ArrayTools: Array Quality Assessment and Analysis
Tool

Xiwei Wu and Xuejun Arthur Li

April 22, 2010

1 Introduction

The Affymetrix GeneChip is a commonly used tool to study gene expression pro-
files. The newly introduced Gene 1.0-ST arrays measure transcript expressions
more accurately than the regular 3’ -arrays. However, it lacks a tool to provide
quality assessment and analysis for this type of array. This package is designed
to provide solutions for quality assessment and to detect differentially expressed
genes for the Affymetrix GeneChips, including both 3’ -arrays and gene 1.0-ST
arrays. The package provides functions that are easy to follow by biologists who
have limited statistical backgrounds. The package generates comprehensive anal-
ysis reports in HTML format. Hyperlinks on the report page will lead to a series
of QC plots, processed data, and differentially expressed gene lists. Differentially
expressed genes are reported in tabular format with annotations hyperlinked to on-
line biological databases. This guide will use an example dataset to demonstrate
how to perform analysis of experiments with commonly used designs by using this
package.

2 Data

We will use exprsExample, a simulated gene expression data, and its correspond-
ing phenotype data file, pDataExample to illustrate some examples. Usually the
expression data is generated from the Affymetrix Expression Console and pheno
data file is created by the user.

> library(ArrayTools)
> data(exprsExample)
> head (exprsExample)

probeset_id H1.CEL H2.CEL H3.CEL H4.CEL H5.CEL H6.CEL H7.CEL H8.CEL H9.CEL

7974617
8043502
7922008
7948123
7895635
8059985

o U WN -

20.
334.
416.

21.

0.
323.

94 37.
29 3.
82 774.
54 13.
01 5.
61 306.

84
39
87
90
58
80

21.
14.
659.
35.
22.
241.

05
28
94
51
13
76

19.
256.
346.

36.

4.
355.

02
20
52
36
59
07

17.
94.
361.
38.
8.
410.

88
44
60
81
99
07

24.
9.
307.
36.
1.
583.

10
41
01
12
32
40

29.
25.
372.
41.
5.
411.

54
26
93
32
11
06

9.
321.
416.

29.

0.

315.

67
78
47
70
30
05

10.
6.
417.
24.
14.
315.

31
19
56
05
22
75

H10.CEL H11.CEL H12.CEL H13.CEL H14.CEL H15.CEL H16.CEL
2.72 34.72 43.47 18.94 72.74 38.31 9.38
67.32 44.75 170.68 25.78 63.70 71.56 27.01
222.75 363.14 336.07 403.53 218.79 367.89 193.06
39.06 43.96 48.48 12.68 13.66 15.16 53.27
6.44 13.41 14.66 3.10 2.37 18.83 11.09
463.78 470.00 312.35 583.83 484.79 394.48 530.53

DO WN -

> dim(exprsExample)
[1] 1000 17

> data(pDataExample)
> pDataExample

Treatment Group
H1.CEL Treated
H2.CEL Treated
H3.CEL Treated
H4.CEL Treated
H5.CEL Treated
H6.CEL Treated
H7.CEL Treated
H8.CEL Treated
H9.CEL Control
H10.CEL Control
H11.CEL Control
H12.CEL Control
H13.CEL Control
H14.CEL Control
H15.CEL Control
H16.CEL Control

0w weErsPEPOoOoE>=®E=>>

The expression data that created from Affymetrix Expression Console has an
probeset_id column. To create an ExpressionSet, we need to use probeset_id
as the rownames of expression data. Then we can create an ExpressionSet from
the expression data and the phenotype data.

> rownames (exprsExample) <- exprsExample$probeset_id

> eSet <- createExpressionSet(pData = pDataExample, exprs = exprsExample,
+ annotation = "hugenelOsttranscriptcluster")

> dim(eSet)

Features Samples
1000 16

The annotation argument is important for the analysis for the Gene 1.0-ST
arrays. Since we only support two types of Gene 1.0-ST arrays, please use either
hugenelOsttranscriptcluster or mogenelOsttranscriptcluster as the value
for the annotation argument.

