
ArrayTools: Array Quality Assessment and Analysis

Tool

Xiwei Wu and Xuejun Arthur Li

April 22, 2010

1 Introduction

The Affymetrix GeneChip is a commonly used tool to study gene expression pro-
files. The newly introduced Gene 1.0-ST arrays measure transcript expressions
more accurately than the regular 3’ -arrays. However, it lacks a tool to provide
quality assessment and analysis for this type of array. This package is designed
to provide solutions for quality assessment and to detect differentially expressed
genes for the Affymetrix GeneChips, including both 3’ -arrays and gene 1.0-ST
arrays. The package provides functions that are easy to follow by biologists who
have limited statistical backgrounds. The package generates comprehensive anal-
ysis reports in HTML format. Hyperlinks on the report page will lead to a series
of QC plots, processed data, and differentially expressed gene lists. Differentially
expressed genes are reported in tabular format with annotations hyperlinked to on-
line biological databases. This guide will use an example dataset to demonstrate
how to perform analysis of experiments with commonly used designs by using this
package.

2 Data

We will use exprsExample, a simulated gene expression data, and its correspond-
ing phenotype data file, pDataExample to illustrate some examples. Usually the
expression data is generated from the Affymetrix Expression Console and pheno
data file is created by the user.

> library(ArrayTools)

> data(exprsExample)

> head(exprsExample)

probeset_id H1.CEL H2.CEL H3.CEL H4.CEL H5.CEL H6.CEL H7.CEL H8.CEL H9.CEL

1 7974617 20.94 37.84 21.05 19.02 17.88 24.10 29.54 9.67 10.31

2 8043502 334.29 3.39 14.28 256.20 94.44 9.41 25.26 321.78 6.19

3 7922008 416.82 774.87 659.94 346.52 361.60 307.01 372.93 416.47 417.56

4 7948123 21.54 13.90 35.51 36.36 38.81 36.12 41.32 29.70 24.05

5 7895635 0.01 5.58 22.13 4.59 8.99 1.32 5.11 0.30 14.22

6 8059985 323.61 306.80 241.76 355.07 410.07 583.40 411.06 315.05 315.75

1

H10.CEL H11.CEL H12.CEL H13.CEL H14.CEL H15.CEL H16.CEL

1 2.72 34.72 43.47 18.94 72.74 38.31 9.38

2 67.32 44.75 170.68 25.78 63.70 71.56 27.01

3 222.75 363.14 336.07 403.53 218.79 367.89 193.06

4 39.06 43.96 48.48 12.68 13.66 15.16 53.27

5 6.44 13.41 14.66 3.10 2.37 18.83 11.09

6 463.78 470.00 312.35 583.83 484.79 394.48 530.53

> dim(exprsExample)

[1] 1000 17

> data(pDataExample)

> pDataExample

Treatment Group

H1.CEL Treated A

H2.CEL Treated A

H3.CEL Treated A

H4.CEL Treated A

H5.CEL Treated B

H6.CEL Treated B

H7.CEL Treated B

H8.CEL Treated B

H9.CEL Control A

H10.CEL Control A

H11.CEL Control A

H12.CEL Control A

H13.CEL Control B

H14.CEL Control B

H15.CEL Control B

H16.CEL Control B

The expression data that created from Affymetrix Expression Console has an
probeset_id column. To create an ExpressionSet, we need to use probeset_id

as the rownames of expression data. Then we can create an ExpressionSet from
the expression data and the phenotype data.

> rownames(exprsExample) <- exprsExample$probeset_id

> eSet <- createExpressionSet(pData = pDataExample, exprs = exprsExample,

+ annotation = "hugene10sttranscriptcluster")

> dim(eSet)

Features Samples

1000 16

The annotation argument is important for the analysis for the Gene 1.0-ST
arrays. Since we only support two types of Gene 1.0-ST arrays, please use either
hugene10sttranscriptcluster or mogene10sttranscriptcluster as the value
for the annotation argument.

