User Guide for 42

Denis BAURAIN and Mick VAN VLIERBERGHE, ULiege

DRAFT - March 23th, 2019

Contents
1 Aim and features 2
2 Design principles 2
3 Functional overview 3
3.1 Orthology-controlling heuristics 3
3.1.1 Collectionofqueries 3
3.1.2 Preflight check of orthology relationships 3
3.1.3 Search for homologues using queries 4
3.1.4 Identification of best hits for queries 4
3.1.5 Identification of orthologues among homologues 4
3.1.6 Optimized enrichment of multigenic families 5
3.2 Orthologue post-processing 5
3.2.1 Family affiliation and orthologue naming 5
3.2.2 Contamination detection and handling 6
3.2.3 Alignment and MSA integration 6
324 Redundancy detectionand handling 7
4 Usage 7
41 Installation 7
42 Inputand configurationfiles 00 9
421 MSAs (*.fasta) e 9
422 Reference organisms (ref_orgs, ref_banks) 9
423 Query organisms (qUery_orgs) 10
424 Candidate organisms (orgs,banks) 10
425 Taxonomic filters (tax_filter) 11
43 Assisted configuration using thewizard L. 12

1 Aim and features

The aim of 42 is to add (and optionally align) sequences to a preexisting multiple sequence
alignment (MSA) while controlling for orthology relationships and potentially contami-
nating sequences.

Sequences to add are either nucleotide transcripts resulting from transcriptome assembly
or already translated protein sequences. In theory, one can also use genomic nucleotide
sequences (because 42 can splice introns), but this possibility has not been extensively
tested so far.

The working hypothesis of 42 is that its orthology-controlling heuristics can enrich not
only MSAs of single-copy genes but also more complicated MSAs including terminally
duplicated genes (in-paralogues) and/or corresponding to multigenic families featuring
different out-paralogues of different ages. Preliminary tests on a broadly sampled eukary-
otic data set suggest that the orthology relationships enforced by 42 are in good agreement
with those inferred with OrthoFinder software [Emms and Kelly (2015) Genome Biol 16:157].
To this end, it relies on complete proteomes of reference organisms

Regarding contamination, 42 implements a system of taxonomic filters (based on NCBI
Taxonomy) allowing it to flag (or to reject) any new sequence for which the taxonomic
affiliation is doubtful. However, the power of this mechanism is currently dependent on
the taxonomic breadth of each MSA.

42 is exclusively setup through a structured text file (e.g., YAML format). Archiving of this
file allows a user to document all the configuration details for a given run.

42’s verbosity is configured directly on the command line. 42 can be very introspective if
asked to be so. At the highest verbosity level, the numerous BLAST reports are not deleted
after the run and are thus available for manual inspection (e.g., for debugging purposes).

2 Design principles

In a single run, 42 can process an arbitrary large number of MSAs (specified using shell
jokers on the command line). Moreover, one can search for orthologous sequences in as
many organisms as wanted.

The configuration (config) file has two main parts: one with the options that apply glob-
ally to the run and one that lists the organisms (orgs) to search and their specific options,
including the path (bank_dir) to the corresponding sequence databases (banks in 42’s par-
lance). The config file includes a mechanism of default values (defaults) that apply to
all organisms except when otherwise specified in individual org subsections (e.g., code).

When 42 enriches a MSA, it processes each organism in turn following the order of org
subsections in the config file. Several out-of-order optimisations ensure that similar com-
putations (e.g., BLAST searches) are not repeated uselessly.

3 Functional overview

3.1 Orthology-controlling heuristics

Each run of 42 must specify a set of candidate organisms orgs that are going to be mined
for orthologs, a set of reference organisms (ref_orgs), for which the complete proteomes
have to be available (ref_bank_dir, ref_org_mapper), and a set of query organisms
(query_orgs), which should be represented in most MSAs to be enriched. These two
latter sets of organisms do not need to be identical but certainly can. They will apply to
all organisms (orgs) to be added to yield the new MSAs (out_suffix).

