student::plotTrapezoid
--
plot of a numerical approximation to an integral using the Trapezoidal
rulestudent::plotTrapezoid
(f, x=a..b, n)
computes a numerical approximation to the integral
int(f(x),x=a..b) using the Trapezoidal rule and returns a
plot of the numerical process.
student::plotTrapezoid(f, x=a..b <, n> <,
opt1>...)
f |
- | functional expression in x |
x |
- | identifier |
a, b |
- | arithmetical expressions |
n |
- | a positive integer (number of trapezoids to use) |
opt1 |
- | plot option(s) for two-dimensional graphical objects |
a graphical object of the domain type plot::Group
.
plot
, plot::Group
, student::plotRiemann
, student::plotTrapezoid
,
student::trapezoid
student::plotTrapezoid
(f, x=a..b, n)
computes a numerical approximation to the integral
int(f(x),x=a..b) using the Trapezoidal rule and returns a
graphical object of the numerical process that can be displayed with
the function plot
.n
is the number of trapezoids to use. The default
value is 4.opt1
... must be valid plot options
for two-dimensional graphical objects. See plot2d
for details.
Note that scene options are not allowed! You may
give scene options as optional arguments for the function plot
, or use plot::Scene
to create an object
representing a graphical scene.
f
(of the
domain type plot::Function2d
). The first two
operands are objects of the domain plot::Group
.The following call returns a visualization of the numerical approximation to the integral int(cos(x),x=0..PI/2) = 1 using the Trapezoidal rule and 10 trapezoids:
>> p := student::plotTrapezoid(cos(x), x = 0..PI/2, 10)
plot::Group()
To display it on the screen, call:
>> plot(p)
You can change plot parameters of the visualization
returned by student::plotTrapezoid
. For example, to change
the x-range of the graph of f, we set the
attribute range
of the last operand of p
to
the value x = -PI/2..PI/2
:
>> (p[nops(p)])::range := x = -PI/2..PI/2: plot(p)