2

3 Data Preprocessing

For Gene 1.0-ST arrays, data preprocessing include removing the control genes
(default value is rmControl =TRUE) and takes the log2 of the expression value.
Before taking log2, we added 1 to the expression value (the default value is
offset = 1) because the expression value may have 0 value. If you want to out-
put the preprocessed data to your local directory, you can use the output = TRUE

option. Also, notice that the first argument is an ExpressionSet.

> normal <- preProcessGeneST(eSet, output = TRUE)

> normal

ExpressionSet (storageMode: lockedEnvironment)

assayData: 876 features, 16 samples

element names: exprs

protocolData: none

phenoData

sampleNames: H1.CEL, H2.CEL, ..., H16.CEL (16 total)

varLabels and varMetadata description:

Treatment: NA

Group: NA

featureData: none

experimentData: use 'experimentData(object)'

Annotation: hugene10sttranscriptcluster

> dim(normal)

Features Samples

876 16

For 3’ -arrays, data processing is done by using the preProcess3prime function,
which is a wrapper function to perform normalization for the array. Instead of us-
ing the ExpressionSet as its argument, the preProcess3prime function requires
an AffyBatch object. We can either choose rma or gcrma as the method\verb

argument.

4 Quality Assessment

To generate the Quality Assessment Report, we need to use the Affymetrix Ex-
pression Console to generate a quality metric file. The sample quality metric file
is similar to the QC file that can be obtained by using the data function. For Gene
1.0-ST arrays, we can use the qaGeneST function to create an HTML report. This
report contains a series of plots, including Intensity Distribution , Mean Signal,
BAC Spike, polya Spike, Pos Vs Neg Auc, Mad Residual Signal, RLE MEAN, and
Hierarchical Clustering of Samples plots.

> data(QC)

> qaGeneST(normal, c("Treatment", "Group"), QC)

3

*** Output redirected to directory: E:\biocbld\bbs-2.6-bioc\tmpdir\RtmpfRFFCC

*** Use HTMLStop() to end redirection.

For 3’ -arrays, the qa3prime function is used to create a QC report. Instead of
using ExpressionSet as its argument, an AffyBatch object is required. Further-
more, the QC file is not required for the 3’ -Array.

5 Filtering

Before running analysis on the arrays, filtering out the uninformative genes may
be an important step for your analysis. Three types of filtering methods are used
in the geneFilter function. Suppose that if we want to remove genes with their
inter-quartile range across the arrays with less than 10would also like to keep genes
with at least 2 arrays with backgrounds greater than 4 at the same time, we can
do the following:

> filtered <- geneFilter(normal, numChip = 2, bg = 4, iqrPct = 0.1,

+ output = TRUE)

[1] "After Filtering, N = 763"

6 Analysis

The analysis takes a series of steps that includes creating a design and a contrast
matrix, running regression, selecting significant genes, and creating an HTML
report.

6.1 Design Matrix

A design matrix determines what type of model you are running. The design matrix
is defined as a designMatrix class which can be created by the new function. To
create a model with only one factor, which is equivalent to a one-way ANOVA
model, we can do the following:

> design1 <- new("designMatrix", target = pData(filtered), covariates = "Treatment")

> design1

(Intercept) Treatment/Treated

1 1 1

2 1 1

3 1 1

4 1 1

5 1 1

6 1 1

7 1 1

8 1 1

9 1 0

4

10 1 0

11 1 0

12 1 0

13 1 0

14 1 0

15 1 0

16 1 0

attr(,"assign")

[1] 0 1

attr(,"contrasts")

attr(,"contrasts")$Treatment

[1] "contr.treatment"

To create a model with two factors, we can do the following:

> design2 <- new("designMatrix", target = pData(filtered), covariates = c("Treatment",

+ "Group"))

> design2

(Intercept) Treatment/Treated Group/B

1 1 1 0

2 1 1 0

3 1 1 0

4 1 1 0

5 1 1 1

6 1 1 1

7 1 1 1

8 1 1 1

9 1 0 0

10 1 0 0

11 1 0 0

12 1 0 0

13 1 0 1

14 1 0 1

15 1 0 1

16 1 0 1

attr(,"assign")

