelLo or DBSubLoc database.

� HomoloGeneBuilder_DB - build annotation data packages for homolog protein group
from NCBI HomoloGene database.

� InParanoidBuilder_DB - build annotation data packages for ortholog protein group
between two given organisms from InParanoid database.

� GOABuilder_DB - build annotation data packages for mapping proteins of UniProt to
Gene Ontolgy from GOA database.

� scopBuilder_DB - build annotation data packages for Structural Classification of Pro-
teins.

� intBuilder_DB - build annotation data packages for protein-protein or domain-domain
interaction from IntAct, MPPI, 3DID, DOMINE or NCBI Gene interaction database.

� PeptideAtlasBuilder_DB - build annotation data packages for experimentally identi-
fied peptides from PeptideAtlas database.

� ptmBuilder_DB - build annotation data packages for post-translational modifications
from SysPTM database.

� bfBuilder_DB - build annotation data packages for proteins in body fluids from Sys-
BodyFluid database.

� dNameBuilder_DB - build annotation data packages for mapping between entry ID and
name from GO, KEGG, Pfam, InterPro and NCBI Taxonomy databases.

4 Building Annotation Data Packages

1. The first thing you need to do is setting basic parameters such as ”pkgpath”, ”version”,
and ”author”.

> library(PAnnBuilder)

> pkgPath <- tempdir()

> version <- "1.0.0"

> author <- list()

> author[["authors"]] <- "Hong Li"

> author[["maintainer"]] <- "Hong Li <sysptm@gmail.com>"

2. Then you can run diverse ”*Builder DB” functions to build packages by yourselves.
pBaseBuilder_DB, subcellBuilder_DB, and pSeqBuilder_DB are taken as examples
to build annotation packages.

17

pBaseBuilder DB builds annotation data packages for proteins in three primary
protein databases (SwissProt, IPI, RefSeq). It is a convenient way to obtain com-
plete and canonical annotaion, including protein description, Entrez gene identi-
fier, KEGG pathway, gene ontology, domain, coordinates on chromosomes and so
on. For example, if you want to bulid annotation package for Mouse IPI database,
you can use codes as follows:

> pBaseBuilder_DB(baseMapType = "ipi", organism = "Mus musculus",

+ prefix = "org.Mm.ipi", pkgPath = pkgPath, version = version,

+ author = author)

After running, a subdirectory called ”org.Mm.ipi” will be produced in the path
given by ”pkgPath”. This directory contains all data and files, which can be used
to build R package by ”R CMD build” command.

subcellBuilder DB builds annotation data Package which provides protein subcel-
lular location information.

> subcellBuilder_DB(src = "BaCelLo", prefix = "sc.bacello", pkgPath,

+ version, author)

> dir(file.path(pkgPath, "sc.bacello.db"))

[1] "DESCRIPTION" "inst" "man" "NAMESPACE" "R"

pSeqBuilder DB uses blast to calculate sequence similarity between query proteins
and subject proteins, then assign annotation for query protein according to ex-
isting annotation of its similar proteins. pSeqBuilder DB is useful for proteins
which have not well annotated. Following code chunk gives an example for an-
notation query proteins by pSeqBuilder DB. Needed R packages org.Hs.sp.db,
org.Hs.ipi.db, can be downloaded via biocLite.

> tmp = system.file("data", "query.example", package = "PAnnBuilder")

> tmp = readLines(tmp)

> tag = grep("^>", tmp)

> query <- sapply(1:(length(tag) - 1), function(x) {

+ paste(tmp[(tag[x] + 1):(tag[x + 1] - 1)], collapse = "")

+ })

> query <- c(query, paste(tmp[(tag[length(tag)] + 1):length(tmp)],

+ collapse = ""))

> names(query) = sub(">", "", tmp[tag])

> blast <- c("blastp", "10.0", "BLOSUM62", "0", "-1", "-1", "T",

+ "F")

> names(blast) <- c("p", "e", "M", "W", "G", "E", "U", "F")

> match <- c(1e-05, 0.9, 0.9)

> names(match) <- c("e", "c", "i")

> if (!require("org.Hs.sp.db")) {

+ biocLite("org.Hs.sp.db")

18

+ }

> if (!require("org.Hs.ipi.db")) {

+ biocLite("org.Hs.ipi.db")

+ }

> annPkgs = c("org.Hs.sp.db", "org.Hs.ipi.db")

> seqName = c("org.Hs.spSEQ", "org.Hs.ipiSEQ")

> pSeqBuilder_DB(query, annPkgs, seqName, blast, match, prefix = "test1",

+ pkgPath, version, author)

3. After the running of ”*Builder DB” function has been finished, a subdirectory named
”pkgName” will be produced in given ”pkgPath”. Then the command ”R CMD build”
can be used to build source R package, and ”R CMD –binary build” can be used to
build binary R package for Windows.

4. Note:

� Web connection is needed to download files from public databases, and Perl is
needed to parse data files. Additionally, Rtools is needed for Windows user.

� Users should be aware that downloading, parsing, and saving data may take a
long time, in addition to requiring enough disk space to store temporary data
files.

� ”R CMD build” and ”R CMD –binary build” should be used in command line,
not in R. Detailed document about how to create your own packages can be
found in the book ”Writing R Extensions” (http://cran.r-project.org/doc/
manuals/R-exts.pdf). For Windows users, ”R CMD build” needs you to have
installed the files for building source packages (which is the default), as well as the
Windows toolset (see the ”R Installation and Administration” manual at http:

//cran.r-project.org/doc/manuals/R-admin.pdf).

5 Session Information

This vignette was generated using the following package versions:

R version 2.11.0 (2010-04-22)

i386-pc-mingw32

locale:

[1] LC_COLLATE=English_United States.1252

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

19

http://cran.r-project.org/doc/manuals/R-exts.pdf
http://cran.r-project.org/doc/manuals/R-exts.pdf
http://cran.r-project.org/doc/manuals/R-admin.pdf
http://cran.r-project.org/doc/manuals/R-admin.pdf

attached base packages:

[1] tools stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] org.Hs.ipi.db_1.2.0 PAnnBuilder_1.12.0 AnnotationDbi_1.10.0

[4] Biobase_2.8.0 RSQLite_0.8-4 DBI_0.2-5

References

O. N. Jensen. Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol, 7
(6):391–403, 2006.

R Development Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2008. URL http:

//www.R-project.org. ISBN 3-900051-07-0.

J. Zhang, V. Carey, and R. Gentleman. An extensible application for assembling annotation
for genomic data. Bioinformatics, 19(1):155–6, 2003.

20

http://www.R-project.org
http://www.R-project.org

	Overview
	Getting Started
	Requirements
	Installation
	Public Data Sources
	Annotation Packages Produced by PAnnBuilder
	Packages produced by PAnnBuilder
	Using annotation data package

	Function Description
	Getting URL and Version
	Parsing and Writing Data
	Employing perl program to parse data
	Writing data using R

	Writing Help Documents
	Building Data Packages

	Building Annotation Data Packages
	Session Information