3.1.1 Collection of queries

For each org, 42 extracts all sequences belonging to the query_orgs in order to assemble
alist of query_seqgs. Those are used to mine orgs for homologs (candidate orthologs) and
to generate a list of validating” orthologs out of ref_orgs. If a MSA does not contain any
sequence fulfilling the selection criteria, 42 warns the user and falls back to selecting the
longest sequence instead, which leads to a singleton query_seqs.

3.1.2 Preflight check of orthology relationships

To ensure that it can accurately enrich MSAs in orthologous sequences, 42 verifies that
query_seqs and ref_orgs themselves satisfy its orthology criteria. This two-step process
is carried out separately for each MSA.

First, an average BLASTP bit score is computed for each ref_org based on the individual
best hits of each query_seq against the corresponding complete proteomes. query_seqgs
without any hit in a given ref_org are taken into account by contributing a value of zero
to the average bit score for the ref_org. How exactly first hits are considered best hits is
explained in Identification of best hits for queries.

ref_orgs without any hit to query_seqs are automatically discarded, whereas the remain-
ing ones are ranked in descending order on the average bit score. Low-scoring ref_orgs
can be optionally discarded by specifying a value < 1.0 for the ref_org_mul parameter
of the config file. For example, assuming the user lists 10 different ref_orgs and set
ref_mul_org to 0.7, at most 7 ref_orgs will be retained for assessing orthology relation-
ships. This could be the result of the automatic removal of two ref_orgs without any hit
and of an additional low-scoring one to honor the ref_mul_org setting.

Second, the best hits for each ref_org are BLASTed (BLASTP) against the complete pro-
teomes of other ref_orgs to check that they indeed recover the same best hits as the
query_seqs. If any ref_org fails with any of the other ref_orgs, a message is issued
to warn the user, but 42 proceeds normally. More details about the logic behind this are

available in Identification of orthologues among homologues. Otherwise, the preflight
check is considered successful.

3.1.3 Search for homologues using queries

Each one of the query_seqs is BLASTed in turn against each one of the banks for the current
org. The exact BLAST flavour is either TBLASTN or BLASTP, depending on the sequence
type of org’s banks. Moreover, default options of this first BLAST can be overridden by
specifying key/value pairs in the subsection homologues under the section blast_args
of the config file (e.g., low-complexity filters, E-value threshold, maximum number of

hits).

The whole set of hits corresponding to all query_seqgs is consolidated into a single list of
homologous sequences. These sequences can be optionally trimmed to the segment really
covered by the matching query_segs. This behaviour is useful to avoid non-core regions
to perturb orthology assessment. It is controlled by the seq_trimming parameter of the
config file.

3.1.4 Identification of best hits for queries

Each query_seq is furthermore BLASTed (BLASTP) against the complete proteome of each
ref_org. Again, BLAST options can be overridden if needed (subsection references un-
der section blast_args). For each query seq, the best hit in the ref org is recorded.
However, when bit scores of subsequent hits are nearly equal to the bit score of the best
hit, the corresponding sequences are interpreted as closely related in-paralogues and also
added to the list of best hits. This behaviour can be tweaked using the bitscore_mul
parameter of the config file.

As a consequence, several best hits can be recorded for a single query_seq/ref_org pair,
either because several sequences are available for the query_org (in-paralogues or out-
paralogues in the case of a multigenic family) or because several sequences match a single
query_seq in the org’s banks (which should be co-orthologues then), or for both reasons.
In contrast, if a ref_org has no homologue for the current MSA, 42 warns the user and
drops it from the list of ref_orgs considered by the orthology-controlling engine.

3.1.5 Identification of orthologues among homologues

To sort out orthologous sequences from paralogous sequences, each homologue in the
current org is BLASTed (BLASTX or BLASTP) against the complete proteome of each ref_org
(BLAST options in subsection orthologues under section blast_args). And now, here’s
the heart of 42’s heuristics... To be considered as an orthologue, a homologue must satisfy
the following criterion for every one of the (active) ref_orgs without exception: its best

hit in the corresponding complete proteome must be found in the original list of best hits
assembled using the query_segs.