[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$Treatment

[1] "contr.treatment"

attr(,"contrasts")$Group

[1] "contr.treatment"

6.2 Contrast Matrix

For the one-way ANOVA model based on the design1, if we want to compare
Treated vs. Control, we can do the following:

5

> contrast1 <- new("contrastMatrix", design.matrix = design1, compare1 = "Treated",

+ compare2 = "Control")

> contrast1

[,1]

[1,] 0

[2,] 1

To perform the same comparison and to controll the Group effect (Randomized
Block Design), we can write:

> contrast2 <- new("contrastMatrix", design.matrix = design2, compare1 = "Treated",

+ compare2 = "Control")

> contrast2

[,1]

[1,] 0

[2,] 1

[3,] 0

6.3 Regression

To run the gene-wise regression, we can use the regress function. This function
will create a regressResult object.

> result1 <- regress(filtered, contrast1)

> result2 <- regress(filtered, contrast2)

6.4 Select Significant Genes

We can select differentially expressed genes by using the selectSigGene function.
To select differentially expressed genes based on p-values less than 0.05 and fold
change greater than log2 of 1.5, we can write the following codes:

> sigResult1 <- selectSigGene(result1, p.value = 0.05, fc.value = log2(1.5))

> sigResult2 <- selectSigGene(result2, p.value = 0.05, fc.value = log2(1.5))

We can use the Sort function to sort the regressResult object by p-value
in ascending order (sorted.by = 'pValue') or log2 Ratio in descending order
(sorted.by = 'log2Ratio') or F statistics in descending order (sorted.by = 'F').

> Sort(sigResult1, sorted.by = "pValue")

There are 24 significant genes.

ID Log2Ratio.1 F pValue adjPVal

180 8176933 -1.4476794 11.794504 0.003114917 0.6755821

682 7899348 0.8942033 11.423345 0.003506911 0.6755821

185 7961187 -1.6993006 10.579407 0.004622667 0.6755821

6

550 7967872 -0.6418379 10.517888 0.004718485 0.6755821

27 8133314 -1.1015420 10.079615 0.005469593 0.6755821

49 8176230 -0.6401176 9.715964 0.006196001 0.6755821

79 8121138 -0.6781879 9.715003 0.006198061 0.6755821

720 7986348 -0.6792892 9.040814 0.007852412 0.6755821

323 7973743 0.6500787 7.348170 0.014716392 0.6755821

246 8008517 0.8480338 7.314129 0.014911694 0.6755821

360 8170971 0.6443034 6.841945 0.017947995 0.6755821

751 8154223 -0.9634973 6.063748 0.024620521 0.6755821

364 8057004 1.1961724 5.930130 0.026030941 0.6755821

28 8139121 -1.1025219 5.642331 0.029393947 0.6755821

184 7945169 1.5171376 5.363939 0.033127890 0.6755821

248 7969493 2.1830182 5.348171 0.033355126 0.6755821

705 8146790 -0.7653335 5.206896 0.035472801 0.6755821

525 7968577 -0.9597539 5.091253 0.037321581 0.6755821

279 8006877 1.4172392 4.900766 0.040613733 0.6755821

732 8104607 -1.2819453 4.879652 0.040998796 0.6755821

> Sort(sigResult2, sorted.by = "F")

There are 25 significant genes.

