Oﬁ?nOf ficeorg

OpenOiffice.org 1.0.2

Developer's Guide

This documentation is distributed under licenses restricting its use. You may
make copies of and redistribute it, but you may not modify or make derivative
works of this documentation without prior written authorization of Sun and its
licensors, if any.

Copyright 2003 Sun Microsystems, Inc.

Contents

1 Reader's Guide

1.1 What This Manual Covers

1.2 How This Book is Organized
1.3 OpenOffice.org Version History
14 Related documentation

1.5 Conventions

1.6 Acknowledgments

2 First Steps

2.1 Programming with UNO
2.2 Fields of Application for UNO
2.3 Getting Started
2.3.1 Required Files
2.3.2 Installation Sets
2.3.3 Configuration
2.34 First Connection
2.4 How to get Objects in OpenOffice.org
2.5 Working with Objects
2.5.1 Services
Using Interfaces
Using Properties

2.5.2 Example: Working with a Spreadsheet Document

2.5.3 Common Types

Simple Types

Strings

Enum Types and Groups of Constants
254 Struct
255 Any

2.5.6 Sequence
2.5.7 Element Access
Name Access
Index Access
Enumeration Access
2.6 How do I know Which Type I Have?
2.7 Finding Your Way through the API Reference
2.8 Example: Hello Text, Hello Table, Hello Shape

3 Professional UNO

3.1 Introduction
3.2 API Concepts

23

23
23
24
24
25
25

27

27
27
28
28
28
29
30
33
34
34
36
38
38
40
40
41
41
41
42
44
45
47
48
48
49
49
50

59

59
60

3.21 Data Types 60

Simple Types 60

The Any Type 61

Interfaces 61

Services 63

Structs 67
Predefined Values 67

Sequences 68

Modules 68

Exceptions 69

Singletons 69

3.22 Understanding the API Reference 69
Specification, Implementation and Instances 69

Object Composition 70

3.3 UNO Concepts 71
3.3.1 UNO Interprocess Connections 71
Starting OpenOffice.org in Listening Mode 71

Importing a UNO Object 71
Characteristics of the Interprocess Bridge 73

Opening a Connection 73

Creating the Bridge 75

Closing a Connection 76

Example: A Connection Aware Client 77

3.3.2 Service Manager and Component Context 79
Service Manager 79
Component Context 81

3.3.3 Using UNO Interfaces 84
Accessing the Functionality of a Service 84
Collections and Containers 90

3.34 Event Model 92
3.3.5 Exception Handling 93
User-Defined Exceptions 93

Runtime Exceptions 94

3.3.6 Lifetime of UNO Objects 95
acquire() and release() 96

The XComponent Interface 96

Children of the XEventListener Interface 98

Weak Objects and References 99
Differences Between the Lifetime of C++ and Java Objects 99

3.3.7 Object Identity 101
3.4 UNO Language Bindings 101
3.4.1 Java Language Binding 102
Getting a Service Manager 102

Handling Interfaces 103

Type Mappings 104

3.4.2 UNO C++ Binding 112
Library Overview 113

System Abstraction Layer 114

File Access 114
Threadsafe Reference Counting 115

Threads and Thread Synchronization 115
Establishing Interprocess Connections 116

Type Mappings 117

Using Weak References 122

Exception Handling in C++ 123

3.43 OpenOffice.org Basic 124
Handling UNO Objects 124

Mapping of UNO and Basic Types 130

Case Sensitivity 137

Exception Handling 138

Listeners 139

3.4.4 Automation Bridge 141
Introduction 141
Requirements 141

A Quick Tour 142

The Service Manager Component 144

Using UNO from Automation 146

Type Mappings 152
Automation Objects with UNO Interfaces 163

DCOM 166

The Bridge Services 168
Unsupported COM Features 171

4 Writing UNO Components 173
4.1 Required Files 173
4.2 Using UNOIDL to Specify New Components 174
42.1 Writing the Specification 175
Preprocessing 175

Grouping Definitions in Modules 176
Fundamental Types 176

Defining an Interface 177

Defining a Service 180

Defining a Sequence 182

Defining a Struct 182

Defining an Exception 183
Predefining Values 184

Using Comments 185

4.3
4.4

4.5

4.6

Singleton
Reserved Types
42.2 Generating Source Code from UNOIDL Definitions
Component Architecture
Core Interfaces to Implement
441 XlInterface
Requirements for querylInterface()
Reference Counting
442 XTypeProvider
Provided Types
ImplementationID
443 XServicelnfo
Implementation Name
Supported Service Names
444 XWeak
445 XComponent
Disposing of an XComponent
44.6 Xlnitialization
447 XMain
448 XAggregation
449 XUnoTunnel
Simple Component in Java
45.1 Class Definition with Helper Classes
XInterface, XTypeProvider and XWeak
XServicelnfo
452 Implementing your own Interfaces
4.5.3 Providing a Single Factory Using Helper Method
454 Write Registration Info Using Helper Method
455 Implementing without Helpers
XInterface
XTypeProvider
XComponent
45.6 Storing the Service Manager for Further Use
45.7 Create Instance with Arguments
45.8 Possible Structures for Java Components
One Implementation per Component File
Multiple Implementations per Component File
459 Testing and Debugging Java Components
Registration
Debugging
Troubleshooting
C++ Component
4.6.1 Class Definition with Helper Template Classes
XInterface, XTypeProvider and XWeak

186
186
187
188
189
191
192
192
192
193
193
193
193
194
194
195
195
195
196
196
196
197
198
198
198
199
200
201
202
202
203
203
204
204
205
205
207
209
209
210
211
213
214
214

4.6.2
4.6.3
464
4.6.5
4.6.6

4.6.7
4.6.8
469
4.6.10

XServicelnfo
Implementing your own Interfaces
Providing a Single Factory Using a Helper Method
Write Registration Info Using Helper Method
Provide Implementation Environment
Implementing without Helpers

XInterface Implementation

XTypeProvider Implementation

Providing a Single Factory

Write Registration Info
Storing the Service Manager for Further Use
Create Instance with Arguments
Multiple Components in One Dynamic Link Library
Building and Testing C++ Components

Build Process

Test Registration and Use

4.7 Deployment Options for Components

4.7.1

4.7.2

473

474

4.7.5
4.7.6

UNO Package Installation
Package Structure
Path Settings
Additional Options
Background: UNO Registries
UNO Type Library
Component Registration
Command Line Registry Tools
Component Registration Tool
UNO Type Library Tools
Manual Component Installation
Manually Merging a Registry and Adding it to uno.ini or soffice.ini
Alternatives
Bootstrapping a Service Manager
Special Service Manager Configurations
Dynamically Modifying the Service Manager

Creating a ServiceManager from a Given Registry File

4.8 The UNO Executable

Standalone Use Case
Server Use Case

Using the uno Executable

4.9 The Java Environment in OpenOffice.org

5 Advanced UNO

5.1 Choosing an Implementation Language

51.1

Supported Programming Environments

215
215
216
217
218
218
218
219
220
221
221
222
222
222
222
223
224
224
225
226
227
227
227
228
229
229
230
230
230
231
232
234
235
236
236
237
239
240
241

243

243
243

512

5.13

Java
C++
OpenOffice.org Basic
OLE Automation Bridge
Python
Use Cases
Java
C++
OpenOffice.org Basic
OLE Automation
Python
Recommendation

5.2 Language Bindings

521

522

523

524

525

5.2.6

Implementing UNO Language Bindings
Overview of Language Bindings and Bridges

Implementation Options
UNO C++ bridges
Binary UNO Interfaces
C++ Proxy
Binary UNO Proxy
Additional Hints
UNO Reflection API
XTypeProvider Interface
Converter Service
CoreReflection Service
XInvocation Bridge
Scripting Existing UNO Objects
Implementing UNO objects
Example: Python Bridge PyUNO
Implementation Loader
Shared Library Loader
Bridges
Help with New Language Bindings

5.3 Differences Between UNO and Corba
5.4 UNO Design Patterns and Coding Styles

54.1

Double-Checked Locking

6 Office Development

6.1 OpenOffice.org Application Environment

6.1.1

6.1.2

Overview
Desktop Environment
Framework API
Using the Desktop

244
244
244
245
245
245
245
245
246
246
246
246
246
247
247
248
249
250
251
252
253
254
254
254
254
258
258
261
262
264
266
266
267
267
269
269

273

273
273
274
275
281

6.2

6.1.3

6.14
6.1.5

6.1.6

6.1.7

6.1.8

Using the Component Framework
Getting Frames, Controllers and Models from Each Other
Frames
Controllers
Models
Window Interfaces

Creating Frames Manually

Handling Documents
Loading Documents
Closing Documents
Storing Documents
Printing Documents

Using the Dispatch Framework
Command URL
Processing Chain
Dispatch Process
Dispatch Results
Dispatch Interception

Intercepting Context Menus
Register and Remove an Interceptor
Writing an Interceptor

Java Window Integration
The Window Handle
Using the Window Handle
More Remote Problems

Common Application Features

6.2.1

6.2.2
6.2.3

6.2.4

6.2.5

Clipboard

Using the Clipboard

OpenOffice.org Clipboard Data Formats
Internationalization ((later))
Linguistics

Services Overview

Using Spellchecker

Using Hyphenator

Using Thesaurus

Events

Implementing a Spell Checker

Implementing a Hyphenator

Implementing a Thesaurus
Integrating Import and Export Filters

Approaches

Internals of a OpenOffice.org Filter
Number Formats

Managing Number Formats

285
286
287
292
294
297
298
300
300
308
313
315
315
315
316
317
321
321
323
323
323
327
328
328
330
331
331
331
335
336
336
336
338
339
341
342
343
344
345
346
346
347
360
360

Applying Number Formats
6.2.6 Common Dialogs ((later))
6.2.7 DocumentInfo ((later))
6.2.8 Search and Replace ((possibly later))
6.2.9 Package File Formats ((later))
6.2.10 Document Events ((later))

7 Text Documents

7.1

7.2

7.3

Overview
711 Example: Fields in a Template
7.1.2 Example: Visible Cursor Position
Handling Text Document Files
721 Creating and Loading Text Documents
7.2.2 Saving Text Documents
Storing
Exporting
7.2.3 Printing Text Documents
Printer and Print Job Settings
Printing Multiple Pages on one Page
Working with Text Documents
7.3.1 Word Processing
Editing Text
Iterating over Text
Inserting a Paragraph where no Cursor can go
Sorting Text
Inserting Text Files
Auto Text
7.3.2 Formatting
7.3.3 Navigating
Cursors
Locating Text Contents
Search and Replace
7.3.4 Tables
Table Architecture
Named Table Cells in Rows, Columns and the Table Cursor
Indexed Cells and Cell Ranges
Table Naming, Sorting, Charting and Autoformatting
Text Table Properties
Inserting Tables
Accessing Existing Tables
735 Text Fields
7.3.6 Bookmarks
7.3.7 Indexes and Index Marks

361
364
364
364
364
364

365

365
368
369
371
371
372
372
372
373
373
374
375
375
375
379
381
381
381
381
382
388
388
389
390
393
393
396
398
399
399
400
405
405
411
412

74

7.5

Indexes
Index marks
7.3.8 Reference Marks
7.3.9 Footnotes and Endnotes
7.3.10 Shape Objects in Text
Base Frames vs. Drawing Shapes
Text Frames
Embedded Objects
Graphic Objects
Drawing Shapes
7.3.11 Redline
7.3.12 Ruby
Overall Document Features
741 Styles
Character Styles
Paragraph Styles
Frame Styles
Page Styles
Numbering Styles
742 Settings
General Document Information
Document Properties
Creating Default Settings
Creating Document Settings
74.3 Line Numbering and Outline Numbering
Paragraph and Outline Numbering
Line Numbering
Number Formats
744 Text Sections
745 Page Layout
746 Columns
74.7 Link targets
Text Document Controller
751 TextView
752 TextViewCursor

8 Spreadsheet Documents

8.1

8.2

Overview

8.1.1 Example: Adding a New Spreadsheet

8.1.2 Example: Editing Spreadsheet Cells

Handling Spreadsheet Document Files

8.2.1 Creating and Loading Spreadsheet Documents
8.2.2 Saving Spreadsheet Documents

412
414
416
417
419
419
422
423
423
425
427
427
428
428
430
430
430
431
431
432
432
432
433
433
433
434
436
436
436
438
439
440
441
441
443

445

445
447
448
448
448
449

8.2.3

Storing
Exporting
Filter Options

Printing Spreadsheet Documents
Printer and Print Job Settings
Page Breaks and Scaling for Printout
Print Areas

8.3 Working with Spreadsheet Documents

8.3.1

8.3.2

8.3.3

8.34

8.3.5

8.3.6

8.3.7

Document Structure
Spreadsheet Document
Spreadsheet Services - Overview
Spreadsheet
Cell Ranges
Cells
Cell Ranges and Cells Container
Columns and Rows
Formatting
Cell Formatting
Character and Paragraph Format
Indentation
Equally Formatted Cell Ranges
Table Auto Formats
Conditional Formats
Navigating
Cell Cursor
Referencing Ranges by Name
Named Ranges
Label Ranges
Querying for Cells with Specific Properties
Search and Replace
Sorting
Table Sort Descriptor
Database Operations
Filtering
Subtotals
Database Import
Database Ranges
Linking External Data
Sheet Links
Cell Area Links
DDE Links
DataPilot
DataPilot Tables
DataPilot Sources

449
450
450
453
453
454
454
455
455
455
459
470
472
479
483
486
488
488
488
489
489
493
497
498
499
501
501
503
505
507
507
507
509
510
512
513
514
515
515
517
518
519
519
523

8.3.8 Protecting Spreadsheets
8.3.9 Sheet Outline
8.3.10 Detective
8.3.11 Other Table Operations
Data Validation
Data Consolidation
Charts
Scenarios
8.4 Opverall Document Features
8.4.1 Styles
Cell Styles
Page Styles
8.4.2 Function Handling
Calculating Function Results
Information about Functions
Recently Used Functions
8.4.3 Settings
8.5 Spreadsheet Document Controller
8.5.1 Spreadsheet View
8.5.2 View Panes
8.5.3 View Settings
8.5.4 Range Selection
8.6 Spreadsheet Add-Ins
8.6.1 Function Descriptions
8.6.2 Service Names
8.6.3 Compatibility Names
8.6.4 Custom Functions
8.6.5 Variable Results

Drawing Documents and Presentation Documents

9.1 Overview
9.1.1 Example: Creating a Simple Organizational Chart
9.2 Handling Drawing Document Files
9.21 Creating and Loading Drawing Documents
9.22 Saving Drawing Documents
Storing
Exporting
Filter Options
9.2.3 Printing Drawing Documents
Printer and Print Job Settings
Special Print Settings
9.3 Working with Drawing Documents
9.3.1 Drawing Document

531
532
532
532
532
534
535
536
539
539
540
541
542
542
543
544
544
545
545
547
548
548
550
551
551
551
552
552

555

555
557
559
559
560
560
561
562
563
563
565
565
565

Document Structure

Page Handling
Page Partitioning
9.3.2 Shapes
10 Charts

10.1 Overview
10.2 Handling Chart Documents
10.2.1 Creating Charts

Creating and Adding a Chart to a Spreadsheet
Creating a Chart OLE Object in Draw and Impress

Setting the Chart Type
10.2.2 Accessing Existing Chart Documents
10.3 Working with Charts
10.3.1 Document Structure
10.3.2 Data Access
10.3.3 Chart Document Parts
Common Parts of all Chart Types
Features of Special Chart Types
10.4 Chart Document Controller
10.5 Chart Add-Ins
10.5.1 Prerequisites
10.5.2 How Add-Ins work
10.5.3 How to Apply an Add-In to a Chart Document

11 OpenOffice.org Basic and Dialogs

11.1 First Steps with OpenOffice.org Basic
Step By Step Tutorial
A Simple Dialog
11.2 OpenOffice.org Basic IDE
11.2.1 Managing Basic and Dialog Libraries
Macro Dialog
Macro Organizer Dialog
11.2.2 Basic IDE Window
Basic Source Editor and Debugger
Dialog Editor
11.2.3 Assigning Macros to GUI Events
11.3 Features of OpenOffice.org Basic
11.3.1 Functional Range Overview
Screen I/O Functions
File1/0O
Date and Time Functions
Numeric Functions

565
566
567
567

573

573
573
573
573
574
576
576
577
577
578
581
581
585
588
588
588
588
590

593

594
594
598
603
604
604
606
611
613
615
620
623
623
623
623
624
625

String Functions 625

Specific UNO Functions 626

11.3.2 Accessing the UNO API 626
StarDesktop 626
ThisComponent 626

11.3.3 Special Behavior of OpenOffice.org Basic 628
Threads 628
Rescheduling 628

11.4 Advanced Library Organization 630
1141 General Structure 630
11.4.2 Accessing Libraries from Basic 631
Library Container Properties in Basic 631

Loading Libraries 632

Library Container API 633

11.4.3 Variable Scopes 635
11.5 Programming Dialogs and Dialog Controls 636
11.5.1 Dialog Handling 636
Showing a Dialog 636