3 Data Preprocessing

For Gene 1.0-ST arrays, data preprocessing include removing the control genes
(default value is rmControl =TRUE) and takes the log2 of the expression value.
Before taking log2, we added 1 to the expression value (the default value is
offset = 1) because the expression value may have 0 value. If you want to out-
put the preprocessed data to your local directory, you can use the output = TRUE
option. Also, notice that the first argument is an ExpressionSet.

> normal <- preProcessGeneST(eSet, output = TRUE)
> normal

ExpressionSet (storageMode: lockedEnvironment)
assayData: 876 features, 16 samples
element names: exprs
protocolData: none
phenoData
sampleNames: H1.CEL, H2.CEL, ..., H16.CEL (16 total)
varLabels and varMetadata description:
Treatment: NA
Group: NA
featureData: none
experimentData: use 'experimentData(object)'
Annotation: hugenelOsttranscriptcluster

> dim(normal)

Features Samples
876 16

For 3’ -arrays, data processing is done by using the preProcess3prime function,
which is a wrapper function to perform normalization for the array. Instead of us-
ing the ExpressionSet as its argument, the preProcess3prime function requires
an AffyBatch object. We can either choose rma or gcrma as the method\verb
argument.

4 Quality Assessment

To generate the Quality Assessment Report, we need to use the Affymetrix Ex-
pression Console to generate a quality metric file. The sample quality metric file
is similar to the QC file that can be obtained by using the data function. For Gene
1.0-ST arrays, we can use the qaGeneST function to create an HTML report. This
report contains a series of plots, including Intensity Distribution , Mean Signal,
BAC Spike, polya Spike, Pos Vs Neg Auc, Mad Residual Signal, RLE MEAN, and
Hierarchical Clustering of Samples plots.

> data(QC)
> qaGeneST(normal, c("Treatment", "Group"), QC)

*xkx Output redirected to directory: E:\biocbld\bbs-2.6-bioc\tmpdir\RtmpfRFFCC
xx* Use HTMLStop() to end redirection.

For 3’ -arrays, the qa3prime function is used to create a QC report. Instead of
using ExpressionSet as its argument, an AffyBatch object is required. Further-
more, the QC file is not required for the 3’ -Array.

5 Filtering

Before running analysis on the arrays, filtering out the uninformative genes may
be an important step for your analysis. Three types of filtering methods are used
in the geneFilter function. Suppose that if we want to remove genes with their
inter-quartile range across the arrays with less than 10would also like to keep genes
with at least 2 arrays with backgrounds greater than 4 at the same time, we can
do the following:

> filtered <- geneFilter(normal, numChip = 2, bg = 4, iqrPct = 0.1,
+ output = TRUE)

[1] "After Filtering, N = 763"

6 Analysis

The analysis takes a series of steps that includes creating a design and a contrast
matrix, running regression, selecting significant genes, and creating an HTML
report.

6.1 Design Matrix

A design matrix determines what type of model you are running. The design matrix
is defined as a designMatrix class which can be created by the new function. To
create a model with only one factor, which is equivalent to a one-way ANOVA
model, we can do the following:

> designl <- new("designMatrix", target = pData(filtered), covariates = "Treatment")
> designl

(Intercept) Treatment/Treated

1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1
9 1 0

10
11
12
13
14
15
16 1
attr(,"assign")

[1] 0 1

attr(,"contrasts")
attr(,"contrasts")$Treatment

I = T SR SN
O O O O O O O

[1] "contr.treatment"
To create a model with two factors, we can do the following:

> design2 <- new("designMatrix", target = pData(filtered), covariates = c("Treatment",
+ IIGroup"))
> design2

(Intercept) Treatment/Treated Group/B
1 1

© 0 N O O W N =

= o
= O

e e
oo W N

i e i et i e o = O Y e =
P PrP PP PP 00000 RFr,r R, EFE,EFP, OOOOo

O O O O OO OO P, P, P KPP FB =

16 1
attr(,"assign")