ID Log2Ratio.1 F pValue adjPVal

180 8176933 -1.4476794 11.214364 0.004000748 0.6502387

682 7899348 0.8942033 11.155598 0.004076069 0.6502387

185 7961187 -1.6993006 10.545722 0.004960301 0.6502387

550 7967872 -0.6418379 10.425267 0.005159577 0.6502387

27 8133314 -1.1015420 9.563225 0.006882225 0.6502387

79 8121138 -0.6781879 9.408187 0.007256921 0.6502387

49 8176230 -0.6401176 9.152997 0.007925208 0.6502387

360 8170971 0.6443034 8.741519 0.009155414 0.6502387

720 7986348 -0.6792892 8.530873 0.009868294 0.6502387

323 7973743 0.6500787 7.382043 0.015066772 0.6502387

248 7969493 2.1830182 7.276650 0.015683249 0.6502387

246 8008517 0.8480338 6.905919 0.018092358 0.6502387

732 8104607 -1.2819453 6.372061 0.022343489 0.6502387

279 8006877 1.4172392 6.302352 0.022978852 0.6502387

364 8057004 1.1961724 5.848846 0.027656506 0.6502387

751 8154223 -0.9634973 5.844127 0.027710623 0.6502387

28 8139121 -1.1025219 5.386542 0.033587624 0.6502387

401 7927915 -0.9593178 5.294730 0.034933073 0.6502387

184 7945169 1.5171376 5.166801 0.036912820 0.6502387

705 8146790 -0.7653335 5.056408 0.038725850 0.6502387

6.5 Creating Reports

To output the differentially expressed genes along with annotations to an HTML
file in your current working directory, we can use the Output2HTML function.

7

> Output2HTML(sigResult1)

> Output2HTML(sigResult2)

7 Detecting Interaction

Interaction is a statistical term referring to a situation when the relationship be-
tween the outcome and the variable of the main interest differs at different levels
of the extraneous variable.

Just like before, we need to create the design and contrast matrices to detect
the interaction effect.

> designInt <- new("designMatrix", target = pData(filtered), covariates = c("Treatment",

+ "Group"), intIndex = c(1, 2))

> designInt

(Intercept) Treatment/Treated Group/B Treatment/Treated:Group/B

1 1 1 0 0

2 1 1 0 0

3 1 1 0 0

4 1 1 0 0

5 1 1 1 1

6 1 1 1 1

7 1 1 1 1

8 1 1 1 1

9 1 0 0 0

10 1 0 0 0

11 1 0 0 0

12 1 0 0 0

13 1 0 1 0

14 1 0 1 0

15 1 0 1 0

16 1 0 1 0

attr(,"assign")

[1] 0 1 2 3

attr(,"contrasts")

attr(,"contrasts")$Treatment

[1] "contr.treatment"

attr(,"contrasts")$Group

[1] "contr.treatment"

> contrastInt <- new("contrastMatrix", design.matrix = designInt,

+ interaction = TRUE)

> contrastInt

[,1]

[1,] 0

8

[2,] 0

[3,] 0

[4,] 1

To identify genes with an interaction effect, we can use the same regress and
selectSigGene functions:

> resultInt <- regress(filtered, contrastInt)

> sigResultInt <- selectSigGene(resultInt, p.value = 0.05, fc.value = log2(1.5))

For genes with the interaction effect, they should be analyzed separately within
each group. For genes without any interaction gene, they should be analyzed
together. This step can be achieved by using the postInteraction function. The
postInteraction function returns an object of interactionResult class. The
components of the interactionResult object consist of a list of regressResult
objects. The first component is a regressResult object for all the genes. The
second component contains the result for genes without interaction. The third and
the fourth components (since Group only contains two factors, A and B) contain
results for genes with interaction only among groups A and B, respectively. Then
we can use the selectSigGeneInt function again to select differently expressed
genes within each component of the interactionResult object.

> intResult <- postInteraction(filtered, sigResultInt, mainVar = "Treatment",

+ compare1 = "Treated", compare2 = "Control")

> sigResultInt <- selectSigGeneInt(intResult, pGroup = 0.05, pMain = 0.05)

We can use the Output2HTML function again to output the differentially ex-
pressed genes along with annotations to an HTML file in your current working
directory.

> Output2HTML(sigResultInt)

8 Creating Index File

We have created multiple outputs, including normalized data, filtered data, and
differently expressed genes for multiple models. We can create an index file that
can link all of these results.

> createIndex(sigResult1, sigResult2, intResult)

*** Output redirected to directory: E:\biocbld\bbs-2.6-bioc\tmpdir\RtmpfRFFCC

*** Use HTMLStop() to end redirection.

9