Getting the Dialog Model 637

Dialog as Control Container 637

Dialog Properties 638

Common Properties 638
Multi-Page Dialogs 638

11.5.2 Dialog Controls 639
Command Button 639

Image Control 639

Check Box 640

Option Button 640

Label Field 640

Text Field 641

List Box 642

Combo Box 642
Horizontal /Vertical Scroll Bar 643

Group Box 644

Progress Bar 644
Horizontal /Vertical Line 645

Date Field 645

Time Field 645

Numeric Field 646

Currency Field 646

Formatted Field 646

Pattern Field 646

File Control 647

11.6 Creating Dialogs at Runtime 647

11.7 Library File Structure
11.7.1 Application Library Container
11.7.2 Document Library Container
11.8 Library Deployment
Package Structure
Path Settings
Additional Options

12 Database Access

12.1 Overview
12.1.1 Capabilities
Platform Independence
Functioning of the OpenOffice.org API Database Integration
Integration with OpenOffice.org API
12.1.2 Architecture
12.1.3 Example: Querying the Bibliography Database
12.2 Data Sources in OpenOffice.org API
12.2.1 DatabaseContext
12.2.2 DataSources
The DataSource Service
Queries
Forms and Other Links
Tables and Columns
12.2.3 Connections
Understanding Connections
Connecting Using the DriverManager and a Database URL
Connecting Through a Specific Driver
Driver Specifics
Connection Pooling
Piggyback Connections
12.3 Manipulating Data
12.3.1 The RowSet Service
Usage
Events and Other Notifications
Clones of the RowSet Service
12.3.2 Statements
Creating Statements
Inserting and Updating Data
Getting Data from a Table
12.3.3 Result Sets
Retrieving Values from Result Sets
Moving the Result Set Cursor
Using the getXXX Methods

650
651
653
655
655
656
657

659

659
659
659
659
660
660
660
662
662
664
664
666
672
673
677
677
680
682
682
686
687
688
688
688
691
694
694
694
695
697
698
701
701
702

12.34
12.3.5

12.3.6 PreparedStatement From DataSource Queries

Scrollable Result Sets
Modifiable Result Sets
Update

Insert

Delete

Seeing Changes in Result Sets

ResultSetMetaData
Using Prepared Statements

When to Use a PreparedStatement Object
Creating a PreparedStatement Object
Supplying Values for PreparedStatement Parameters

12.4 Database Design

12.4.1 Retrieving Information about a Database

Retrieving General Information

Determining Feature Support

Database Limits

SQL Objects and their Attributes
12.4.2 Using DDL to Change the Database Design
12.4.3 Using SDBCX to Access the Database Design

The Extension Layer SDBCX
Catalog Service

Table Service

Column Service

Index Service

Key Service

View Service

Group Service

User Service

The Descriptor Pattern
Adding an Index
Creating a User
Adding a Group

12.5 Using DBMS Features

12.5.1
12.5.2

Transaction Handling
Stored Procedures

12.6 Writing Database Drivers

12.6.1
12.6.2
12.6.3
12.6.4
12.6.5

SDBC Driver

Driver Service

Connection Service

XDatabaseMetaData Interface

Statements
PreparedStatement
Result Set

704
706
706
708
709
710
711
711
711
712
712
713
714
714
714
715
715
715
716
719
719
720
721
724
725
727
729
729
731
731
734
734
734
735
735
736
737
737
738
739
740
741
742
742

12.6.6

13 Forms

Support Scalar Functions
Open Group CLI Numeric Functions
Open Group CLI String Functions
Open Group CLI Time and Date Functions
Open Group CLI System Functions
Open Group CLI Conversion Functions
Handling Unsupported Functionality

13.1 Introduction
13.2 Models and Views

13.2.1
13.2.2
13.2.3
13.2.4

The Model-View Paradigm
Models and Views for Form Controls
Model-View Interaction
Form Layer Views
View Modes
Locating Controls

Focussing Controls

13.3 Form Elements in the Document Model

13.3.1

13.3.2

A Hierarchy of Models
FormComponent Service
FormComponents Service
Logical Forms
Forms Container
Form Control Models

Control Models and Shapes
Programmatic Creation of Controls

13.4 Form Components

13.4.1

13.4.2

Basics
Control Models
Forms

HTML Forms

13.5 Data Awareness

13.5.1

13.5.2

Forms
Forms as Row Sets
Loadable Forms
Sub Forms
Filtering and Sorting
Parameters
Data Aware Controls
Control Models as Bound Components

Committing Controls

13.6 Common Tasks

742
742
743
744
744
745
745

747

747
747
747
748
749
749
749
750
750
750
751
751
751
752
752
753
753
754
756
756
756
757
758
758
759
759
759
759
761
761
762
763
764
765

13.6.1 Initializing Bound Controls
13.6.2 Automatic Key Generation
13.6.3 Data Validation

14 Universal Content Broker

14.1

14.2
14.3
14.4

Overview
14.1.1 Capabilities
14.1.2 Architecture
Services and Interfaces
Content Providers
Using the UCB API
14.4.1 Instantiating the UCB
14.4.2 Accessing a UCB Content
14.4.3 Executing Content Commands
14.4.4 Obtaining Content Properties
14.4.5 Setting Content Properties
14.4.6 Folders
Accessing the Children of a Folder
14.4.7 Documents
Reading a Document Content
Storing a Document Content
14.4.8 Managing Contents
Creating
Deleting
Copying, Moving and Linking
14.4.9 UCP Registration Information
14.4.10 Unconfigured UCBs
14.4.11 Preconfigured UCBs
14.4.12 Content Provider Proxies

15 Configuration Management

15.1

15.2
15.3

154

15.5
15.6

Overview

15.1.1 Capabilities

15.1.2 Architecture

Object Model

Configuration Data Sources

15.3.1 Connecting to a Data Source
15.3.2 Using a Data Source
Accessing Configuration Data

15.4.1 Reading Configuration Data
15.4.2 Updating Configuration Data
Customizing Configuration Data
Adding a Backend Data Store

765
766
767

769

769
769
769
770
772
772
773
773
774
775
776
777
777
779
779
781
781
781
783
784
785
785
787
788

791

791
791
791
794
796
796
798
800
800
803
811
812

16 Office Bean

16.1 Introduction
16.2 Overview of the OfficeBean API

16.2.1
16.2.2
16.2.3

16.3 LocalOfficeConnection and LocalOfficeWindow

OfficeConnection Interface
OfficeWindow Interface
ContainerFactory Interface

16.4 Configuring the OfficeBean

16.4.1
16.4.2

Default Configuration
Customized Configuration

16.5 Using the OfficeBean

16.5.1

16.5.2

Appendix A: OpenOffice.org API-Design-Guidelines

SimpleBean Example
Using SimpleBean
SimpleBean Internals

OfficeWriterBean Example

A.1 General Design Rules

All
Al2
Al3
Al4
Alb5

Universality
Orthogonality
Inheritance
Uniformity
Correct English

A.2 Definition of API Elements

A21
A22
A23
A24
A25
A26
A27
A28
A29
A2.10
A211
A.3 Special

Attributes
Methods
Interfaces
Properties
Events
Services
Exceptions
Enums
Typedefs
Structs
Parameter
Cases

A.4 Abbreviations
A.5 Source Files and Types

Appendix B: IDL Documentation Guidelines

B.1 Introduction

B.1.1
B.1.2

Process
File Assembly

813

813
814
815
816
816
816
817
817
818
819
820
821
823
824

827

827
827
828
828
828
828
828
828
829
831
831
832
832
833
833
834
834
834
835
835
836

837
837
837
837

B.1.3 Readable & Editable Structure
B.14 Contents
B.2 File structure
B.21 General
B.2.2 File-Header
B.2.3 File-Footer
B.3 Element Documentation
B.3.1 General Element Documentation
B.3.2 Example for a Major Element Documentation
B.3.3 Example for a Minor Element Documentation
B.4 Markups and Tags
B.4.1 Special Markups
B.4.2 Special Documentation Tags
B.4.3 Useful XHTML Tags

Appendix C: Universal Content Providers

C.1 The Hierarchy Content Provider
C.1.1 Preface
C.1.2 HCP Contents
C.1.3 Creation of New HCP Content
C.1.4 URL Scheme for HCP Contents
C.1.5 Commands and Properties

C.2 The File Content Provider
C.2.1 Preface
C.2.2 File Contents
C.2.3 Creation of New File Contents
C.2.4 URL Schemes for File Contents
C.25 Commands and Properties

C.3 The FTP Content Provider
C.3.1 Preface
C.3.2 FTP Contents
C.3.3 Creation of New FTP Content
C.3.4 URL Scheme for FTP Contents
C.3.5 Commands and Properties

C.4 The WebDAYV Content Provider
C.4.1 Preface
C.4.2 DCP Contents
C.4.3 Creation of New DCP Contents
C.4.4 Authentication
C.45 Property Handling
C.4.6 URL Scheme for DCP Contents
C4.7 Commands and Properties

C.5 The Package Content Provider

838
838
838
838
839
840
840
840
841
842
842
842
844
845

849

849
849
849
850
850
851
851
851
851
852
852
853
853
853
853
854
855
855
856
856
856
857
857
857
858
859
859

Cb5.1
Cb5.2
C.5.3
Cb54
C5.5

Preface

PCP Contents

Creation of New PCP Contents
URL Scheme for PCP Contents
Commands and Properties

C.6 The Help Content Provider

C.6.1
C6.2
C.6.3
C64

Preface
Help Content Provider Contents
URL Scheme for Help Contents

Properties and Commands

Appendix D: UNOIDL Syntax Specification

Glossary

Index

859
859
860
860
861
861
861
862
862
863

867

871

887

Reader's Guide

1.1 What This Manual Covers

This manual describes how to write programs using the component technology UNO (Universal
Network Objects) with OpenOffice.org.

Most examples provided are written in Java. As well as Java, the language binding for C++, the
UNO access for OpenOffice.org Basic and the OLE Automation bridge that uses OpenOffice.org
through Microsoft's component technology COM/DCOM is described.

1.2 How This Book is Organized

First Steps
The First Steps chapter describes the setting up of a Java UNO development environment to
achieve the solutions you need. At the end of this chapter, you will be equipped with the
essentials required for the following chapters about the OpenOffice.org applications.

Professional UNO Projects
This chapter introduces API and UNO concepts and explains the specifics of the programming
languages and technologies that can be used with UNO. It will help you to write industrial-
strength UNO programs, use one of the languages besides Java or improve your under-
standing of the API reference.

Writing UNO Components
This chapter describes how to write UNO components. It also provides an insight into the
UNOIDL (UNO Interface Definition Language) language and the inner workings of service
manager. Before beginning this chapter, you should be familiar with the First Steps and
Professional UNO chapters.

Advanced UNO
This chapter describes the technical basis of UNO, how the language bindings and bridges
work, how the service manager goes about its tasks and what the core reflection actually does.

Office Development
This chapter describes the application framework of the OpenOffice.org application that
includes how the OpenOffice.org API deals with the OpenOffice.org application and the
features available across all parts of OpenOffice.org.

23

24

Text Documents - Spreadsheet Documents - Drawings and Presentations — Chart
These chapters describes how OpenOffice.org revolves around documents. These chapters
teach you what to do with these documents programmatically.

Basic and Dialogs
This chapter provides the functionality to create and manage Basic macros and dialogs.

Database Access
This chapter describes how you can take advantage of this capability in your own projects
OpenOffice.org can connect to databases in a universal manner.

Forms
This chapter describes how OpenOffice.org documents contain form controls that are
programmed using an event-driven programming model. The Forms chapter shows you how
to enhance your documents with controls for data input.

ucB
This chapter describes how the Universal Content Broker is the generic resource access service
used by the entire office application. It handles not only files and directories, but hierarchic and
non-hierarchic contents, in general.

OpenOffice.org Configuration
This chapter decribes how the OpenOffice.org API offers access to the office configuration
options that is found in the Tools — Options dialog.

OfficeBean
This chapter describes how the OfficeBean Java Bean component allows the developer to inte-
grate office functionality in Java applications.

1.3 OpenOffice.org Version History

OpenOffice.org exists in two versions www.openoffice.org
OpenOffice.org - an open source edition
StarOffice and StarSuite - "branded" editions derived from OpenOffice.org

In 2000, Sun Microsystems released the source code of their current developer version of StarOffice
on www.openoffice.org, and made the ongoing development process public. Sun's development
team, which developed StarOffice, continued its work on www.openoffice.org, and developers from
all over the world joined them to port, translate, repair bugs and discuss future plans. StarOffice
6.0 and OpenOffice.org 1.0, which were released in spring 2002, share the same code basis.

1.4 Related documentation

The api and udk projects on www.openoffice.org have related documentation, examples and FAQs
(frequently asked questions) on the OpenOffice.org API. Most important are probably the refer-
ences, you can find them at api.openoffice.org or udk.openoffice.org.

The API Reference covers the programmable features of OpenOffice.org.
The Java Reference describes the features of the Java UNO runtime environment.

The C++ Reference is about the C++ language binding.

OpenOffice.org 1.0.2 Developer's Guide January 2003

1.5 Conventions

This book uses the following formatting conventions:

Bold refers to the keys on the keyboard or elements of a user interface, such as the OK button
or File menu.

Italics are used for emphasis and to signify the first use of a term. Italics are also used for web
sites, file and directory names and email addresses.

Courier Newis used in all Code Listings and for everything that is typed when programming.

1.6 Acknowledgments

A publication like this can never be the work of a single person — it is the result of tremendous
team effort. Of course, the OpenOffice.org/StarOffice development team played the most impor-
tant role by creating the API in the first place. The knowledge and experience of this team will be
documented here. Furthermore, there were several devoted individuals who contributed to
making this documentation reality.

First of all, we would like to thank Ralf Kuhnert and Dietrich Schulten. Using their technical
expertise and articulate mode of expression, they accomplished the challenging task of gathering
the weatlth of API knowledge from the minds of the developers and transforming it into an
understandable document.

Many reviewers were involved in the creation of this documentation. Special thanks go to Michael
Honnig who was one of the few who reviewed almost every single word. His input also played a
decisive role in how the documentation was structured. A big thank you also goes to Diane
O'Brien for taking on the daunting task of reviewing the final draft and providing us with exten-
sive feedback at such short notice.

When looking at the diagrams and graphics, it is clear that a creative person with the right touch
for design and aesthetics was involved. Many thanks, therefore, are due Stella Schulze who re-
drew all of the diagrams and graphics from the originals supplied by various developers. We also
thank Svante Schubert who converted the original XML file format into HTML pages and was
most patient with us in spite of our demands and changes. Special thanks also to Jorg Heilig, who
made this whole project possible.

Jirgen would like to thank G6tz Wohlberg for all his help in getting the right people involved and
making sure things ran smoothly.

Gotz would like to thank Jiirgen Schmidt for his never-ending energy to hold everything together
and for pushing the contributors in the right direction. He can be considered as the heart of the

opus because of his guidance and endurance throughout the entire project.

We would like to take this opportunity to thank all these people —and anyone else we

forgot! — for their support.

Jiirgen Schmidt, Gtz Wohlberg

Chapter 1 Reader's Guide 25

First Steps

This chapter describes the setting up of a Java UNO development environment to achieve the
solutions you need. The OpenOffice.org documents contain detailed descriptions on how to use
them in your own programs.

2.1 Programming with UNO

UNO (pronounced [ju:nou]) stands for Universal Network Objects and is the base component
technology for OpenOffice.org. You can utilize and write components that interact across
languages, component technologies, computer platforms, and networks. Currently, UNO is avail-
able on Linux, Solaris, and Windows for Java, C++ and OpenOffice.org Basic. As well, UNO is
available through the component technology Microsoft COM for many other languages.

UNO is used to access OpenOffice.org, using its Application Programming Interface (API). The
OpenOftfice.org APl is the comprehensive specification that describes the programmable features
of OpenOffice.org.

2.2 Fields of Application for UNO

You can connect to a local or remote instance of OpenOffice.org from C++, Java and COM/
DCOM. C++ and Java Desktop applications, Java servlets, Java Server Pages, JScript and VBScript,
and languages, such as Delphi, Visual Basic and many others can use OpenOffice.org to work
with Office documents.

It is possible to develop UNO Components in C++ or Java that can be instantiated by the office
process and add new capabilities to OpenOffice.org. For example, you can write Chart Add-ins or
Calc Add-ins, linguistic extensions, new file filters, database drivers. You can even write complete
applications, such as a groupware client.

UNO components, as Java Beans, integrate with Java IDEs (Integrated Development Environment)
to give easy access to OpenOffice.org. Currently, a set of such components is under development
that will allow editing OpenOffice.org documents in Java Frames.

OpenOffice.org Basic cooperates with UNO, so that UNO programs can be directly written in
OpenOftfice.org. With this method, you supply your own office solutions and wizards based on an
event-driven dialog environment.

The OpenOffice.org database engine and the data aware forms open another wide area of oppor-
tunities for database driven solutions.