It is important to note that 42 does not care about which particular query_seq (or
query_seqs) recovered the homologue in the org nor about those that recovered the
best hits in the complete proteomes of the ref_orgs. The only thing that matters is that
the loop is closed. The set of homologues for which this condition holds then become
the orthologues. If the parameter brh_mode of the config file is set to disabled, all
homologues are automatically considered as orthologues (but see PARA files just below).

3.1.6 Optimized enrichment of multigenic families

For multigenic families split over multiple MSAs, one can also optionally assemble PARA
files. Such a file should contain sequences representative of the other sub-families of a
multigenic family, so as to help 42 to even better discriminate between orthologous and
paralogous sequences. Sequences in PARA files are in FASTA format but do not need to be
aligned. To be considered as an orthologue, a homologue must obtain a best hit BLAST bit
score that is higher when compared to the sequences of the MSA than those of the PARA
file.

For example, let us say we have a family composed of 4 subfamilies (A-D). The initial or-
thologous group would include the 4 types of paralogues in a single MSA. Based on a phy-
logenetic analysis of this MSA, we could split this orthologous group into 4 distinct MSAs
(A-D). If we consider the enrichment of subfamily A (famA.fasta), then the sequences
of the other subfamilies (B, C and D) should be used to build the PARA file (famA.para).
Hence, any homologous sequence that would be more similar to a sequence in the PARA
file (say of type B) than to any sequence (of type A) in the MSA would then be rejected as
paralogous.

In some cases, PARA files are an adequate replacement for the main heuristics of 42. Yet,
both approaches can be used jointly for maximal accuracy.

3.2 Orthologue post-processing

Once orthologues are identified, each one is BLASTed (BLASTX or BLASTP) against the MSA
itself to recover its closest relatives (BLAST options in subsection templates under section
blast_args).

3.2.1 Family affiliation and orthologue naming

If the most closely related sequence in the MSA belongs to a given family (e.g., mt-), the
orthologue is affiliated to the same family, as did the original forty. This allows enrich-

ing MSAs corresponding to multigenic families. Note that only the most closely related
sequence can be used to infer the orthologue’s family.

The orthologue identifier is built using the org name and the accession of the correspond-
ing sequence in the org’s banks, which helps tracking down all the sequences added to a
MSA by 42 (e.g., for debugging purposes). This is thus different from the original forty,
in which most sequences were contigs having lost all connection with the nucleotide se-
quences in the org’s banks.

3.2.2 Contamination detection and handling

42 then seeks to determine whether the orthologue is a genuine orthologue or a xeno-
logue contaminating the org’s banks. To this end, it infers the orthologue’s taxonomy by
analysing the identifiers of the five closest sequences in the MSA. More precisely, it con-
siders each of them in turn and stops as soon as one of them can be reliably affiliated to a
NCBI Taxonomy entry.

If the taxon corresponding to the entry satisfies the taxonomic filter (tax_filter parame-
ters in the config file), the orthologue is simply added to the MSA. Otherwise, itis further
tagged as a contaminant (c#). When an orthologue is tagged as a contaminant, the bino-
mial of the organism at the origin of the taxonomic inference is appended to its identifier
(i.e., ...Genus_species).

Taxonomic filters are optional and require a local copy of the NCBI Taxonomy database
(tax_dir parameter in the config file). It can be installed using setup-taxdir.pl (see
Installation.

3.2.3 Alignment and MSA integration

To integrate the orthologue into the MSA, 42 chooses the most appropriate template(s)
for alignment among the closest relatives. As for taxonomic inference, it considers each
of them in turn and stops once the coverage of the orthologue cannot be significantly
improved. This allows 42 to select a slightly less related sequence as a template provided
it aligns with a longer part of the orthologue. By how much exactly coverage has to be
improved for a close sequence to be retained as a template can be fine-tuned with the
coverage_mul parameter of the config file.