[11] 01 2

attr(,"contrasts")
attr(,"contrasts")$Treatment
[1] "contr.treatment"

attr(,"contrasts")$Group
[1] "contr.treatment"

6.2 Contrast Matrix

For the one-way ANOVA model based on the designi, if we want to compare
Treated vs. Control, we can do the following:

> contrastl <- new("contrastMatrix", design.matrix = designl, comparel = "Treated",
+ compare2 = "Control")
> contrastl

[,1]
[1,] 0
(2,1] 1

To perform the same comparison and to controll the Group effect (Randomized
Block Design), we can write:

> contrast2 <- new("contrastMatrix", design.matrix = design2, comparel = "Treated",
+ compare2 = "Control")
> contrast2

[,1]
[1,] 0
[2,] 1
(3,] 0

6.3 Regression

To run the gene-wise regression, we can use the regress function. This function
will create a regressResult object.

> resultl <- regress(filtered, contrastl)
> result2 <- regress(filtered, contrast2)

6.4 Select Significant Genes

We can select differentially expressed genes by using the selectSigGene function.
To select differentially expressed genes based on p-values less than 0.05 and fold
change greater than log2 of 1.5, we can write the following codes:

0.05, fc.value = 1log2(1.5))
0.05, fc.value = log2(1.5))

> sigResultl <- selectSigGene(resultl, p.value
> sigResult2 <- selectSigGene(result2, p.value

We can use the Sort function to sort the regressResult object by p-value
in ascending order (sorted.by = 'pValue') or log2 Ratio in descending order
(sorted.by = 'log2Ratio') or F statistics in descending order (sorted.by = 'F').

> Sort(sigResultl, sorted.by = "pValue")

There are 24 significant genes.

ID Log2Ratio.1 F pValue adjPVal
180 8176933 -1.4476794 11.794504 0.003114917 0.6755821
682 7899348 0.8942033 11.423345 0.003506911 0.6755821
185 7961187 -1.6993006 10.579407 0.004622667 0.6755821

550
27

49

79

720
323
246
360
751
364
28

184
248
705
525
279
732

7967872
8133314
8176230
8121138
7986348
7973743
8008517
8170971
8154223
8057004
8139121
7945169
7969493
8146790
7968577
8006877
8104607

.6418379 10
.1015420 10
.6401176
.6781879
.6792892
.6500787
.8480338
.6443034
.9634973
.1961724
.10256219
.5171376
.1830182
.7653335
.9597539
.4172392
.2819453

b OO0 00 oo OOy O NN O © ©

.517888 0.
.079615 0.
.715964 0.
.715003 0.
.040814 0.
.348170 O.
.314129 0.
.841945 0.
.063748 O.
.930130 O.
.642331 O.
.363939 0.
.348171 O.
.206896 0.
.091253 0.
.900766 O.
.879652 0.

> Sort(sigResult2, sorted.by = "F")

There are

180
682
185
550
27

79

49

360
720
323
248
246
732
279
364
751
28

401
184
705

6.5

To output the differentially expressed genes along with annotations to an HTML
file in your current working directory, we can use the Output2HTML function.

ID Log2Ratio.1

8176933
7899348
7961187
7967872
8133314
8121138
8176230
8170971
7986348
7973743
7969493
8008517
8104607
8006877
8057004
8154223
8139121
7927915
7945169
8146790

-1.
.8942033
.6993006
.6418379
.1015420
.6781879
.6401176
.6443034
.6792892
.6500787
.1830182
.8480338
.2819453
.4172392
1.1961724
.9634973
.1025219
.9593178
.5171376
. 7653335

4476794

e
O O = =

g 010101 O1O1TOY OO O N N 00O 00 © © ©

Creating Reports

significant genes.

F
.214364 0.
.1556598 0.
.545722 0.
.425267 0.
.563225 0.
.408187 0.
.1562997 0.
.741519 0.
.530873 0.
.382043 0.
.276650 0.
.906919 0.
.372061 0.
.302352 0.
.848846 0.
.844127 O.
.386542 0.
.294730 O.
.166801 O.
.056408 O.