27

28

The Sun One Webtop, Sun Microsystem's server based Office suite, uses UNO and the
OpenOffice.org APL

2.3 Getting Started

A number of files and installation sets are required before beginning with the OpenOffice.org APL

2.3.1 Required Files

These files are required for any of the languages you use.

OpenOffice.org Installation
Install a copy of OpenOffice.org. The current versions are:

OpenOffice.org Build 1.0.2. You can download OpenOffice.org from www.openoffice.org.
StarOffice 6.0 PP2 obtained from Sun Microsystems or through your distributors.

Note: Earlier releases are not covered in this book.

API Reference

The OpenOffice.org API reference is part of the Software Development Kit and provides
detailed information about OpenOffice.org objects. The latest version can be downloaded from
the documents section at api.openoffice.org. Alternatively, you can also use CVS to check out the
module oo/api/common/www /ref from OpenOffice.org's CVS server. Use zpserver:
anoncvs@anoncvs.openoffice.org:/cvs as CVSROOT, the password is anoncvs. The
starting folder is the folder named ref.

2.3.2 Installation Sets

The following installation sets are necessary to develop OpenOffice.org API applications with
Java. This chapter describes how to set up a Java IDE for the OpenOffice.org APIL.

JDK1.3.1

Java applications for the current versions of OpenOffice.org require the Java Development Kit
1.3.1. Download and install JDK 1.3.1 from java.sun.com.

Java IDE
Download an Integrated Development Environment (IDE), such as NetBeans from www.
netbeans.org or Forte for Java from Sun Microsystems. Other IDEs can be used, but NetBeans/
Forte offers the best integration. The integration of OpenOffice.org with IDEs, such as
NetBeans is an ongoing effort. Check the files section of api.openoffice.org for the latest informa-
tion about NetBeans and other IDEs.

OpenOffice.org Software Development Kit (SDK)

To write programs for the OpenOffice.org API, you need this installation set. Using C++, note
that the OpenOffice.org API only works for selected compilers.

To use the OpenOffice.org API, you need the StarOffice SDK or you can download and install
the OpenOffice.org Software Development Kit from www.openoffice.org. For detailed instruc-

OpenOffice.org 1.0.2 Developer's Guide January 2003

tions for selected compilers and how to set up your development environment, refer to the
SDK installation guide.

2.3.3 Configuration

Enable Java in OpenOffice.org

OpenOffice.org uses a Java Virtual Machine to instantiate components written in Java. You can
easily tell the office which JVM to use: launch the jvmsetup executable from the programs folder
under the OpenOffice.org, select an installed JRE or JDK and click OK. Close the OpenOffice.
org including the Quickstarter in the taskbar and restart OpenOffice.org. Furthermore, open
the Tools - Options dialog in OpenOffice.org, select the section OpenOffice.org Security and
make sure that the Java enable option is checked.

Use Java UNO class files

Include the jar files from the programs/classes folder under the OpenOffice.org in the CLASS-
PATH environment variable or use the java —classpath option accordingly. In a Java IDE,
make these jars known to the IDE by mounting the jars, and configuring a library.

Use the following steps to create a new project and mount the Java UNO jars in NetBeans:

From the Project menu, select Project Manager. Click the New... button to create a new
project in the Project Manager window. NetBeans uses your new project as the current
project.

Activate the NetBeans Explorer window. To display the NetBeans Explorer window, click
View - Explorer to display it. It should contain a Filesystems item. Open its context menu
and select Mount - Archive(JAR, Zip), navigate to the folder <OfficePath>/program/classes,
highlight all jar files in that directory and click Finish to mount the OpenOffice.org jars in
your project.

To enable code completion for new classes in NetBeans, NetBeans must parse the classes
and put the result into one parser database file per jar. Right click each OpenOffice.org jar
containing classes you want code completion for and select Tools - Update Parser Database
from the Context menu. Enter a file name prefix for the parser database file and click OK to
parse the classes. The jars ridl.jar, jurt.jar, and unoil.jar contain the majority of classes that
you may require. For these classes, use ooridl, oojurt, and oounoil as parser database file
prefixes. NetBeans puts the parser files into the system/ParserDB folder in the NetBeans User
Directory which you can look up through Help - About — Detail.

Create a new folder for the source files for the project, if necessary, and use the context
menu of the Filesystems icon to mount this folder in your project.

Make the office listen

Java uses a TCP/IP socket to talk to the office. To use with Java, the OpenOffice.org must be
told to listen for TCP/IP connections, by using a special connection url parameter. There are
two ways to achieve this, you can make the office listen always or just once.

To always connect to the office, open the file <OfficePath>/share/config/registry/instance/org/
openoffice/Setup.xml in an editor, and look for the element

<ooSetupConnectionURL cfg:type="string"/>
and extend it with the following code:

<ooSetupConnectionURL cfg:type="string'>
socket,port=8100;urp;
</oo0SetupConnectionURL>

Chapter 2 First Steps 29

30

This setting configures OpenOffice.org to provide a socket on port 8100, where it will serve
connections through the UNO remote protocol (urp). If port 8100 is already in use on your
machine, it may be necessary to adjust the port number. Block port 8100 for connections from
outside your network in your firewall. If you have a OpenOffice.org network installation, this
setting will affect all users. To make a single installation listen for connections create a file
<OfficePath>/user/config/registry/instance/org/openoffice/Setup.xml with the same structure as the
file above and adding the element ooSetupConnectionURL.

An alternative is to launch the office in listening mode using command-line options. To do this,
close OpenOffice.org, including the Quickstarter and the Help window, and restart it from the
command-line:

<OfficePath>/program/soffice “-accept=socket,port=8100;urp;”

Using the command-line option, the office will only listen during the current session. If you use
this method, always be aware how you started the office. The above command-line only works
if the soffice executable was launched through it. It does not make a running office listen and it
does not affect instances of the office that are started after a listening instance of the office has
been closed. Note, that in Windows, the Quickstarter in the system tray at the bottom right of
your desktop keeps the OpenOffice.org running.

Choose the procedure that suits your requirements and launch OpenOffice.org in listening
mode now. Check if it is listening by calling netstat -a on the command-line. An output similar
to the following shows that the office is listening:

TCP <Hostname>:8100 <Fully qualified hostname>: 0 Listening

If the office is not listening, it was not restarted with the connection url parameter. Close all
OpenOffice.org windows, the Help window, and the Quickstarter icon on the taskbar. Check
the Setup.xml file or your command-line for typing errors and try again.

Add the API Reference to your IDE

We recommend to add the API reference to your Java IDE to get online help for the
OpenOffice.org API. In NetBeans, follow these steps:

Open your project and activate the NetBeans Explorer window. At the bottom of the
Explorer, select the Javadoc tab. Right-click the Javadoc root element and choose Add Local
Directory. Select the ref folder of your API reference and hit Mount to use the API reference
in your project.

You can now use Shift + F1 to view online help while the cursor is on a OpenOffice.org API
identifier in the source editor window.

2.3.4 First Connection

The following demonstrates how to write a small program that connects to the office. Start the
Java IDE or source editor, and enter the following source code for the FirstConnection class.
FirstConnection tries to connect to the office and tells you if it was able to establish the connection
or not.

To create and run the class in the NetBeans IDE, use the following steps:

Add a main class to the project. In the NetBeans Explorer window, click the Project N.N. tab,
right click the Project item, select Add New... to display the New Wizard, open the Classes
folder, highlight the template Main, and hit Next.

OpenOffice.org 1.0.2 Developer's Guide January 2003

. In the Name field, enter FirstConnection as classname for the Main class and select the folder
that contains your project files. The FirstConnection is added to the default package of
your project. Click Finish to create the class.

- Enter the source code shown below (FirstSteps/FirstConnection.java). Then select Build -
Execute to test your first connection. Observe the Output window where NetBeans displays
the result of your attempt to connect to the office.

import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.uno.UnoRuntime;

import com.sun.star.uno.XComponentContext;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.beans.XPropertySet;

public class FirstConnection extends java.lang.Object {

private XComponentContext xRemoteContext = null;
private XMultiComponentFactory xRemoteServiceManager = null;

public static void main(String[] args) {
FirstConnection firstConnectionl = new FirstConnection();
try {
firstConnectionl.useConnection();

catch (Java.lang.Exception e){
e.printStackTrace();

1
finally {
System.exit(0);
3
protected void useConnection() throws java.lang.Exception {
try {
XRemoteServiceManager = this.getRemoteServiceManager (
"'uno:socket,host=localhost,port=8100;urp;StarOffice.ServiceManager™);
String available = (null != xRemoteServiceManager ? "available™ : "not available™);
System.out.printIn("remote ServiceManager is " + available);
// do something with the service manager...
catch(com.sun.star.connection.NoConnectException e)
System.err.printIn(“No process listening on the resource”);
e.printStackTrace();
throw e;
catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
xRemoteContext = null;
throw e;
3
3

protected XMultiComponentFactory getRemoteServiceManager(String unoUrl) throws java.lang.Exception {
iT (xRemoteContext == null) {
// First step: create local component context, get local servicemanager and
// ask it to create a UnoUrlResolver object with an XUnoUrlResolver interface
XComponentContext xLocalContext =
com.sun.star.comp.helper.Bootstrap.createlnitialComponentContext(null);

XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager();

Object urlResolver = xLocalServiceManager .createlnstanceWithContext(
*'com.sun.star.bridge.UnoUrlResolver', xLocalContext);

// query XUnoUrlIResolver interface from urlResolver object

XUnoUrIResolver xUnoUrlResolver = (XUnoUrlIResolver) UnoRuntime.querylnterface(
XUnoUrIResolver.class, urlResolver);

// Second step: use xUrlResolver interface to import the remote StarOffice.ServiceManager,
// retrieve its property DefaultContext and get the remote servicemanager
Object initialObject = xUnoUrlResolver.resolve(unoUrl);
XPropertySet xPropertySet = (XPropertySet)UnoRuntime.querylnterface(
XPropertySet.class, initialObject);
Object context = xPropertySet.getPropertyValue(*'DefaultContext™);
XRemoteContext = (XComponentContext)UnoRuntime.querylnterface(
XComponentContext.class, context);
3
return xRemoteContext.getServiceManager();
3
3

For an example that connects to the office with C++, see chapter 3.4.2 Professional UNO - UNO
Language Bindings - UNO C++ Binding.

Chapter 2 First Steps 31

32

In this Java example, OpenOffice.org acts as server, while FirstConnection is a simple client for the
OpenOffice.org server process.

Consider the getRemoteServiceManager () method, which retrieves a service manager (com.
sun.star. lang.ServiceManager) from the OpenOffice.org process. With UNO, the creation of
objects is done by service managers which exist in component contexts. Our client needs its own
component context with a service manager that can create UNO objects in the client process, and it
needs the component context of the server side with another service manager that can create
objects in the server process.

Therefore, two steps are necessary to connect to the office: First, use the class com.sun.star.
comp.helper._Bootstrap to get a local UNO component context containing a small service
manager that knows how to create the necessary services to talk to other component contexts. One
such service is a com.sun.star.bridge.UnoUrlIResolver, so we ask our service manager to
create the service. Next, use the UnoUr IResolver object to get the component context together
with the service manager from the server-side. Do not worry about the querylInterface() calls
taking place. There is now a reference to the remote service manager in our client.

Service
Manager

Service
* Manager
resolve

UnoUrlResolver

Illustration 1: UnoUrIResolver gets Remote ServiceManager

For a thorough description of the objects used here, refer to the chapter 3.3.1 Professional UNO -
UNO Concepts - UNO Interprocess Connections. A remote connection can fail under certain condi-
tions:

Client programs should be able to detect errors. For instance, sometimes the bridge might
become unavailable. Simple clients that connect to the office, perform a certain task and exit
afterwards should stop their work and inform the user if an error occurred.

Clients that are supposed to run over a long period of time should not assume that a reference
to an initial object will be valid over the whole runtime of the client. The client should resume
even if the connection goes down for some reason and comes back later on. When the connec-
tion fails, a robust, long running client should stop the current work, inform the user that the
connection is not available and release the references to the remote process. When the user tries
to repeat the last action, the client should try to rebuild the connection. Do not force the user to
restart your program just because the connection was temporarily unavailable.

When the bridge has become unavailable and access is tried, it throws a com.sun.star.lang.
DisposedException. Whenever you access remote references in your program, catch com.sun.
star. lang.DisposedExceptions in such a way that you set your remote references to null and
inform the user accordingly. If your client is designed to run for a longer period of time, be
prepared to get new remote references when you find that they are currently null.

OpenOffice.org 1.0.2 Developer's Guide January 2003

The other possibility is to register a listener at the remote bridge that underlies the UnoUr IResolver.
OpenOffice.org allows you to listen for a "bridge disposed" event at the remote bridge so that you
can release invalid references, inform the user what has happened or throw a suitable exception if
need be. To do this, you must manually create a bridge and register a listener at the bridge. A
connection created by UnoUrIResolver simply throws a java.lang.RuntimeException when-
ever you try to use a reference that no longer works because of a connection failure. The chapter
3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connections shows how to write such a
connection aware client.

2.4 How to get Objects in OpenOffice.org

An object is an instance of an implemented class that has methods you can call. Objects are
required to do something with OpenOffice.org.

New objects

In general, new objects or objects which are necessary for a first access are created by object

factories, which are called service managers in OpenOffice.org. In the FirstConnection example,

the local service manager created a UnoUr IResolver object:

Object urlResolver = xLocalServiceManager.createlnstanceWithContext(
""com.sun.star.bridge.UnoUrlResolver™, xLocalContext);

The remote service manager works exactly like the local service manager. The remote service

manager creates the remote Desktop object, which handles application windows and loaded

documents in OpenOffice.org:

Object desktop = XxRemoteServiceManager .createlnstanceWithContext(
"'com.sun.star.frame.Desktop', xRemoteContext);

Document objects
Document objects represent the files that are opened with OpenOffice.org. They are created by
the Desktop object, which has a loadComponentFromURL() method for this purpose.

Objects that are provided by other objects
Objects can hand out other objects. There are two cases:

Features which are designed to be an integral part of the object that provides the feature can
be obtained by get methods in the OpenOffice.org APL. It is common to get an object from a
get method. For instance, getSheets() is required for every Calc document, getText() is
essential for every Writer Document and getDrawpages() is an essential part of every
Draw document. After loading a document, these methods are used to get the Sheets, Text
and Drawpages object of the corresponding document. Object-specific get methods are an
important technique to get objects.

Features which are not considered integral for the architecture of an object are accessible
through a set of universal methods. In the OpenOffice.org API, these features are called
properties, and generic methods are used, such as getPropertyValue(String property-
Name) to access them. In some cases such a non-integral feature is provided as an object,
therefore the method getPropertyVvalue() can be another source for objects. For instance,
page styles for spreadsheets have the properties "RightPageHeaderContent™ and "Left-
PageHeaderContent", that contain objects for the page header sections of a spreadsheet
document. The generic getPropertyValue() method can sometimes provide an object you
need.

Chapter 2 First Steps 33

34

Sets of objects
Objects can be elements in a set of similar objects. In sets, to access an object you need to know
how to get a particular element from the set. The OpenOffice.org API allows four ways to
provide an element in a set. The first three ways are objects with element access methods that
allow access by name, index, or enumeration. The fourth way is a sequence of elements which
has no access methods but can be used as an array directly. How these sets of elements are
used will be discussed later.

The designer of an object decides which of those opportunities to offer, based on special condi-
tions of the object, such as how it performs remotely or which access methods best work with
implementation.

2.5 Working with Objects

Working with OpenOffice.org API objects involves the following;:

First we will learn to see UNO objects as services, consisting of interfaces and properties and
we will get acquainted with the UNO way to use interfaces and properties.

After that, we will work with a OpenOffice.org document for the first time, and give some
hints for the usage of the most common types in OpenOffice.org API.

Finally we will introduce the common interfaces that allow you to work with text, tables and
drawings across all OpenOffice.org document types.

2.5.1 Services

In the OpenOffice.org API, objects are called services. However, objects and services are not the
same thing. Services are abstract specifications for objects. All UNO objects have to follow a
service specification and have to support at least one service. An UNO object is called a service,
because it fulfills a service specification.

A service describes an object by combining interfaces and properties into an abstract object specifica-
tion. Do not get confused by the meanings the word service has in other contexts. In UNO, a
service is precisely this: a composition of interfaces and properties.

An interface is a set of methods that together define one single aspect of a service. For instance, the
com.sun.star.view.XPrintable interface prescribes the methods print(), getPrinter() and
setPrinter().

A property is a feature of a service which is not considered an integral or structural part of the
service and therefore is handled through generic getPropertyvalue()/setPropertyValue()
methods instead of specialized methods, such as getPrinter(). An object containing properties
only has to support the com.sun.star _.beans.XPropertySet interface to be prepared to handle
all kinds of properties. Typical examples are properties for character or paragraph formatting.
With properties, you can set multiple features of an object through a single call to setProperty-
Values(), which greatly improves the remote performance. For instance, paragraphs support the
setPropertyValues() method through their com.sun.star.beans._XMultiPropertySet inter-
face.