Then comes the alignment itself. With nucleotide banks, both BLAST and exonerate align-
ers are available, whereas only BLAST can be used with protein banks. The preferred
aligner can be specified using the aligner parameter of the config file.

The BLAST aligner has been much improved with respect to the aligner of the original
forty. It extracts all the HSPs for the selected template(s) from the XML BLAST report
and uses them as guides for integrating the orthologue fragments into the MSA. Then,
once all fragments have been integrated for all candidate organisms, it merges them into

a single contiguous sequence per orthologue. When fragments overlap, the merger gives
precedence to the fragments corresponding to the highest-scoring templates and HSPs.

When the new exonerate aligner is preferred, only the longest selected template is used.
In most cases, the orthologue can be aligned as a single large fragment. If not, 42 emits
different types of warnings depending on the exact issue. In worst cases (e.g., exonerate
crashing), the orthologue cannot be integrated, often due to structural rearrangements
between the orthologue and the template. To avoid discarding the orthologue in such
cases, one can enable BLAST as a fall-back for exonerate failures by setting the aligner
parameter to exoblast.

Aligned orthologues are integrated into the MSA all together at the end of the file but in
the following arrangement: first by family, then by candidate organism and then by acces-
sion. Contaminants are interspersed with genuine orthologues but can be easily identified
thanks to their tag (c#).

3.2.4 Redundancy detection and handling

Independently of the aligner, 42 never integrates twice the same sequence for a given or-
ganism, even if obtained from multiple orthologues. Further, it filters out subsequences
included in sequences from the same organism that are either already present in the MSA
or that are listed in the NON counterpart of the MSA. NON files are a bit like PARA files (non-
aligned sequences in FASTA format) except that matches must be exact. Finally, when a
newly added orthologue includes a sequence already present in the MSA for the same or-
ganism, the latter can be either kept or removed, depending on the value of the parameter
1s_action in the config file.

4 Usage

4,1 Installation

42 is written Modern Perl but relies on two external dependencies: NCBI-BLAST+ and
Exonerate. You should download and install the corresponding binaries the way you feel
the most appropriate for your system.

e ftp://ftp.ncbinlm.nih.gov/blast/executables/blast+/LATEST/
* https:/ /www.ebi.ac.uk/about/vertebrate-genomics/software / exonerate

Most other dependencies can be handled automatically by using cpanm in a Perlbrew en-
vironment https:/ / perlbrew.pl/. Below are a set of commands to setup such an environ-
ment on Ubuntu.

install development tools
$ sudo apt-get update

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
https://www.ebi.ac.uk/about/vertebrate-genomics/software/exonerate
https://perlbrew.pl/

$ sudo apt-get install build-essential

download the perlbrew installer...
wget -0 - http://install.perlbrew.pl | bash

s

initialize perlbrew
source ~/perl5/perlbrew/etc/bashrc
perlbrew init

®© B H

search for a recent stable version of the perl interpreter
perlbrew available

install the last even version (e.g., 5.24.x, 5.26.x, 5.28.Xx)
(this will take a while)

perlbrew install perl-5.26.2

install cpanm (for Perl dependencies)

perlbrew install-cpanm

Y H W H HFHH

enable the just-installed version
perlbrew list
perlbrew switch perl-5.26.2

¥ B B

make perlbrew always available

if using bash (be sure to use double >> to append)
echo "source ~/perl5/perlbrew/etc/bashrc" >> ~/.bashrc
if using zsh (only the destination file changes)

$ echo "source ~/perl5/perlbrew/etc/bashrc" >> ~/.zshrc

H »H H H

Major 42 dependencies are the Bio: :MUST series of modules. Install them as follows.

$ cpanm Bio::FastParsers
$ cpanm Bio::MUST::Core
$ cpanm Bio::MUST::Drivers

Since Bio: :MUST modules rely external bioinformatics programs and come with complex
test suites, they sometimes raise errors during installation. If you encounter any such
error, consider enabling - -force and/or --notest options of cpanm.