004718485
005469593
006196001
006198061
007852412
014716392
014911694
017947995
024620521
026030941
029393947
033127890
033355126
035472801
037321581
040613733
040998796

pValue
004000748
004076069
004960301
005159577
006882225
007256921
007925208
009155414
009868294
015066772
015683249
018092358
022343489
022978852
027656506
027710623
033587624
034933073
036912820
038725850

O O O O O O OO OO OO OO o oo

O O O O O O OO OO OOOOOOOoO oo oo

.67556821
.67556821
.67556821
.6755821
.67556821
.67556821
.67556821
.67556821
.67556821
.67556821
.67556821
.67556821
.6755821
.6756821
.6755821
.67556821
.67556821

adjPval

.6502387
.6502387
.6502387
.6502387
.6502387
.6502387
.6502387
.6502387
.6502387
.6502387
.6502387
.6502387
.6502387
.6502387
.6502387
.6502387
.6502387
.6502387
.6502387
.6502387

> Output2HTML (sigResult1)
> Output2HTML (sigResult2)

7 Detecting Interaction

Interaction is a statistical term referring to a situation when the relationship be-
tween the outcome and the variable of the main interest differs at different levels
of the extraneous variable.

Just like before, we need to create the design and contrast matrices to detect
the interaction effect.

> designInt <- new("designMatrix", target = pData(filtered), covariates = c("Treatment",
+ "Group"), intIndex = c(1, 2))

> designlnt

(Intercept) Treatment/Treated Group/B Treatment/Treated:Group/B

1 1 1 0 0
2 1 1 0 0
3 1 1 0 0
4 1 1 0 0
5 1 1 1 1
6 1 1 1 1
7 1 1 1 1
8 1 1 1 1
9 1 0 0 0
10 1 0 0 0
11 1 0 0 0
12 1 0 0 0
13 1 0 1 0
14 1 0 1 0
15 1 0 1 0
16 1 0 1 0
attr(,"assign")

[11] 0123

attr(,"contrasts")
attr(,"contrasts")$Treatment
[1] "contr.treatment"

attr(,"contrasts")$Group
[1] "contr.treatment"

> contrastInt <- new("contrastMatrix", design.matrix = designInt,
+ interaction = TRUE)
> contrastlnt

[,1]
(1,] 0

To identify genes with an interaction effect, we can use the same regress and
selectSigGene functions:

> resultlnt <- regress(filtered, contrastInt)
> sigResultInt <- selectSigGene(resultInt, p.value = 0.05, fc.value = 1log2(1.5))

For genes with the interaction effect, they should be analyzed separately within
each group. For genes without any interaction gene, they should be analyzed
together. This step can be achieved by using the postInteraction function. The
postInteraction function returns an object of interactionResult class. The
components of the interactionResult object consist of a list of regressResult
objects. The first component is a regressResult object for all the genes. The
second component contains the result for genes without interaction. The third and
the fourth components (since Group only contains two factors, A and B) contain
results for genes with interaction only among groups A and B, respectively. Then
we can use the selectSigGeneInt function again to select differently expressed
genes within each component of the interactionResult object.

> intResult <- postInteraction(filtered, sigResultInt, mainVar = "Treatment",
+ comparel = "Treated", compare2 = "Control")
> sigResultInt <- selectSigGenelInt (intResult, pGroup = 0.05, pMain = 0.05)

We can use the Output2HTML function again to output the differentially ex-
pressed genes along with annotations to an HTML file in your current working
directory.

> Output2HTML (sigResultInt)

8 Creating Index File

We have created multiple outputs, including normalized data, filtered data, and
differently expressed genes for multiple models. We can create an index file that
can link all of these results.

> createlndex(sigResultl, sigResult2, intResult)

x%* Qutput redirected to directory: E:\biocbld\bbs-2.6-bioc\tmpdir\RtmpfRFFCC
x** Use HTMLStop() to end redirection.