The concept of services was created for the following reasons:

Specifications and implementations are separated. The specification is abstract and it does not
define how objects supporting a certain service do this internally. Through the OpenOffice.org

OpenOffice.org 1.0.2 Developer's Guide January 2003

AP], it is possible to pull the implementation out from under the API and install a different
implementation if required.

The OpenOffice.org's central object factory, the ServiceManager, is asked to create an object
that can be used for a certain purpose without defining its internal implementation. A service
can be ordered from the factory by its service name and the factory decides which service
implementation is best for your situation. Which implementation you get makes no difference,
just use the well-defined interfaces and properties of the service.

Fine-grained interfaces were required with the ability to handle them easily by forging the
interfaces into a service. Since it is quite probable that objects in an office environment will
share many aspects, this fine granularity allows the interfaces to be reused and thus get objects
that behave consistently. The fine granularity provides a unified method to handle text, no
matter if you are dealing with body text, text frames, header or footer text, footnotes, table cells
or text in drawing shapes.

A multitude of properties are specified that are not integral parts of the objects and are able to
perform well remotely.

From a user's perspective, a service can be ordered from a factory by its name and the user
receives an object that fulfills the service specification, no matter how it is implemented internally.

com.sun.star.document. C com.sun.star.view.XPrintable

OfficeDocument -
. getPrinter
<<Lservice>> setPrinter
print
AutomaticControlFocus
ApplyFormDesignMode com.sun.star.frame.XStorable

hasLocation
getLocation
isReadOnly
store
storeAsUrl
storeToUrl

com.sun.star.text.XTextDocument

com.sun.star.text.
TextDocument getText
<<service>> reformat
com.sun.star.util.XSearchable

CharLocale
CharacterCount createSearchDescriptor
ParagraphCount findAll
WordCount findFirst
WordSeparator findNext

com.sun.star.util.XRefreshable

refresh
addRefreshListener
removeRefreshListener

com.sun.star.util. XNumberformatsSupplier

getNumberFormatSettings
getNumberFormats

Illustration 2: Text Document

Let us consider the service com.sun.star . text.TextDocument in UML notation. The UML chart
shown in [llustration 2 depicts the mandatory interfaces of a TextDocument. These interfaces
express the basic aspects of a text document in OpenOffice.org. It contains text, that is searchable

Chapter 2 First Steps 35

36

and refreshable, can use number formats, and is printable and storable. The UML chart shows
how this is specified in the APL

On the left of Illustration 2, the services com.sun.star.text.TextDocument and com.sun.star.
document.OfficeDocument are shown. Every TextDocument must include these services by defi-
nition. The properties compartment of each service shows which properties a TextDocument
service may have.

On the right of Illustration 2, the interfaces the services must export are shown. Their method
compartments list the methods contained in the various interfaces. In the OpenOffice.org AP, all
interface names have to start with an X to be distinguishable from other object names.

Every TextDocument must support four interfaces: XTextDocument, XSearchable, XRefreshable,
and XNumberFormatsSupplier. In addition, because a TextDocument is always an OfficeDocu-
ment, it must also export the interfaces XPrintable and XStorable. The methods contained in
these interfaces cover these aspects.

A TextDocument has optional interfaces, among them the XPropertySet interface which must be
supported if properties are present at all. The interfaces shown in Illustration 2.2 are only the
mandatory interfaces of a TextDocument. The current implementation of the TextDocument
service in OpenOffice.org does not only support these interfaces, but all optional interfaces as
well. Additional information can be found in 7 Text Documents.

Using Interfaces

The fact that every UNO object must be accessed through its interfaces and properties has an effect
in languages like Java and C++, where the compiler needs the correct type of an object reference
before you can call a method from it. In Java or C++, you normally just cast an object before you
access an interface it implements. When working with UNO objects this is different: You must ask
the UNO environment to get the appropriate reference for you whenever you want to access
methods of an interface which your object supports, but your compiler does not yet know about.
Only then you can cast it safely.

The Java UNO environment has a method querylInterface() for this purpose. It looks compli-
cated at first sight, but once you understand that querylInterface() is about safe casting of UNO
types across process boundaries, you will soon get used to it. Remember how we created a
UnoUrlResolver and afterwards had to call querylInterface() in our FirstConnection class:

Object urlResolver = xLocalServiceManager.createlnstanceWithContext(
""com.sun.star.bridge.UnoUrlResolver™, xLocalContext);

// query XUnoUrlIResolver interface from urlResolver object
XUnoUrIResolver xUnoUrlResolver = (XUnoUrlResolver) UnoRuntime.querylnterface(

XUnoUrIResolver.class, urlResolver);
We asked the local service manager to create a com.sun_star_bridge.UnoUrIResolver using its
factory method createlnstanceWithContext(). This method is defined to return a Java Object
type, which should not surprise you—after all the factory must be able to return any type:

Java.lang.Object createlnstanceWithContext(String serviceName, XComponentContext context)

OpenOffice.org 1.0.2 Developer's Guide January 2003

W

The object we receive is a com.sun.star .bridge.UnoUrIResolver service. Below you find its
specification in UML notation. The service UnoUrlResolver has no properties and it supports one
interface com.sun.star.bridge.XUnoUr IResolver with one method, namely resolve():

com.sun.star.bridge. com.sun.star.bridge.XUnoUrlResolver
UnoUrlResolver

<<service>>

com.sun.star.uno.XInterface resolve
(String unoUrl)

Illustration 3: UnoUr|Resolver

The point is, while we know that the object we ordered at the factory is a UnoUrlResolver and
exports the interface XUnoUrlResolver, the compiler does not. Therefore, we have to use the UNO
runtime environment to ask or query for the interface XUnoUr IResolver, since we want to use the
resolve() method on this interface. The method querylnterface() makes sure we get a refer-
ence that can be cast to the needed interface type, no matter if the target object is a local or a
remote object. There are two queryInterface definitions in the Java UNO language binding:

Java.lang.Object UnoRuntime.querylnterface(java.lang.Class targetinterface, Object sourceObject)
jJava.lang.Object UnoRuntime.querylnterface(com.sun.star.uno.Type targetlnterface, Object sourceObject)
Since UnoRuntime.querylnterface() is specified to return a java.lang.Object just like the factory
method createlnstanceWithContext(), we still must explicitly cast our interface reference to the
needed type. The difference is that after queryInterface() we can safely cast the object to our
interface type and, most important, that the reference will now work even with an object in
another process. Here is the queryInterface() call, explained step by step:

XUnoUr IResolver xUnoUrlResolver = (XUnoUrlResolver) UnoRuntime.querylnterface(
XUnoUrIResolver.class, urlResolver);

XUnoUr IResolver is the interface we want to use, so we define a XUnoUr IResolver variable

named xUnoUr IResolver (lower x) to store the interface we expect from queryInterface.

Then we query our urlResolver object for the XUnoUr IResolver interface, passing in

XUnoUr IResolver ._class as target interface and urlResolver as source object. Finally we cast the
outcome to XUnoUr IResolver and assign the resulting reference to our variable xUnoUr IRe-
solver.

If the source object doesn't support the interface we are querying for, queryInterface() will
return null.

In Java, this call to querylInterface() is necessary whenever you have a reference to an object
which is known to support an interface that you need, but you do not have the proper reference
type yet. Fortunately, you are not only allowed to querylnterface() from java.lang.Object
source types, but you may also query an interface from another interface reference, like this:

// loading a blank spreadsheet document gives us its XComponent interface:
XComponent xComponent = xComponentLoader . loadComponentFromURL(
"private:factory/scalc”, "_blank™, 0, loadProps);

// now we query the interface XSpreadsheetDocument from XxComponent

XSpreadsheetDocument xSpreadsheetDocument = (XSpreadsheetDocument)UnoRuntime.querylnterface(
XSpreadsheetDocument.class, xComponent);

Furthermore, if a method is defined in such a way that it already returns an interface type, you

need not query the interface, but you can use its methods right away. In the snippet above, the

method loadComponentFromURL is specified to return an com.sun.star . lang.XComponent inter-

face, so you may call the XComponent methods addEventListener() and removeEventListener

(O directly at the xComponent variable, if you want to be notified that the document is being

closed.

It is possible that future versions of the Java UNO language binding will no longer need explicit queries for
interfaces.

Chapter 2 First Steps 37

38

The corresponding step in C++ is done by a Reference<> template that takes the source instance
as parameter:

// instantiate a sample service with the servicemanager.
Reference< Xlnterface > rinstance =
rServiceManager->createlnstanceWithContext(
OUString: :createFromAscii(*'com.sun.star.bridge.UnoUrlResolver™”),
rComponentContext);

// Query for the XUnoUrlResolver interface
Reference< XUnoUrlResolver > rResolver(rinstance, UNO_QUERY);

Using Properties

A service must offer its properties through interfaces that allow you to work with properties. The
most basic form of these interfaces is the interface com.sun.star.beans.XPropertySet. There are
other interfaces for properties, such as com.sun.star.beans.XMultiPropertySet, that gets and
sets a multitude of properties with a single method call. The XPropertySet is always supported
when properties are present in a service.

In XPropertySet, two methods carry out the property access, which are defined in Java as
follows:

void setPropertyValue(String propertyName, Object propertyValue)
Object getPropertyValue(String propertyName)

In the FirstConnection example, the XPropertySet interface was used to get the remote compo-
nent context from the initial object. The initial object was a StarOffice.ServiceManager and
therefore had a property DefaultContext which contained the remote component context. The

following code explains how this property was retrieved and queried its com.sun.star.uno.
XComponentContext interface:
// query the XPropertySet interface from the initial object, which is a StarOffice.ServiceManager

XPropertySet xPropertySet = (XPropertySet)UnoRuntime.querylnterface(
XPropertySet.class, initialObject);

// get the property DefaultContext
Object context = XxPropertySet.getPropertyValue('DefaultContext™);

// query XComponentContext from the context object, we want to call XComponentContext.getServiceManager
XRemoteContext = (XComponentContext)UnoRuntime.querylnterface(
XComponentContext.class, context);

You are now ready to start working with a OpenOffice.org document.

2.5.2 Example: Working with a Spreadsheet Document

In this example, we will ask the remote service manager to give us the remote Desktop object and
use its loadComponentFromUr () method to create a new spreadsheet document. From the docu-
ment we get its sheets container where we insert and access a new sheet by name. In the new
sheet, we enter values into Al and A2 and summarize them in A3. The cell style of the summa-
rizing cell gets the cell style Result, so that it appears in italics, bold and underlined. Finally, we
make our new sheet the active sheet, so that the user can see it.

Add these import lines to the FirstConnection example above: (FirstSteps/FirstLoadComponent.
java)

import com.sun.star.beans.PropertyValue;

import com.sun.star.lang.XComponent;

import com.sun.star.sheet.XSpreadsheetDocument;
import com.sun.star.sheet.XSpreadsheets;

import com.sun.star.sheet.XSpreadsheet;

import com.sun.star.sheet.XSpreadsheetView;
import com.sun.star.table_XCell;

import com.sun.star.frame.XModel;

OpenOffice.org 1.0.2 Developer's Guide * January 2003

import com.sun.star.frame.XController;
import com.sun.star.frame.XComponentLoader ;

Edit the useConnection method as follows:

protected void useConnection() throws java.lang.Exception {
try {

XRemoteServiceManager = this.getRemoteServiceManager(
""'uno:socket, host=localhost,port=8100;urp;StarOffice.ServiceManager™);

// get the Desktop, we need its XComponentLoader interface to load a new document
Object desktop = xRemoteServiceManager .createlnstanceWithContext(
""com.sun.star.frame.Desktop', xRemoteContext);

// query the XComponentLoader interface from the desktop
XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.querylnterface(
XComponentLoader.class, desktop);

// create empty array of PropertyValue structs, needed for loadComponentFromURL
PropertyValue[] loadProps = new PropertyValue[0];

// load new calc file
XComponent xSpreadsheetComponent = xComponentLoader . loadComponentFromURL (
"private:factory/scalc™, "_blank™, 0, loadProps);

// query its XSpreadsheetDocument interface, we want to use getSheets()
XSpreadsheetDocument xSpreadsheetDocument = (XSpreadsheetDocument)UnoRuntime.querylnterface(
XSpreadsheetDocument.class, xSpreadsheetComponent);

// use getSheets to get spreadsheets container
XSpreadsheets xSpreadsheets = xSpreadsheetDocument.getSheets();

//insert new sheet at position 0 and get it by name, then query its XSpreadsheet interface
xSpreadsheets. insertNewByName (**MySheet", (short)0);
Object sheet = xSpreadsheets.getByName("'MySheet™);
XSpreadsheet xSpreadsheet = (XSpreadsheet)UnoRuntime.querylnterface(
XSpreadsheet.class, sheet);

// use XSpreadsheet interface to get the cell Al at position 0,0 and enter 21 as value
XCell xCell = xSpreadsheet.getCellByPosition(0, 0);
xCell _setValue(21);

// enter another value into the cell A2 at position 0,1
xCell = xSpreadsheet.getCellByPosition(0, 1);
xCell _setValue(21);

// sum up the two cells
xCell = xSpreadsheet.getCellByPosition(0, 2);
xCell _setFormula(’'=sum(A1:A2)");

// we want to access the cell property CellStyle, so query the cell"s XPropertySet interface
XPropertySet xCellProps = (XPropertySet)UnoRuntime.querylnterface(
XPropertySet.class, xCell);

// assign the cell style "Result™ to our formula, which is available out of the box
xCelIProps.setPropertyValue('CellStyle™, "Result');

// we want to make our new sheet the current sheet, so we need to ask the model
// for the controller: first query the XModel interface from our spreadsheet component
XModel xSpreadsheetModel = (XModel)UnoRuntime.querylnterface(

XModel .class, xSpreadsheetComponent);

// then get the current controller from the model
XController xSpreadsheetController = xSpreadsheetModel .getCurrentController();

// get the XSpreadsheetView interface from the controller, we want to call its method

// setActiveSheet

XSpreadsheetView xSpreadsheetView = (XSpreadsheetView)UnoRuntime.querylnterface(
XSpreadsheetView.class, xSpreadsheetController);

// make our newly inserted sheet the active sheet using setActiveSheet
xSpreadsheetView.setActiveSheet(xSpreadsheet);

catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
XRemoteContext = null;
throw e;
3
3

Listing 2.1: FirstLoadComponent.java

Chapter 2 First Steps 39

Alternatively, you can add FirstLoadComponent.java from the samples directory to your current
project, because it contains the changes shown above.

2.5.3 Common Types

Until now, literals and common Java types for method parameters and return values have been
used as if the OpenOffice.org API was made for Java. However, it is important to understand that
the OpenOffice.org API is designed to be language independent and therefore has its own internal
types which have to be mapped to the proper types for your language environment. Refer to 3
Professional UNO for detailed information about type mappings. The type mappings are briefly
described in the following sections.

Simple Types

Simple types occur in structs, method return values or parameters. The following table shows the
simple types in UNO and, if available, their exact mappings to Java, C++, OpenOffice.org and

Basic types.

UNO Type description Java C++ Basic
char 16-bit unicode character char sal_Unicode _

type

boolean type; true and
boolean false boolean sal_Bool Boolean
byte 8-bit ordinal type byte sal_Int8 Integer
short signed 16-bit ordinal type short sal_Intl6 Integer
unsigned unsigned 16-bit ordinal _ _
short type sal_ulntl6
long signed 32-bit ordinal type int sal_Int32 Long
lljgﬁégned unsigned 32-bit type - sal_ulnt32 -
hyper signed 64-bit ordinal type long sal_Int64 -
unsigned unsigned 64-bit ordinal _ 1 ul 4 _
hyper type sal_ulnt6
float processor dependent float Float float (IEEE float) Single
double Processor dependent 45 ppe double (IEEE double) Double

There are special conditions for types that do not have an exact mapping in this table. Check for
details about all these types in the corresponding sections about type mappings in 3.4 Professional
UNO - UNO Language Bindings.

‘? The OpenOffice.org API does not use unsigned numeric types because Java does not support such types.

40 OpenOffice.org 1.0.2 Developer's Guide January 2003

Strings

UNO considers strings to be simple types, but since they need special treatment in some environ-
ments, we discuss them separately here.

UNO Description Java C++ Basic

string of 16-bit unicode

strin;
& characters

java.lang.String :rtl:OUString String

In Java, use UNO strings as if they were native java. lang.String objects.

In C++, strings must be converted to UNO unicode strings by means of SAL conversion functions,
usually the function createFromAsci i) in the ::rtl:OUString class:

//C++
static OUString createFromAscii(const sal_Char * value) throw();

In Basic, Basic strings are mapped to UNO strings transparently.

Enum Types and Groups of Constants

The OpenOftfice.org API offers many enumeration types (called enums) and groups of constants
(called constant groups. Enums are used to list every plausible value in a certain context. The
constant groups define possible values for properties, parameters, return values and struct
members.

For example, there is an enum com.sun.star.table.CellVertJustify that describes the
possible values for the vertical adjustment of table cell content. The vertical adjustment of table
cells is determined by their property com.sun.star.table_Cel IProperties:VertJustify. The
possible values for this property are, according to Cel IVertJustify, the values STANDARD, TOP,

CENTER and BOTTOM.