$ cpanm --force Bio::MUST::Drivers
Install 42 itself. All remaining dependencies can also be taken care of by cpanm.
$ cpanm Bio::MUST::Apps::FortyTwo

Finally install a local mirror of the NCBI Taxonomy. It will be used by 42 to taxonomically
affiliate inferred orthologous sequences.

$ setup-taxdir.pl --taxdir=taxdump/

4.2 Input and configuration files

To help with the configuration of the numerous parameters of the software, we designed
a config file generator: yaml-generator-42.pl. When run with the --wizard option, it
will guide you through the configuration by prompting for all required parameters (press-
ing ENTER selects the default value). At the end of process, it will produce a YAML config
file named config-$SUFFIX.yaml and a file (build-$SUFFIX. sh) providing the command
to reproduce the exact same configuration without using the wizard.

421 MSAs (*.fasta)

Your MSAs collection can be in FASTA format (aligned or not) and sequence identifiers
must obey a set of basic rules. Each identifier has to hold the organism name (org) fol-
lowed by a separator (@) and by a protein/gene accession number. The organism name
is usually the binomial name. Genus and species must be separated by a whitespace (*)
or underscore character (). In addition, strain name and/or NCBI taxon id
are also allowed after the species name but each preceded by an underscore
character (). If both are used in the sequence identifier, the taxon id has to come last.
Finally, all sequence identifiers must be unique within each MSA. See examples below.

Genus species@protacc

>Arabidopsis thaliana@AAL15244

Genus species_taxonid@protacc
>Arabidopsis thaliana_ 3702@AA044026

Genus species_subspecies_taxonid@protacc
>Arabidopsis lyrata_lyrata_81972@EFH60692

Genus species_taxonid@protacc
>Archaeoglobus fulgidus_2234@wWP_048095550
Genus species_strain_taxonid@protacc
>Archaeoglobus fulgidus_DSM4304_224325@AAB90113
Genus species_strain_taxonid@protacc
>archaeon 13_1_20CM_2_54 9 1805008@0LE74253

4.2.2 Reference organisms (ref_orgs, ref_banks)

The reference proteome set must be described in the config file. Firstly, each of the ref-
erence proteomes must be in FASTA format in order to be formatted as a BLAST database
with the makeblastdb command.

$ for REFORG in *.faa; do makeblastdb -in $REFORG -dbtype prot \
-out “basename $REFORG .faa -parse_seqids; done

Then, yaml-generator-42.pl will read a file describing the reference proteome set
(ref_org_mapper.idm). This file is composed of two columns separated by a tabulation

character (\t) with the first column being the database basename (ref_bank) and the
second being the organism name (ref_org).

If your banks are like this:
$ 1s Arabidopsis_thaliana_ 3702 bank.*

Arabidopsis_thaliana_3702_bank.faa
Arabidopsis_thaliana_3702_bank.phr
Arabidopsis_thaliana_3702_bank.pin
Arabidopsis_thaliana_ 3702 bank.pog
Arabidopsis_thaliana_3702 bank.psd
Arabidopsis_thaliana_3702_bank.psi
Arabidopsis_thaliana_3702_bank.psq

Then the ref_org_mapper file should look like this:
Arabidopsis_thaliana_ 3702 bank Arabidopsis thaliana_ 3702

Note: Organism names must follow the same rules as those described above for the se-
quence identifiers in your MSAs!

4.2.3 Query organisms (query_orgs)

query_orgs should be listed in a file (queries.txt) and spelled exactly as in your MSAs.
This file will be processed by yam1-generator-42.pl to populate the config file. To easily
draftalistof query_orgs, you can for example use the 10 to 20 most represented organisms
across all you MSAs (prior to enrichment).