// adjust a cell content to the upper cell border

// The service com.sun.star.table.Cell includes the service com.sun.star.table.CellProperties
// and therefore has a property VertJustify that controls the vertical cell adjustment

// we have to use the XPropertySet interface of our Cell to set it
xCelIProps.setPropertyValue("VertJustify", com.sun.star.table.CellVertJustify.TOP);

"StarBasic
oCellProps.VertJustify = com.sun.star.table.CellVertJustify.TOP

//C++

rCellProps->setPropertyValue(OUString: :createFromAscii("VertJustify"),
s:com::sun::star::table::CellVertJustify.TOP);

2.5.4 Struct

Structs in the OpenOffice.org API are used to create compounds of every other UNO type. They
correspond to C structs or Java classes consisting of public member variables only.

While structs do not encapsulate data, they are easier to transport instead of marshalling get()
and set() calls back and forth. In particular, this has advantages for remote communication.

You gain access to struct members through the . (dot) operator as in
aProperty.Name = "ReadOnly";

In Java, C++ und StarBasic, the keyword new instantiates Structs. In OLE automation, use com.
sun.star.reflection.CoreReflection to get a UNO struct. Do not use the service manager to
create structs.

Chapter 2 First Steps 41

//1n Java:
com.sun.star.beans.PropertyValue aProperty = new com.sun.star.beans.PropertyValue();

"In StarBasic
Dim aProperty as new com.sun.star.beans.PropertyValue

2.5.5 Any

The OpenOffice.org API frequently uses an any type, which is the counterpart of the Variant type
known from other environments. The any type holds one arbitrary UNO type. The any type is
frequently used in generic UNO interfaces.

42 OpenOffice.org 1.0.2 Developer's Guide January 2003

For instance, common occurrences of any are the method parameters and return values for the
following methods:

Interface returning an any type taking an any type

XPropertySet any getPropertyValue(string void setPropertyValue(any value)

propertyName)

XNameContainer any getByName(string name) void replaceByName void insertByName
(string name, any (string name, any
element) element)

XIndexContainer any getBylndex(long index) void replaceBylIndex void insertBylndex
(long index, any (long index, any
element) element)

XEnumeration any nextElement() -

Furthermore, the any type occurs in the com.sun.star .beans_PropertyValue struct.

com.sun.star.beans.
PropertyValue

<<struct>>

string Name
any Value

Illustration 4:
PropertyValue

This struct has two member variables, Name and Value, and is frequently used in sets of Proper-
tyValue structs, where every PropertyValue is a name-value pair that describes a property by
name and value. If you need to set the value of such a PropertyValue struct, you must assign an
any type.

These are only some of the areas where the any type occurs. The following explains how you have
to use the any type in your programs.

In Java, the any type is wrapped in a java. lang.Object. There are two simple rules to follow:

When you are supposed to pass in an any type, always passina java.lang.Object or a Java
UNO object.

For instance, if you use setPropertyValue() to set a property that has a fundamental type in the
target object, you must pass in a java. lang.Object for the new value. If the new value is a funda-
mental type in Java, create the corresponding Object type for the fundamental type:

xCelIProps.setPropertyValue(*CharWeight', new Double(200.0));

Another example would be a PropertyValue struct you want to use for loadComponentFromURL:

com.sun.star.beans.PropertyValue aProperty = new com.sun.star.beans.PropertyValue();

aProperty.Name = ""ReadOnly"';

aProperty.Value = new Boolean(true);

When you receive an any type, there are three different methods to evaluate it, depending on the
UNO type you expect. If the incoming object has interfaces, use queryInterface() against it. If
the incoming object is a struct, cast the incoming object to a Java UNO struct. If the incoming object
is a simple type, use the com.sun_star_uno.AnyConverter.

The following is an example of a cast:

// the com.sun.star.table.TableBorder property that can be found in tables is a struct

// simply cast the property to the correct UNO struct type

com.sun.star.table.TableBorder bord = (TableBorder)xTableProps.getPropertyValue("'TableBorder™);

// now you can access the struct member fields

Chapter 2 First Steps 43

com.sun.star.table.BorderLine theLine = bord.TopLine;
int col = thelLine.Color;
System.out.printin(col);
However, the AnyConverter deserves a closer look. For instance, if you want to get a property
which contains a fundamental type, you must be aware that getPropertyvalue() returns a java.
lang.Object containing your fundamental type wrapped in an any type. The com.sun_star.uno.
AnyConverter is a converter for such objects. Actually it can do more than just conversion, you
can find its specification in the Java UDK reference. The following list sums up the conversion
functions in the AnyConverter:

static java.lang.Object toArray(java.lang.Object object)

static boolean toBoolean(java.lang.Object object)

static byte toByte(jJava.lang.Object object)

static char toChar(java.lang.Object object)

static double toDouble(Java.lang.Object object)

static float toFloat(java.lang.Object object)

static int tolnt(Java.lang.Object object)

static long toLong(java.lang.Object object)

static java.lang.Object toObject(Type type, java.lang.Object object)

static short toShort(java.lang.Object object)

static java.lang.String toString(jJava.lang.Object object)
static Type toType(java.lang.Object object)

Its usage is straightforward:

import com.sun.star.uno.AnyConverter;
long cellColor = AnyConverter.toLong(xCellProps.getPropertyValue(*'CharColor'™));

In OpenOffice.org Basic, an any type becomes a Variant:

"StarBasic
cellColor = oCellProps.CharColor

In C++, there are special operators for the any type:

//C++ has >>= and <<= for Any (the pointed brackets are always left)
sal_Int32 cellColor;

Any any;

any = rCellProps->getPropertyValue(OUString: :createFromAscii("CharColor"));
// extract the value from any

any >>= cellColor;

2.5.6 Sequence

A sequence is a set of UNO types with a variable number of elements that can be accessed directly
without element access methods. Sequences map to arrays in most current language bindings.
Although these sets in UNO are often implemented as objects with element access methods, there
is also the sequence type, to be used where remote performance matters. Sequences are always
written with pointed brackets in the API reference:

// the following notation refer to a sequence of strings

sequence < string > aStringSequence; // UNO Interface Definition Language

In Java, you treat sequences as arrays. Empty arrays are created using new and assigning a length
of null. Furthermore, if you create an array of Java objects, you only create an array of references,
the actual objects are not allocated. Therefore, you must use new to create the array itself, then you
must again use new for every single object and finally you have to assign the new objects to the
array.

An empty sequence of PropertyValue structs is frequently needed for loadcomponentFromURL:

// create an empty array of PropertyValue structs for loadComponentFromURL
PropertyValue[] emptyProps = new PropertyValue[0];

For instance, a sequence of PropertyValue structs is needed to use loading parameters with
loadComponentFromURL() . The possible parameter values for loadComponentFromURL() and the

44 OpenOffice.org 1.0.2 Developer's Guide * January 2003

com.sun.star.frame.XStorable interface can be found in the service com.sun.star.document.
MediaDescriptor.

// create an array with one PropertyValue struct for loadComponentFromURL, it contains references only
PropertyValue[] loadProps = new PropertyValue[1];

// instantiate PropertyValue struct and set its member fields
PropertyValue asTemplate = new PropertyValue();
asTemplate.Name = "AsTemplate';

asTemplate.Value = new Boolean(true);

// assign PropertyValue struct to first element in array of references for PropertyValue structs
loadProps[0] = asTemplate;

// load calc file as template

XComponent xSpreadsheetComponent = xComponentLoader . loadComponentFromURL(
“File:///X:/0ffice60/share/samples/english/spreadsheets/OfficeSharingAssoc.sxc",
" _blank'™, 0, loadProps);

In OpenOffice.org Basic, a simple Dim creates an empty array.

“StarBasic
Dim loadProps() ‘“empty array

A sequence of structs is created using new together with Dim.

“StarBasic

Dim loadProps(0) as new com.sun.star.beans.PropertyValue "one PropertyValue

In C++, there is a template for sequences. An empty sequence can be created by omitting the
number of elements required.

//C++
Sequence < ::com::sun::star::beans::PropertyValue > loadProperties; // empty sequence

If you pass a number of elements, you get an array of the required type.

//C++

Sequence< ::com::sun::star::beans::PropertyValue > loadProps(1);
// the structs are default constructed

loadProps[0] -Name = OUString::createFromAscii("AsTemplate");
loadProps[0] -Handle <<= true;

Reference < XComponent > rComponent = rComponentLoader->loadComponentFromURL(
OUString: :createFromAscii("'private:factory/swriter™),
OUString: :createFromAscii(*"_blank™),

IéadProps);

2.5.7 Element Access

The OpenOffice.org API sets of objects can be provided through element access methods. The
three most important kinds of element access interfaces are com.sun.star.container.
XNameContainer, [com.sun.star.container.XIndexContainer] and com.sun.star.
container.XEnumeration.

The three element access interfaces are examples of how the fine-grained interfaces of the
OpenOffice.org allow consistent object design.

All three interfaces inherit from XElementAccess and include the methods:

type getElementType()

boolean hasElements()
The methods are used to find out basic information about the set of elements. The method hasE-
lements() answers the question if a set contains elements at all, and which type a set contains. In
Java and C++, you can get information about a type through com.sun.star.uno.Type, cf. the Java
UNO and the C++ UNO reference.

Chapter 2 First Steps 45

46

The com.sun.star.container.XIndexContainer and com.sun.star.container.
XNameContainer interface have a parallel design. Consider both interfaces in UML notation.

com.sun.star.container.
XElementAccess

<<interface>>

com.sun.star.container.
XElementAccess

<<interface>>

type getElementType ()
boolean hasElements ()

type getElementType ()
boolean hasElements ()

AF

AF

com.sun.star.container.
XIndexAccess

<<interface>>

com.sun.star.container.
XNameAccess

<<interface>>

any getBylIndex (long index)
long getCount ()

any getByName (string name)
sequence <sting> getElementNames ()
boolean hasByName (string name)

LF

AF

com.sun.star.container.
XIndexReplace

<<interface>>

com.sun.star.container.
XNameReplace

<<interface>>

void replaceByIndex
(long index, any element)

void replaceBysName
(string name, any element)

Lﬁ

AF

com.sun.star.container.
XIndexContainer

<<interface>>

com.sun.star.container.
XNameContainer

<<interface>>

void insertByindex
(long index, any element)
void removeByIndex (long index)

void insertByName
(string name, any element)
void removeByName (string name)

Illustration 5: Indexed and Named Container

In the comparison between indexed and named containers, the X. . . Access interfaces are about
getting an element. The X. . .Replace interfaces allow you to replace existing elements without
changing the number of elements in the set, whereas the X. . .Container interfaces allow you to
increase and decrease the number of elements by inserting and removing elements.

Many sets of named or indexed objects do not support the whole inheritance hierarchy of XIndex-
Container or XNameContainer, because the capabilities added by every subclass are not always
logical for any set of elements.

The XEumerationAccess interface works differently from named and indexed containers below
the XElementAccess interface. XEnumerationAccess does not provide single elements like
XNameAccess and XIndexAccess, but it creates an enumeration of objects which has methods to
go to the next element as long as there are more elements.

Many sets of objects support name, index, and enumeration access. Always look up the various
types in the API reference to see which access methods are available.

OpenOffice.org 1.0.2 Developer's Guide January 2003

For instance, the method getSheets() at the interface com.sun.star.sheet.
XSpreadsheetDocument is specified to return a com.sun.star.sheet.XSpreadsheets interface
inherited from XNameContainer. In addition, the API reference tells you that the provided object
supports a com.sun.star.sheet.Spreadsheets service, which defines additional element access
interfaces besides XSpreadsheets.

Examples that show how to work with XNameAccess, XIndexAccess, and XEnumerationAccess
are provided below.

com.sun.star.container.
XElementAccess

<<interface>>

type getElementType ()
boolean hasElements ()

com.sun.star.container.
XEnumerationAccess
<<interface>>

com.sun.star.container.XEnumeration
createEnumeration ()

createEnumeration()

<___

com.sun.star.container.
XEnumeration

<<interface>>

boolean hasMoreElements ()
any nextElement ()

Illustration 6: Enumer ated
Container

Name Access

The basic interface which hands out elements by name is the com.sun.star.container.
XNameAccess interface. It has three methods:

any getByName([in] string name)

sequence < string > getElementNames()

boolean hasByName([in] string name)
In the FirstLoadComponent example above, the method getSheets returned a com.sun.star.
sheet._XSpreadsheets interface inherited from XNameAccess. Therefore, you can use getByName
O to obtain the sheet " MySheet" by name from the XSpreadsheets container:
XSpreadsheets xSpreadsheets = xSpreadsheetDocument.getSheets();
Object sheet = xSpreadsheets.getByName(*'MySheet™);

XSpreadsheet xSpreadsheet = (XSpreadsheet)UnoRuntime.querylnterface(
XSpreadsheet.class, sheet);

Chapter 2 First Steps 47

// use XSpreadsheet interface to get the cell Al at position 0,0 and enter 42 as value
XCell xCell = xSpreadsheet.getCellByPosition(0, 0);

Since getByName () returns an any, you have to use queryInterface() before you can call
methods at the spreadsheet object.

Index Access

The interface which hands out elements by index is the com.sun.star.container.XIndexAccess
interface. It has two methods:

any getBylndex([in] long index)
long getCount()

The FirstLoadComponent allows to demonstrate XIndexAccess. The API reference tells us that the
service returned by getSheets() is a com.sun.star.sheet.Spreadsheet service and supports
not only the interface com.sun.star.sheet.XSpreadsheets, but XIndexAccess as well. There-
fore, the sheets could have been accessed by index and not just by name by performing a query for
the XIndexAccess interface from our xSpreadsheets variable:

XIndexAccess xSheetlndexAccess = (XIndexAccess)UnoRuntime.querylnterface(
XIndexAccess.class, xSpreadsheets);

Object sheet = XSheetlndexAccess.getBylndex(0);

Enumeration Access

The interface com.sun.star.container.XEnumerationAccess creates enumerations that allow
traveling across a set of objects. It has one method:

com.sun.star.container .XEnumeration createEnumeration()
The enumeration object gained from createEnumeration() supports the interface com.sun.

star.container.XEnumeration. With this interface we can keep pulling elements out of the
enumeration as long as it has more elements. XEnumeration supplies the methods:

boolean hasMoreElements()
any nextElement()

which are meant to build loops such as this:
while (xCells._hasMoreElements()) {
Object cell = xCells.nextElement();

// do something with cell
3

For example, in spreadsheets you have the opportunity to find out which cells contain formulas.
The resulting set of cells is provided as XEnumerationAccess.

The interface that queries for cells with formulas is com.sun_star._sheet.XCel IRangesQuery, it
defines (among others) a method

XSheetCel IRanges queryContentCells(short cellFlags)
which queries for cells having content as defined in the constants group com.sun.star.sheet.

CellFlags. One of these cell flags is FORMULA. From queryContentCells() we receive an object
with an com.sun.star.sheet.XSheetCel IRanges interface, which has these methods:
XEnumerationAccess getCells()

String getRangeAddressesAsString()
sequence< com.sun.star.table.CellRangeAddress > getRangeAddresses()

48 OpenOffice.org 1.0.2 Developer's Guide * January 2003

The method getCel Is() can be used to list all formula cells and the containing formulas in the
spreadsheet document from our FirstLoadComponent example, utilizing XEnumerationAccess.
(FirstSteps/FirstLoadComponent.java)

XCellRangesQuery xCellQuery = (XCellRangesQuery)UnoRuntime.querylnterface(
XCellRangesQuery.class, sheet);

XSheetCel IRanges xFormulaCells = xCellQuery.queryContentCells(
(short)com.sun.star .sheet.CellFlags.FORMULA) ;

XEnumerationAccess xFormulas = xFormulaCells.getCells();
XEnumeration xFormulaEnum = xFormulas.createEnumeration();

while (XFormulaEnum.hasMoreElements()) {
Object formulaCell = xFormulaEnum.nextElement();

// do something with formulaCell

xCell = (XCell)UnoRuntime.querylnterface(XCell.class, formulaCell);

XCellAddressable xCellAddress = (XCellAddressable)UnoRuntime.querylnterface(
XCellAddressable.class, xCell);

System.out.print(""Formula cell in column " + xCellAddress.getCellAddress().-Column
+ ", row " + xCellAddress.getCellAddress() .Row
+ " contains " + xCell.getFormulaQ));

2.6 How do | know Which Type | Have?

A common problem is deciding what capabilities an object that you receive from a method really
has.

By observing the code completion in Java IDE, you can discover the base interface of an object
returned from a method. You will notice that loadComponentFromURL() returns a com.sun.
star . lang.XComponent. By pressing Shift + F1 in the NetBeans IDE, you can also read specifica-
tions about the interfaces and services you are using.

However, methods can only be specified to return one interface type. The interface you get from a
method very often supports more interfaces than the one that is returned by the method. Further-
more, the interface does not tell about the properties the object contains.

Therefore you should usually get an idea how things work using this manual. Then start writing
code, using the code completion and the API reference.

In addition, you can try the Instancelnspector, a Java example which is part of the OpenOffice.org
SDK. It is a Java component that can be registered with the office and shows interfaces and prop-
erties of the object you are currently working with.

In OpenOffice.org Basic, you can inspect objects using the following Basic properties.

sub main
oDocument = thiscomponent
msgBox(oDocument.dbg_methods)
msgBox(oDocument.dbg_properties)
msgBox(oDocument.dbg_supportedlnterfaces)
end sub

2.7 Finding Your Way through the APl Reference

((The organization of module-ix pages, Service and Interface pages — Later, when the new API
reference will be available))

Chapter 2 First Steps 49

50

2.8 Example: Hello Text, Hello Table, Hello Shape

The goal of this section is to give a brief overview of those mechanisms in the OpenOffice.org API,
which are common to all document types. The three main application areas of OpenOffice.org are
text, tables and drawing shapes. The point is: texts, tables and drawing shapes can occur in all
three document types, no matter if we are dealing with a Writer, Calc or Draw /Impress file.
Therefore we will now concentrate on the mechanisms that allow you to deal with text, tables and
drawings everywhere. When you master these mechanisms, you will be able to insert and use
texts, tables and drawings in all document types.

We want to stress the common ground, therefore we start with the interfaces and properties that
allow to manipulate existing texts, tables and drawings. Afterwards we will demonstrate how you
can create text, table and drawings in each document type.

The complete listing is contained in HelloTextTableShape.java.

The key interfaces and properties to work with existing texts, tables and drawings are the
following:

For text the interface com.sun.star. text.XText contains the methods that change the actual text
and other text contents (examples for text contents besides conventional text paragraphs are text
tables, text fields, graphic objects and similar things, but such contents are not available in all
contexts). When we talk about text here, we mean any text - text in text documents, text frames,
page headers and footers, table cells or in drawing shapes. XText is the key for text everywhere in
OpenOffice.org.

OpenOffice.org 1.0.2 Developer's Guide January 2003

com.sun.star.text.XTextRange
<<interface>>

void setString (string text)

string getString ()
com.sun.star.textXTextRange getStart ()
com.sun.star.textXTextRange getEnd ()
com.sun.star.textXText getText ()

com.sun.star.text.XSimpleText
<<interface>>

com.sun.star.textXTextCursor createTextCursor ()
com.sun.star.textXTextCursor createTextCursorByRange
(com.sun.star.text.XTextRange textRange)
void insertString
(com.sun.star.text.XTextRange textRange, string text, boolean absorb)
void insertControlCharacter
(com.sun.star.text.XTextRange textRange, short controlCharacter,
boolean absorb)

com.sun.star.text.XText
<<interface>>

void insertTextContent
(com.sun.star.text.XTextRange textRange,
com.sun.star.text.XTextContent content, boolean absorb)
void removeTextContent (com.sun.star.text.XTextContent content)

Illustration 7: XTextRange

The interface com.sun.star.text_XText has the ability to set or get the text as a single string, and
to locate the beginning and the end of a text. Furthermore, XText can insert strings at an arbitrary
position in the text and create text cursors to select and format text. Finally, XText handles text
contents through the methods insertTextContent and removeTextContent, although not all
texts accept text contents other than conventional text. In fact, XText covers all this by inheriting
from com.sun.star.text.XSimpleText that is inherited from com.sun.star.text.XTextRange.

Text formatting happens through the properties which are described in the services com.sun.
star.style.ParagraphProperties and com.sun.star.style.CharacterProperties.

The following example method manipulateText() adds text, then it uses a text cursor to select
and format a few words using CharacterProperties, afterwards it inserts more text. The method
manipulateText() contains the most basic methods of XText so that it works with every text
object. In particular, it avoids insertTextContent(), since there are no text contents except for
conventional text that can be inserted in all text objects.(FirstSteps/HelloTextTableShape.java)

protected void manipulateText(XText xText) throws com.sun.star.uno.Exception {
// simply set whole text as one string
XxText.setString("'He lay flat on the brown, pine-needled floor of the forest, "
+ "his chin on his folded arms, and high overhead the wind blew in the tops "
+ "of the pine trees.");

// create text cursor for selecting and formatting

XTextCursor xTextCursor = xText.createTextCursor();

XPropertySet xCursorProps = (XPropertySet)UnoRuntime.querylnterface(
XPropertySet.class, xTextCursor);

// use cursor to select "He lay" and apply bold italic

Chapter 2 First Steps 51

52

XTextCursor.gotoStart(false);
XTextCursor.goRight((short)6, true);
// from CharacterProperties
XxCursorProps.setPropertyValue(‘‘CharPosture’,
com.sun.star.awt.FontSlant.ITALIC);
XCursorProps.setPropertyValue(*'CharWeight™,
new Float(com.sun.star.awt.FontWeight.BOLD));

// add more text at the end of the text using insertString
XTextCursor.gotoEnd(false);
XText. insertString(xTextCursor, " The mountainside sloped gently where he lay; "

+ "but below it was steep and he could see the dark of the oiled road *

+ "winding through the pass. There was a stream alongside the road "

+ "and far down the pass he saw a mill beside the stream and the falling water "

+ "of the dam, white in the summer sunlight.", false);
// after insertString the cursor is behind the inserted text, insert more text
XText. insertString(xTextCursor, '""\n \"Is that the mill?\" he asked.", false);

}

In tables and table cells, the interface com.sun_star.table.XCelIRange allows you to retrieve
single cells and subranges of cells. Once you have a cell, you can work with its formula or numeric
value through the interface com.sun.star.table.XCell.

com.sun.star.table.XCellRange
<<interface>>

com.sun.star.tableXCell getCellByPosition

(long nColumn, long nRow)
com.sun.star.tableXCellRange getCellRangeByPosition

(long nLeft, long nTop, long nRight, long nBottom)
com.sun.star.tableXCellRange getCellRangeByName

(string aRange)

com.sun.star.table.XCell

<<interface>>

string getFormula ()

void setFormula (string aFormula)

double getValue ()

void setValue (double nValue)
com.sun.star.table.CellContentType getType ()
long getEror ()

Illustration 8: Cell and Cell Ranae

Table formatting is partially different in text tables and spreadsheet tables. Text tables use the
properties specified in com.sun.star.text.TextTable, whereas spreadsheet tables use com.sun.
star.table._Cel IProperties. Furthermore there are special table cursors that allow to select and
format cell ranges and the contained text, but since a com.sun_star.text._TextTableCursor
works quite differently from a com.sun.star.sheet.SheetCel ICursor, we will discuss them in
the chapters about text and spreadsheet documents.(FirstSteps/HelloTextTableShape.java)

protected void manipulateTable(XCellRange xCellRange) throws com.sun.star.uno.Exception {

String backColorPropertyName = ***';
XPropertySet xTableProps = null;

// enter column titles and a cell value

// Enter "Quotation” in Al, "Year"™ in Bl. We use setString because we want to change the whole
// cell text at once

XCell xCell = xCellRange.getCellByPosition(0,0);

XText xCellText = (XText)UnoRuntime.querylnterface(XText.class, xCell);
xCellText.setString(*'Quotation™);

xCell = xCellRange.getCellByPosition(1,0);

xCellText = (XText)UnoRuntime.querylnterface(XText.class, xCell);

xCellText.setString('Year™);

// cell value
XxCell = xCellRange.getCellByPosition(1,1);

OpenOffice.org 1.0.2 Developer's Guide * January 2003

xCell _setValue(1940);

// select the table headers and get the cell properties

XCellRange xSelectedCells = xCellRange.getCel IRangeByName(**A1:B1");

XPropertySet xCellProps = (XPropertySet)UnoRuntime.querylnterface(
XPropertySet.class, xSelectedCells);

// format the color of the table headers and table borders

// we need to distinguish text and spreadsheet tables:

// - the property name for cell colors is different in text and sheet cells

// - the common property for table borders is com.sun.star.table.TableBorder, but
// we must apply the property TableBorder to the whole text table,

// whereas we only want borders for spreadsheet cells with content.

// XServicelnfo allows to distinguish text tables from spreadsheets
XServicelnfo xServicelnfo = (XServicelnfo)UnoRuntime.querylnterface(
XServicelnfo.class, xCellRange);

// determine the correct property name for background color and the XPropertySet interface
// for the cells that should get colored border lines
iT (xServicelnfo.supportsService(''com.sun.star.sheet.Spreadsheet™)) {

backColorPropertyName = ""CellBackColor";

// select cells

xSelectedCells = xCellRange.getCel lIRangeByName(*'A1:B2");

// table properties only for selected cells

xTableProps = (XPropertySet)UnoRuntime.querylnterface(

XPropertySet.class, xSelectedCells);

else if (xServicelnfo.supportsService(''com.sun.star.text.TextTable™)) {
backColorPropertyName = ""BackColor';
// table properties for whole table
xTableProps = (XPropertySet)UnoRuntime.querylnterface(
XPropertySet.class, xCellRange);

// set cell background color
XxCelIProps.setPropertyValue(backColorPropertyName, new Integer(O0x99CCFF));

// set table borders
// create description for blue line, width 10
// colors are given in ARGB, comprised of four bytes for alpha-red-green-blue as in OXAARRGGBB
BorderLine theLine = new BorderLine();
theLine.Color = 0x000099;
theLine.OuterLineWidth = 10;
// apply line description to all border lines and make them valid
TableBorder bord = new TableBorder();
bord.VerticalLine = bord.HorizontalLine =
bord.LeftLine = bord.RightLine =
bord.TopLine = bord.BottomLine =
thelLine;
bord. IsVerticalLineValid = bord.IsHorizontalLinevalid =
bord. IsLeftLineValid = bord.IsRightLinevValid =
bord. IsTopLineValid = bord. IsBottomLineValid
true;

XxTableProps.setPropertyValue('TableBorder™, bord);
3

On drawing shapes, the interface com.sun.star.drawing.XShape is used to determine the position
and size of a shape.

com.sun.star.drawing.XShape

<<interface>>

string getShapeType ()

com.sun.star.awt,Point getPosition ()

void setPosition (com.sun.star.awt.Point aPosition)
com.sun.star.awt.Size getSize () invoke

void setSize (com.sun.star.awt.Size aSize)

[llustration 9: XShape

Everything else is a matter of property-based formatting and there is a multitude of properties to
use. OpenOffice.org comes with eleven different shapes that are the basis for the drawing tools in
the GUI (graphical user interface). Six of the shapes have properties that reflect their characteris-
tics. The six shapes are:

- com.sun.star._drawing.EllipseShape for circles and ellipses.

Chapter 2 First Steps 53

54

com.sun.star.drawing.RectangleShape for boxes.
com.sun.star .drawing.TextShape for text boxes.
com._sun.star.drawing.CaptionShape for labeling.
com_sun.star.drawing.MeasureShape for metering.

com.sun.star.drawing.ConnectorShape for lines that can be " glued" to other shapes to
draw connecting lines between them.

Five shapes share the properties defined in the serviceom.sun_star_drawing.
PolyPolygonBezierDescriptor:

com.sun.star.drawing.LineShape is for lines and arrows.
com.sun.star.drawing.PolyLineShape is for open shapes formed by straight lines.
com.sun.star.drawing.PolyPolygonShape is for shapes formed by one or more polygons.

com.sun.star.drawing.ClosedBezierShape is for closed bezier shapes. com_sun.star.
drawing.PolyPolygonBezierShape is for combinations of multiple polygon and Bezier
shapes.

The eleven shapes use the properties from the following services:

com_sun.star.drawing. Shape describes basic properties of all shapes such as the layer a
shape belongs to, protection from moving and sizing, style name, 3D transformation and name.

com_sun.star.drawing.LineProperties determines how the lines of a shape look
com.sun.star.drawing.Text has no properties of its own, but includes:

com._sun.star.drawing.TextProperties that affects numbering, shape growth and text
alignment in the cell, text animation and writing direction.

com.sun.star.style._ParagraphProperties is concerned with paragraph formatting.

com.sun.star.style.CharacterProperties formats characters
com._sun.star.drawing.ShadowProperties deals with the shadow of a shape.
com._sun.star.drawing.RotationDescriptor sets rotation and shearing of a shape.

com_sun.star.drawing.FillProperties is only for closed shapes and describes how the
shape is filled.

com._sun.star.presentation.Shape adds presentation effects to shapes in presentation docu-
ments.

Consider the following example showing how these properties work: (FirstSteps/
HelloTextTableShape.java)

protected void manipulateShape(XShape xShape) throws com.sun.star.uno.Exception {
// for usage of setSize and setPosition in interface XShape see method useDraw() below
XPropertySet xShapeProps = (XPropertySet)UnoRuntime.querylnterface(XPropertySet.class, xShape);
// colors are given in ARGB, comprised of four bytes for alpha-red-green-blue as in OxXAARRGGBB
XxShapeProps.setPropertyValue(""FillColor™, new Integer(0x99CCFF));
xShapeProps.setPropertyValue(*'LineColor™, new Integer(0x000099));
// angles are given in hundredth degrees, rotate by 30 degrees
XxShapeProps.setPropertyValue("'RotateAngle’, new Integer(3000));

}

The three manipulateXXX methods above took text, table and shape objects as parameters and
altered them. The following methods show how to create such objects in the various document

types.

OpenOffice.org 1.0.2 Developer's Guide January 2003

First, a small convenience method is used to create new documents.(FirstSteps/
HelloTextTableShape java)

protected XComponent newDocComponent(String docType) throws java.lang.Exception {

String loadUrl = "private:factory/" + docType;

XRemoteServiceManager = this.getRemoteServiceManager(unoUrl);

Object desktop = xRemoteServiceManager.createlnstanceWithContext(
""com.sun.star.frame.Desktop', xRemoteContext);

XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.querylnterface(
XComponentLoader.class, desktop);

PropertyValue[] loadProps = new PropertyValue[0];

return xComponentLoader . loadComponentFromURL(loadUrl, "_blank™, 0, loadProps);

¥

The method useWriter creates a writer document and manipulates its text, then uses the docu-
ment's internal service manager to instantiate a text table and a shape, inserts them and manipu-
lates the table and shape (FirstSteps/HelloTextTableShape.java). Refer to 7 Text Documents for
more detailed information.

protected void useWriter() throws java.lang.Exception {
try {
// create new writer document and get text, then manipulate text
XComponent xWriterComponent = newDocComponent(*'swriter'™);
XTextDocument xTextDocument = (XTextDocument)UnoRuntime.querylnterface(
XTextDocument.class, xWriterComponent);
XText xText = xTextDocument.getText();

manipulateText(xText);

// get internal service factory of the document
XMultiServiceFactory xWriterFactory = (XMultiServiceFactory)UnoRuntime.querylnterface(
XMultiServiceFactory.class, xWriterComponent);

// insert TextTable and get cell text, then manipulate text in cell

Object table = xWriterFactory.createlnstance(''com.sun.star.text.TextTable™);

XTextContent xTextContentTable = (XTextContent)UnoRuntime.querylnterface(
XTextContent.class, table);

XText. insertTextContent(xText.getEnd(), XxTextContentTable, false);

XCellRange xCellRange = (XCellRange)UnoRuntime.querylnterface(
XCellRange.class, table);

XCell xCell = xCellRange.getCellByPosition(0, 1);

XText xCellText = (XText)UnoRuntime.querylnterface(XText.class, xCell);

manipulateText(xCellText);
manipulateTable(xCelIRange);

// insert RectangleShape and get shape text, then manipulate text

Object writerShape = xWriterFactory.createlnstance(
""com.sun.star.drawing.RectangleShape™) ;

XShape xWriterShape = (XShape)UnoRuntime.querylnterface(
XShape.class, writerShape);

xWriterShape.setSize(new Size(10000, 10000));

XTextContent xTextContentShape = (XTextContent)UnoRuntime.querylnterface(
XTextContent.class, writerShape);

XText. insertTextContent(xText.getEnd(), XxTextContentShape, false);

XPropertySet xShapeProps = (XPropertySet)UnoRuntime.querylnterface(
XPropertySet.class, writerShape);

// wrap text inside shape

xShapeProps - setPropertyValue("'TextContourFrame™, new Boolean(true));

XText xShapeText = (XText)UnoRuntime.querylnterface(XText.class, writerShape);

manipulateText(xShapeText);
manipulateShape(xWriterShape);

catch(com.sun.star.lang.DisposedException e) { //works from Patch 1

XRemoteContext = null;
throw e;

¥

The method useCalc creates a calc document, uses its document factory to create a shape and
manipulates the cell text, table and shape. The chapter 8 Spreadsheet Documents treats all aspects of
spreadsheets. (FirstSteps/HelloTextTableShape.java)

protected void useCalc() throws java.lang.Exception {

Chapter 2 First Steps 55

try {

// create new calc document and manipulate cell text

XComponent xCalcComponent = newDocComponent(*'scalc™);

XSpreadsheetDocument xSpreadsheetDocument =
(XSpreadsheetDocument)UnoRuntime .querylnterface(

XSpreadsheetDocument .class, xCalcComponent);

Object sheets = xSpreadsheetDocument.getSheets();

XIndexAccess xIndexedSheets = (XIndexAccess)UnoRuntime.querylnterface(
XIndexAccess.class, sheets);