$ grep -h \> *.fasta | cut -f1 -d'@"' | sort | uniq -c | sort -rn | head -nl0

22498 >Danio_rerio

21071 >Homo_sapiens

20722 >Mus_musculus

18933 >Monodelphis_domestica
18616 >Loxodonta_africana
17762 >Latimeria_chalumnae
17678 >Canis_familiaris
17114 >Xenopus_tropicalis
16665 >Anolis_carolinensis
16611 >Sarcophilus_harrisii

4.2.4 Candidate organisms (orgs, banks)

The candidate organisms set must be described in the config file. Firstly, each of the
candidate organism files must be in FASTA format in order to produce a BLAST database

10

with the makeblastdb command:

$ for ORG in *.fna; do makeblastdb -in $0RG -dbtype nucl \
-out “basename $ORG .fna~ -parse_seqids; done

Within each BLAST database, sequence identifiers must be unique. 42 will use the first run
of non-whitespace characters as the accession. If this first chunk is composed of multiple
parts separated by pipe characters (|), only the last part is taken as the sequence accession
(see orthologue naming).

sequence identifier accession
>seq37 seq37
>compl2_cO_seql compl2_cO_seql
>EHO93040.1 S1_S1B_O1N04_T7 SLB ... EHO93040.1
>MMETSP@151 2-20130828|7_1 len=174 7 1
>gi|301500844 |ref|YP_003795256.1| ... YP_003795256.1

Then, as for ref_orgs above, you need to produce a bank_mapper.idm file composed
of two columns separated by a tabulation character (\t) with the first column being the
database basename (bank) and the second being the organism name (org).

Euglena_bank Euglena gracilis

Note: Again, organism names must follow the same rules as those described above for
the sequence identifiers in your MSAs!

4.2.5 Taxonomic filters (tax_filter)

You can define a taxonomic filter for each organism by adding a third column to the
bank_mapper.idm file or by letting the generator choose them for you. With the latter
option, you must define at which taxonomic level(s) you want to set the filter. When spec-
ifying several levels (--levels= option), the script will try to check for the next level in
case one is missing. You can put as many levels as you want separated by a comma (,,
no whitespace character) when using the - -wizard option and by a whitespace character
(") as a command line argument. Another possibility is to choose manu-
ally from the NCBI lineage for those that fail (in this case use the-
choose_tax_filter=largument). If you want to select manually for each candidate
organisme set the argument—choose_tax_filter=2".

Now that you are done preparing files, let’s run the wizard!

yaml-generator-42.pl --wizard

11

4.3 Assisted configuration using the wizard

Using the --wizard flag enables an interactive mode where you will be asked to enter
each parameter in the terminal.

Note: Pressing the ENTER key selects the default value encoded in 42.

Two run_mode are available metagenomic or phylogenomic. The phylogenomic mode is
designed to enrich MSAs with orthologues for subsequent phylogenomic analysis. In
contrast, the metagenomic mode is designed to estimate the contamination level of tran-
scriptomic data using reference ribosomal protein MSAs. The latter mode does not mod-
ify the MSAs but instead produces one taxonomic report per MSA listing the lineage of
each identified orthologous sequence. When not specified, run_mode internally defaults
to phylogenomic.

Note: the phylogenomic mode also produces taxonomic reports but deprived of taxo-
nomic affiliations for the purpose of one-on-one.pl (not currently distributed on CPAN).

12

	Aim and features
	Design principles
	Functional overview
	Orthology-controlling heuristics
	Collection of queries
	Preflight check of orthology relationships
	Search for homologues using queries
	Identification of best hits for queries
	Identification of orthologues among homologues
	Optimized enrichment of multigenic families

	Orthologue post-processing
	Family affiliation and orthologue naming
	Contamination detection and handling
	Alignment and MSA integration
	Redundancy detection and handling

	Usage
	Installation
	Input and configuration files
	MSAs (*.fasta)
	Reference organisms (ref_orgs, ref_banks)
	Query organisms (query_orgs)
	Candidate organisms (orgs, banks)
	Taxonomic filters (tax_filter)

	Assisted configuration using the wizard