Object sheet = xlIndexedSheets.getBylndex(0);

//get cell A2 in first sheet

XCellRange xSpreadsheetCells = (XCellRange)UnoRuntime.querylnterface(
XCellRange.class, sheet);

XCell xCell = xSpreadsheetCells.getCellByPosition(0,1);

XPropertySet xCellProps = (XPropertySet)UnoRuntime.querylnterface(
XPropertySet.class, xCell);

XxCellProps.setPropertyValue("IsTextWrapped", new Boolean(true));

XText xCellText = (XText)UnoRuntime.querylnterface(XText.class, xCell);

manipulateText(xCellText);
manipulateTable(xSpreadsheetCells);

// get internal service factory of the document

XMultiServiceFactory xCalcFactory = (XMultiServiceFactory)UnoRuntime.querylnterface(
XMultiServiceFactory.class, xCalcComponent);

// get Drawpage

XDrawPageSupplier xDrawPageSupplier =
(XDrawPageSupplier)UnoRuntime.querylnterface(XDrawPageSupplier.class, sheet);

XDrawPage xDrawPage = xDrawPageSupplier.getDrawPage();

// create and insert RectangleShape and get shape text, then manipulate text
Object calcShape = xCalcFactory.createlnstance(
"'com.sun.star.drawing.RectangleShape™);
XShape xCalcShape = (XShape)UnoRuntime.querylnterface(
XShape.class, calcShape);
xCalcShape.setSize(new Size(10000, 10000));
xCalcShape.setPosition(new Point(7000, 3000));

XxDrawPage .add(xCalcShape) ;

XPropertySet xShapeProps = (XPropertySet)UnoRuntime.querylnterface(
XPropertySet.class, calcShape);

// wrap text inside shape

XxShapeProps.setPropertyValue("'TextContourFrame', new Boolean(true));

XText xShapeText = (XText)UnoRuntime.querylnterface(XText.class, calcShape);

manipulateText(xShapeText);
manipulateShape(xCalcShape) ;

catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
XRemoteContext = null;
throw e;

}

The method useDraw creates a draw document and uses its document factory to instantiate and
add a shape, then manipulates the shape. The chapter 9 Drawing casts more light on drawings and
presentations. (FirstSteps/HelloTextTableShape.java)

protected void useDraw() throws java.lang.Exception {
try {
//create new draw document and insert ractangle shape
XComponent xDrawComponent = newDocComponent(*'sdraw'™);
XDrawPagesSupplier xDrawPagesSupplier =
(XDrawPagesSupplier)UnoRuntime.querylnterface(
XDrawPagesSupplier.class, xDrawComponent);

Object drawPages = xDrawPagesSupplier.getDrawPages();

XIndexAccess xIndexedDrawPages = (XIndexAccess)UnoRuntime.querylnterface(
XIndexAccess.class, drawPages);

Object drawPage = xIndexedDrawPages.getBylndex(0);

XDrawPage xDrawPage = (XDrawPage)UnoRuntime.querylnterface(XDrawPage.class, drawPage);

// get internal service factory of the document
XMultiServiceFactory xDrawFactory =
(XMultiServiceFactory)UnoRuntime.querylnterface(
XMultiServiceFactory.class, xDrawComponent);

Object drawShape = xDrawFactory.createlnstance(

56 OpenOffice.org 1.0.2 Developer's Guide * January 2003

"‘com.sun.star.drawing.RectangleShape™);
XShape xDrawShape = (XShape)UnoRuntime.querylnterface(XShape.class, drawShape);
xDrawShape .setSize(new Size(10000, 20000));
xDrawShape . setPosition(new Point(5000, 5000));
xDrawPage - add(xDrawShape) ;

XText xShapeText = (XText)UnoRuntime.querylnterface(XText.class, drawShape);
XPropertySet xShapeProps = (XPropertySet)UnoRuntime.querylnterface(
XPropertySet.class, drawShape);

// wrap text inside shape
xShapeProps .setPropertyValue(*'TextContourFrame™, new Boolean(true));

manipulateText(xShapeText);
manipulateShape(xDrawShape) ;

catch(com.sun.star.lang.DisposedException e) { //works from Patch 1

XRemoteContext = null;
throw e;

Chapter 2 First Steps 57

Professional UNO

This chapter provides with detailed information about UNO and the use of UNO in various
programming languages. There are four main sections:

The Introduction provides an outline of the UNO architecture.

The 3.2 Professional UNO - API Concepts section supplies background information on the API
reference.

The 3.3 Professional UNO - UNO Concepts section describes the mechanics of UNO, and how
UNO objects connect and communicate with each other.

Now that you have an advanced understanding of OpenOffice.org API concepts and you
understand the specification of UNO objects , we are ready to explore UNO, i.e. to see how
UNO objects connect and communicate with each other.

The 3.4 Professional UNO - UNO Language Bindings section elaborates on the use of UNO from
Java, C++, OpenOffice.org Basic and COM automation.

3.1 Introduction

The goal of UNO (Universal Network Objects) is to provide an environment for network objects
across programming language and platform boundaries. UNO objects run and communicate
everywhere. UNO reaches this goal by providing the following fundamental framework:

UNO objects are specified in an abstract meta language, called UNOIDL (UNO Interface Defi-
nition Language), which is similar to CORBA IDL or MIDL. From UNOIDL specifications,
language dependent header files and libraries can be generated to implement UNO objects in
the target language. UNO objects in the form of compiled and bound libraries are called compo-
nents. Components must support certain base interfaces to be able to run in the UNO environ-
ment.

To instantiate components in a target environment UNO uses a factory concept, called the
service manager. It maintains a database of registered components which are known by their
name and can be created by name. The Service Manager might ask Linux to load and instan-
tiate a SO (shared object) written in C++ or it might call upon the local Java VM to instantiate a
Java class. This is transparent for the developer. The developer does not care about a compo-
nent's implementation language. Communication takes place exclusively over interface calls as
specified in UNO IDL.

UNO provides bridges to send method calls and receive return values between processes. The
bridges use a special UNO remote protocol (urp) for this purpose which is supported for
sockets and pipes. Both ends of the bridge must be UNO environments, therefore a language-

59

60

specific UNO runtime environment to connect to another UNO process in any of the supported
languages is required. These runtime environments are provided as language bindings.

- Most objects of OpenOffice.org are able to communicate in a UNO environment. The specifica-
tion for the programmable features of OpenOffice.org is called the OpenOffice.org APL

3.2 APl Concepts

The OpenOiffice.org APl is a language independent approach to provide access to the functionality
of OpenOffice.org. This approach provides an API to access the functionality of OpenOffice.org, as
well as enabling users to extend the functionality by their own solutions and new features.

A long term target on the OpenOffice.org roadmap is to split the existing OpenOffice.org into
small components which are combined to provide the complete OpenOffice.org functionality.
These components are manageable, they interact with each other to provide high level features
and they are exchangeable with other implementations providing the same functionality, even if
these new implementations are implemented in a different programming language. When this
target will be reached, the API, the components and the fundamental concepts will provide a
construction kit, which makes OpenOffice.org adaptable to a wide range of specialized solutions
and not only an office suite with a predefined and static functionality.

This section provides you with a thorough understanding of the OpenOffice.org API. In the API
there are UNOIDL data types which are unknown outside of the APL. You will be provided with
specifications that you can map to implementations. Refer to 3.2.1 Professional UNO - API Concepts
- Data Types for additional information about the data types in the API reference. The relationship
between API specifications and OpenOffice.org implementations are described in 3.2.2 Professional
UNO - API Concepts - Understanding the API Reference.

3.2.1 Data Types

The data types in the API reference are UNOIDL types which have to be mapped to the types of
any programming language that can be used with the OpenOffice.org APL In the chapter 2 First
Steps the most important UNO types were introduced. There are simple types, interfaces, proper-
ties and services in UNO. There are special flags, conditions and relationships between these types
that are required if UNO is used at a professional level.

Simple Types

The UNO IDL provides a set of predefined and fundamental base types which are listed in the
following table:

UNO IDL Type Description

bool ean True or false.

byte A one-byte type representing a type that is not modified by the UNO runtime
during transport (marshaling) over a UNO bridge.

char Represents a unicode character. When this type is mapped to a programming
language, the representation depends on the respective hardware or software archi-
tecture.

doubl e Processor dependent double.

OpenOffice.org 1.0.2 Developer's Guide January 2003

UNO IDL Type Description

fl oat Processor dependent float.

hyper A 64-bit integer type.

| ong A 32-bit integer type.

short A 16-bit integer type.

string A unicode string type.

type The meta type describes any other UNO IDL types.

voi d An empty return value that is only possible as return value.

unsi gned hyper Anunsigned 64-bit integer value. Unsigned values can only be used in languages
supporting them. Java does not have unsigned values.

unsi gned | ong An unsigned 32-bit integer value. Unsigned values can only be used in languages
supporting them. Java does not have unsigned values.

unsi gned short Anunsigned 16-bit integer value. Unsigned values can only be used in languages
supporting them. Java does not have unsigned values.

The chapters 3.4.1 Professional UNO - UNO Language Bindings - Java Language Binding, 3.4.2 Profes-
sional UNO - UNO Language Bindings - UNO C++ Binding, 3.4.3 Professional UNO - UNO Language
Bindings - OpenOffice.org Basic and 3.4.4 Professional UNO - UNO Language Bindings - Automation
Bridge describe how these types are mapped to the types of your target language.

The Any Type

The special type any can represent all other known and defined UNO IDL types. In the target
languages, the any type requires special treatment. There is an AnyConverter in Java and special
operators in C++. For details, see the section 3.4 Professional UNO - UNO Language Bindings about
language bindings.

Interfaces

Communication between UNO objects is based on object interfaces. From the outside of an object,
an interface provides a functionality or special view of the object. Interfaces provide access to
objects by publishing a set of operations and attributes that cover a certain aspect of an object
without telling anything about its internals. Moreover, an object is often part of a complex object
world and it is necessary to get the appropriate view to it. UNO uses interface types to describe
and handle such special views of an object.

The concept of interfaces is quite common. They allow the creation of things that fit in with each
other without knowing internal details. A power plug that fits into a standard socket or a one-size-
fits-all working glove are examples. They all work by standardizing the minimal conditions that
must be met to make things work together.

An advanced example would be the "remote control aspect” of a simple TV system. The remote
control functions can be described by anXRemoteControl interface. The illustration below shows a
RemoteControl Object with an interface XRemoteControl:

Chapter 3 Professional UNO 61

62

RemoteControl XRemoteControl

<<service>> turnOn ()

turnOff ()

select (short channel)
next ()

previous ()

Illustration 10: XRemoteControl Interface

This interface has the functions turnon(Qand turnOff() to control the power and select(short
channel), next(), previous() to control the current channel. The user of the XRemoteControl
interface does not care if it is a proprietary or a universal remote control as long as it carries out
these functions. The user is only dissatisfied if some of the functions do not work with the remote
control.

From the inside of an object, or from the perspective of someone who implements a UNO object,
interfaces are abstract specifications. The abstract specification of all the interfaces in the
OpenOffice.org API has the advantage that user and implementer can enter into a contract,
agreeing to adhere to the interface specification. A program that strictly uses the OpenOffice.org
API according to the specification will always work, while an implementer can do whatever he
wants with his objects, as long as he serves the contract.

UNO uses the interface type to describe such aspects of UNO objects. All interface names start
with the letter X to distinguish them from other types. All interface types must inherit the com.
sun.star.uno.XInterface interface for basic object communication, directly or in the inheritance
hierarchy. XInterface is explained in 3.3.3 Professional UNO - UNO Concepts - Using UNO Inter-
faces. The interface types define operations to provide access to the specified UNO objects.

Interface operations allows access to the data inside an object through dedicated methods
(member functions) which encapsulate the data of the object. Interfaces only consist of operations.
The operations always have a parameter list and a return value, and they may define exceptions
for smart error handling.

The exception concept in the OpenOffice.org API is comparable with the exception concepts
known from Java or C++. All operations can raise com.sun.star.uno.RuntimeExceptions, but
exceptions must be specified explicitly. UNO exceptions are explained in the section 3.3.6 Profes-
sional UNO - UNO Concepts - Exception Handling below.

Consider the following two examples for interface definitions in UNO IDL notation. UNO IDL
interfaces resemble Java interfaces, and operations look similar to Java method signatures.
However, note the flags in square brackets in the following example:

// base interface for all UNO interfaces

interface Xlnterface

any querylnterface([in] type aType);
[oneway] void acquire();
[oneway] void release();

}:
// fragment of the Interface com.sun.star.io.XInputStream
interface XlInputStream: com::sun::star::uno::XInterface
long readBytes([out] sequence<byte> aData,
[in] long nBytesToRead)
raises(com::sun::star::io::NotConnectedException,

com::sun::star::io::BufferSizeExceededException,
com::sun::star::io::10Exception);

OpenOffice.org 1.0.2 Developer's Guide * January 2003

The [oneway] flag indicates that an operation will be executed asynchronously. For instance, the
method acquire() in the interface com.sun.star.uno.XInterface is defined to be oneway.

There are also parameter flags. Each parameter definition begins with one of the direction flags in,
out, or inout to specify the use of the parameter:

in specifies that the parameter will be used as an input parameter only
out specifies that the parameter will be used as an output parameter only
inout specifies that the parameter will be used as an input and output parameter

These parameter flags do not appear in the API reference. The fact that a parameter is an [out] or
[inout] parameter is explained in the method details.

Interfaces consisting of operations form the basis for service specifications.

Formerly there was a concept called attributes for get/set operations which is still supported by the UNO
development tools, but it is no longer used. Interface attributes have been removed from the OpenOffice.org
sources. The concept is explained in the chapter 4 Writing UNO Components.

Services

Interfaces are only one aspect of an object. However, it is quite common that objects have more
than one aspect. UNO uses services to specify complete objects which can have many aspects.

A service comprises a set of interfaces and properties that are needed to support a certain func-
tionality. It can include other services as well. Services are abstract specifications which have to be
implemented.

From the perspective of a user of a UNO object, the object offers one or sometimes even several
services described in the API reference. The services must be utilized through method calls
grouped in interfaces and through properties, which must be handled through special interfaces
as well. Because the access to the functionality is provided by interfaces only, the implementation
is irrelevant to a user who wants to use a service.

From the perspective of an implementer of a UNO object, services are used to define a function-
ality independently of a programming language and without giving instructions about the
internal implementation of the service. Implementing a service means that the component must
implement all specified interfaces and properties. It is possible that a UNO object implements
more than one service. Sometimes it is useful to implement two or more services because they
have related functionality or the services support different views to the component.

[lustration 10 shows the relationship between interfaces, services and components. The fact that
UNO objects are housed in shared libraries and are called components was described in the intro-
duction above. All service implementations are housed in components.

Chapter 3 Professional UNO 63

64

Interfaces

Service Specification
<<service>>

4
|
|
!

Lo

Service Implementation
<<component>>

Illustration 11: Interfaces, services and implementation

Consider the following example which describes the simple functionality of a TV system with a
TV set and a remote control. The interface XRemoteControl becomes part of the service specifica-
tion RemoteControl. The new service TVSet consists of the two interfaces XPower and XChannel to
control the power and the channel selection.

XPower : XRemoteControl
turnOn () turnOn ()

TVSet turnOff () Remote turnoff ()

i standBy () Control select (short channel)
<<service>> timer (short minutes) <<services> next ()
previous ()

XChannel
select (short channel)

next ()
previous ()

Illustration 12: TV System Specification

Referencing Interfaces

References to interfaces in a service definition means that an implementation of this service must
implement the specified interface. However, optional interfaces are possible. If a service contains
an optional interface, the service may or may not export this interface. If you use an optional inter-
face of a UNO object, always check if the result of querylnterface() is equal to null. If it not
equal to null, the code will not be compatible with implementations without the optional interface
with null pointer exceptions resulting. The following UNO IDL snippet shows a fragment of the
specification for the com.sun_star. text.TextDocument service in the OpenOffice.org API Note
the flag optional in square brackets, which makes the interfaces XFootnotesSupplier and
XEndnotesSupplier non-mandatory.

OpenOffice.org 1.0.2 Developer's Guide January 2003

// com.sun.star .text.TextDocument
service TextDocument

interface com::sun::star::text::XTextDocument;

interface com::sun::star::util::XSearchable;

interface com::sun::star::util::XRefreshable;

[optional] interface com::sun::star::text::XFootnotesSupplier;
[optional] interface com::sun::star::text::XEndnotesSupplier;

Including Properties

When the structure of the OpenOffice.org API was founded, the designers discovered that the
objects in an office environment would have huge numbers of qualities that did not appear to be
part of the structure of the objects. They seemed to be superficial changes to the underlying
objects. It was also clear that not all qualities would be present in each object of a certain kind.
Therefore, instead of defining a complicated pedigree of optional and non-optional interfaces for
each and every quality, properties was introduced. Properties are data in an object that are
provided by name over a generic interface for property access containing getPropertyvalue()
and setPropertyValue() access methods. Please refer to 3.3.4 Professional UNO - UNO Concepts -
Properties for further information about properties and the advantages.

Properties are added to a service in its UNO IDL specification. A property defines a member vari-
able with a specific type that is accessible at the implementing component by a specific name. It is
possible to add further restrictions to a property through additional flags. The following service
references one interface and three optional properties. All known API types can be valid property
types:

// com.sun.star.text.TextContent
service TextContent

interface com::sun::star::text::XTextContent;

[optional, property] com::sun::star::text::TextContentAnchorType AnchorType;

[optional, readonly, property] sequence<com::sun::star::text::TextContentAnchorType> AnchorTypes;
[optional, property] com::sun::star::text::WrapTextMode TextWrap;

Possible property flags are:

optional
The property does not have to be supported by the implementing component.

readonly
The value of the property cannot be changed using com.sun.star .beans.XPropertySet.

bound

Changes of property values are broadcast to com.sun.star .beans.
XPropertyChangeL isteners, if any were registered through com.sun.star.beans.
XPropertySet.

constrained
The property broadcasts an event before its value changes that listeners can prohibit.

maybeambiguous
Possibly the property value cannot be determined in some cases. For example, in multiple
selections with different values.

maybedefault
The value might be stored in a style sheet or in the environment instead of the object itself.

maybevoid
In addition to the range of the property type, the value can be void. It is similar to a null value
in databases.

Chapter 3 Professional UNO 65

removable
The property is removable and isused for dynamic properties.

transient
The property will not be stored if the object is serialized

Referencing other Services

It is possible to reference other services in a service definition. Service references may be optional.
Including a service has nothing to do with implementation inheritance, the specifications are
inherited. It is up to the implementer if he inherits or delegates the necessary functionality, or if he
implements it from scratch.

The service com.sun.star.text.Paragraph in the following UNO IDL example includes one
mandatory service com.sun.star . text.TextContent and five optional services. Every Para-
graph must be a TextContent. It can be a TextTable and it is used to support formatting proper-
ties for paragraphs and characters:

// com.sun.star.text.Paragraph
service Paragraph

service com::sun::star::text::TextContent;

[optional] service com::sun::star::text::TextTable;

[optional] service com::sun::star::style::ParagraphProperties;
[optional] service com::sun::star::style::CharacterProperties;
[optional] service com::sun::star::style::CharacterPropertiesAsian;
[optional] service com::sun::star::style::CharacterPropertiesComplex;

Service Implementations in Components

A component is a shared library containing implementations of one or more services in one of the
target programming languages supported by UNO. Such a component must meet basic require-
ments, mostly different for the different target language, and it must support the specification of
the implemented services. That means all specified interfaces and properties must be imple-
mented. Components must be registered in the UNO runtime system. After the registration all
implemented services can be used by ordering an instance of the service at the appropriate service
factory and using the functionality over interfaces.

Based on our example specifications for a TVSet and a RemoteControl service, a component
RemoteTVImpl could simulate a remote TV system:

RemoteTV

<<component>>

T
]
]]
] 1
XPower O— Remote —O XRemoteControl

TVset Control

<<service>> <<service>>
XChannel O—

Ilustration 13: RemoteTVImpl Component

66 OpenOffice.org 1.0.2 Developer's Guide January 2003

Structs

A struct type defines several elements in a record. The elements of a struct are UNO IDL types
with a unique name within the struct. Structs do not encapsulate data, but they can help to save
the overhead of several method calls over a UNO bridge. UNO IDL supports the single inheri-
tance of struct types. A derived struct recursively inherits all elements of the parent and its
parents.

// com.sun.star.reflection.Paramlnfo
struct Paraminfo {

string aName;

ParamMode aMode;

XidICLass aType;
};

// com.sun.star.beans.PropertyChangeEvent
struct PropertyChangeEvent : com::sun::star::lang::EventObject {
string PropertyName;
boolean Further;
long PropertyHandle;
any Oldvalue;
any NewValue;

Predefined Values

The API offers many predefined values. For instance, the predefined values can be used as
method parameters or returned by methods. In UNO IDL there are two different data types for
predefined values: constants and enumerations.

const

A const defines a named value of a valid UNO IDL type. The value depends on the specified type
and can be a literal (integer number, floating point number or a character), an identifier of another
const type or an arithmetic term using the operators: +, -, *, /7, ~, &, |, %, *, <<, >>.

Since a wide selection of types and values is possible in a const, const is occasionally used to build
bit vectors which encode combined values.

const short ID = 23;
const boolean ERROR = true;
const double Pl1 = 3.1415;

Usually const definitions are part of a constants group.

constants

The constants type defines a named group of const values. A const in a constants group is
denoted by the group name and the const name. In the UNO IDL example below, ImageAlign.
RIGHT refers to the value 2:

constants ImageAlign {
const short LEFT = 0;
const short TOP = 1;
const short RIGHT = 2;
const short BOTTOM = 3;

enum

An enum type is equivalent to an enumeration type in C++. It contains an ordered list of one or
more identifiers representing long values of the enum type. By default, the values are numbered
sequentially, beginning with 0 and adding 1 for each new value. If an enum value has been

Chapter 3 Professional UNO 67

assigned a value, all following enum values without a predefined value get a value starting from
this assigned value.

// com.sun.star.uno.TypeClass
enum TypeClass {
VoID,

CHAR,
BOOLEAN,
BYTE,
SHORT,

¥;

enum Error {
SYSTEM = 10, // value 10

RUNTIME, // value 11
FATAL, // value 12
USER = 30, // value 30
SOFT // value 31

¥s

If enums are used during debugging, you should be able to derive the meaning of an enum value
by counting its position in the API reference. However, never program using literal numeric
values instead of enums.

Sequences

A sequence type is a set of elements with the same type and a variable number of elements. In
UNO IDL, the used element type must reference an existing and known type or another sequence
type. A sequence can be used as a normal type in all other type definitions.

sequence< com::sun::star::uno::XInterface >
sequence< string > getNamesOfIndex(sequence< long > indexes);

Modules

Modules are namespaces, similar to namespaces in C++ or packages in Java. They group services,
interfaces, structs, exceptions, enums, typedefs, constant groups and submodules with related
functional content or behavior. They are utilized to specify coherent blocks in the API that allows
for a well-structured API. For example, the module com.sun.star . text contains a number of
interfaces and other types for text handling. Some other typical modules are com.sun.star.uno,
com.sun.star.drawing, com.sun.star.sheet and com.sun.star.table. Identifiers inside a
module do not clash with identifiers in other modules, therefore it is possible for the same name to
occur more than once. The global index of the API reference shows that this does happen.

Although it may seem that the modules correspond with the various parts of OpenOffice.org,
there is no direct relationship between the API modules and the OpenOffice.org applications
Writer, Calc and Draw. Interfaces from the module com.sun.star.text are used in Calc and
Draw. Modules like com.sun.star.style or com.sun.star.document provide generic services
and interfaces that are not specific to any one part of OpenOffice.org.

The modules you see in the API reference were defined by nesting UNO IDL types in module
instructions. For example, the module com.sun.star.uno contains the interface XInterface:

modulle com {
module sun {
module star {
modulle uno {
interface Xlnterface {

};
};
};
};
};

68 OpenOffice.org 1.0.2 Developer's Guide * January 2003

Exceptions

An exception type indicates an error to the caller of a function. The type of an exception describes
the kind of error that occurred. The UNO IDL exception types contain elements which allow for
an exact specification and a detailed description of the error. The exception type supports inheri-
tance, that can be used to define a hierarchy of errors. Once an exception is defined, it can only be
used as a parent type of another exception definition or as part of an operation definition.

UNO IDL requires that all exceptions must be inherited from com.sun.star .uno.Exception. Thisis a
precondition for the UNO runtime.

// com.sun.star.uno.Exception is the base exception for all exceptions
exception Exception {

string Message;

Xinterface Context;

}s

// com.sun.star._uno.RuntimeException is the base exception for serious problems
// occuring at runtime, usually programming errors or problems in the runtime environment
exception RuntimeException : com::sun::star::uno::Exception {

// com.sun.star.uno.SecurityException is a more specific RuntimeException

exception SecurityException : com::sun::star::uno::RuntimeException {

}:

Exceptions may only be thrown by operations which were specified to do so. In contrast, com.
sun.star.uno.RuntimeExceptions can always occur.

Exceptions cannot be used like other types in UNO IDL. If you want to use an exception type as a return
value, a field type or an argument, use an Any instead.

Singletons

Singletons are used to specify named objects where exactly one instance can exist in the life of a
UNO component context. A singleton references one service and specifies that the only existing
instance of this service can be reached over the component context using the name of the
singleton. If no instance of the service exists, the component context will instantiate a new one.

singleton theServiceManager {
service com::sun::star::lang::ServiceManager

The singleton concept is already part of the UNO runtime environment and there are one instance service in
the OpenOffice.org API, but the concept of singletons is not really used at this time. It will be a real part of
the API in the next version. Currently it is still possible to create several instances of a singleton, if createln-
stanceWithContext() is used with the implementation name of a singleton directly, that is, the user of a
singleton must take into account that he gets new instances of an object from the component context when he
uses the implementation name. If you can avoid it, do not use implementation names.

3.2.2 Understanding the API Reference

Specification, Implementation and Instances

The API specifications you find in the API reference are abstract. The service descriptions of the
API reference are not about classes that previously exist somewhere. The specifications are first,
then the UNO implementation is created according to the specification. That holds true even for
legacy implementations that had to be adapted to UNO.

Chapter 3 Professional UNO 69

70

Since a component developer is free to implement services and interfaces as required, there is not
necessarily a one-to-one relationship between a certain service specification and a real object. The
real object can be capable of more things than specified in a service definition. For example, if you
order a service at the factory or receive an object from a get or getPropertyValue() method, the
specified features will be present, but there may be additional features. For instance, the text docu-
ment model has a few interfaces which are not included in the specification for the com.sun.
star.text.TextDocument.

It is impossible to comprehend from the reference what the capabilities of an instance of an arbi-
trary object in OpenOffice.org, because of the optional interfaces and properties. The many
optional interfaces and properties are correct for an abstract specification, but it means that when
you leave the scope of the mandatory interfaces and properties, the reference only defines how
things are allowed to work, not how they actually work.

Another important point is the fact that there are several entry points where service implementa-
tions are actually available. You cannot instantiate every service that can be found in the API refer-
ence by means of the global service manager. The reasons are:

Some services need a certain context. For instance, it does not make sense to instantiate a com.
sun_star . text.TextFrame independently from an existing text document or any other
surrounding where it could be of any use. Such services are usually not created by the global
service manager, but by document factories which have the necessary knowledge to create
objects that work in a certain surrounding. That does not mean you will never be able to get a
text frame from the global service manager to insert. If you wish to use a service in the API
reference, ask yourself where you can get an instance that supports this service, and consider
the context in which you want to use it. If the context is a document, it is quite possible that the
document factory will be able to create the object.

Services are not only used to specify possible class implementations. Sometimes they are used
to specify nothing but groups of properties that can be referenced by other service implementa-
tions. That is, there are services with no interfaces at all. You cannot create such a service at the
service manager.

A few services need special treatment. For example, you cannot ask the service manager to
create an instance of a com.sun.star . text.TextDocument. The method loadComponent-
FromUrl () at the Desktop's com.sun.star . frame . XComponentLoader interface must load it
the instance.

Consequently, you need to understand how the objects in OpenOffice.org work before making full
use of the API reference. First get a general idea how things look and which service can be found
where, then look up the details in the reference manual.

Object Composition

Interfaces only support single inheritance and they are all based on com.sun.star.uno.
XInterface. In the API reference, this is mirrored in the syntax line of any interface specification.
It contains the inheritance of an interface. The same applies to exceptions and sometimes also to
structs, which support single inheritance as well.

The Services section is similar to the above in that a single included service might encompass a
whole world of services. However, the fact that a service can be included has nothing to do with
class inheritance. In which manner a service is implemented should include other services techni-
cally by inheriting from other implementations, by aggregation, some other kind of delegation, or
by re-implementing everything is by no means defined.

OpenOffice.org 1.0.2 Developer's Guide January 2003

3.3 UNO Concepts

This section discusses how UNO objects connect and communicate with each other.

3.3.1 UNO Interprocess Connections

A major feature of UNO is the interprocess bridge. You can execute calls on UNO object instances,
that are located in a different process. This is done by converting the method name and the argu-
ments into a byte stream representation, and sending this package to the remote process. For
example, through a socket connection. Most of the examples in this manual use the interprocess
bridge to communicate with the OpenOffice.org.

This chapter deals with the creation of UNO interprocess connections using the UNO APL

Starting OpenOffice.org in Listening Mode

Most examples in this developers guide connect to a running OpenOffice.org and perform API
calls, which are then executed in OpenOffice.org. By default, the office does not listen on a
resource for security reasons. This makes it necessary to make OpenOffice.org listen on an inter-
process connection resource, for example, a socket. Currently this can be done in two ways:

Start the office with an additional parameter:
soffice -accept=socket,host=0,port=2002;urp;

This string has to be quoted on unix shells, because the semicolon ';' is interpreted by the shells

Place the same string without '-accept='into a configuration file. You can edit the file
<OfficePath>/share/config/registry/instance/org/openoffice/Setup.xml

and replace the tag

<ooSetupConnectionURL cfg:type="'string"/>
with

<ooSetupConnectionURL cfg:type="string">
socket,host=0, port=2002;urp;
</ooSetupConnectionURL>

This change affects the whole installation. If you want to configure it for a certain user in a
network installation, create a new file Setup.xml in the user dependent configuration directory
<OfficePath>/user/config/registry/instance/org/openoffice

and putt the tag above into this user-dependent Setup.xml.

The various parts of the connection URL will be discussed in the next section.

Importing a UNO Object

The most common use case of interprocess connections is to import a reference to a UNO object
from an exporting server. For instance, most of the Java examples described in this book retrieve a
reference to the OpenOffice.org ComponentContext. The correct way to do this is using the com.
sun.star.bridge.UnoUrlIResolver service. Its main interface com.sun.star .bridge.

XUnoUr IResolver is defined in the following way:

interface XUnoUrlResolver: com::sun::star::uno::XInterface

Chapter 3 Professional UNO 71

/** resolves an object on the UNO url */
com::sun::star::uno::XInterface resolve([in] string sUnoUrl)
raises (com::sun::star::connection: :NoConnectException,
com: :sun::star: :connection: :ConnectionSetupException,
com::sun::star::lang:: 11legalArgumentException);
¥
The string passed to the resolve() method is called a UNO URL. It must have the following
format:

UNO-Url

uno:connection-type,params;protocol-name,params;ObjectName
Ll | I |
| ! | |
| |]| IV

I. The URL schema "uno:'. This identifies the URL as UNO URL and distinguishes it from others,
such as http or ftp URL.

II. A string which characterizes the type of connection to be used to access the other process.
Optionally, directly after this string, a comma separated list of name-value pairs can follow,
where name and value are separated by a '=". The currently supported connection types are
described in 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connections - Opening a
Connection. The connection type specifies the transport mechanism used to transfer a byte
stream, for example, TCP/IP sockets or named pipes.

III. A string which characterizes the type of protocol used to communicate over the established byte
stream connection. The string can be followed by a comma separated list of name-value pairs,
which can be used to customize the protocol to specific needs. The suggested protocol is urp
(UNO Remote Protocol). Some useful parameters are explained below. Refer to the document
named UNO-Url at udk.openoffice.org. for the complete specification.

IV. A process must explicitly export a certain object by a distinct name. It is not possible to access
an arbitrary UNO object (which would be possible with IOR in CORBA, for instance).

The following example demonstrates how to import an object using the UnoUrIResolver:
(ProfUNO/ InterprocessConn/UrlResolver.java):

XComponentContext xLocalContext =
com.sun.star.comp.helper.Bootstrap.createlnitialComponentContext(null);

// initial serviceManager
XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager();

// create a url resolver
Object urlResolver = xLocalServiceManager.createlnstanceWithContext(
""com.sun.star.bridge.UnoUrlResolver'™, xLocalContext);

// query for the XUnoUrlResolver interface
XUnoUrlIResolver xUrlResolver =
(XUnoUrIResolver) UnoRuntime.querylnterface(XUnoUrlResolver.class, urlResolver);

// Import the object
Object rinitialObject = xUrlResolver.resolve(
“uno:socket,host=localhost,port=2002;urp;StarOffice.ServiceManager™);

// XComponentContext
if (null != rinitialObject) {
System.out.printIn(’initial object successfully retrieved");

} else {

System.out.printin('given initial-object name unknown at server side');
¥

The usage of the UnoUrIResolver has certain disadvantages. You cannot:

- be notified when the bridge terminates for whatever reasons

72 OpenOffice.org 1.0.2 Developer's Guide * January 2003

close the underlying interprocess connection
offer a local object as an initial object to the remote process

These issues are addressed by the underlying API, which is explained in one of the following
subchapters.

Characteristics of the Interprocess Bridge

The whole bridge is threadsafe and allows multiple threads to execute remote calls. The dispatcher
thread inside the bridge cannot block because it never executes calls. It instead passes the requests
to worker threads.

A synchronous call sends the request through the connection and lets the requesting thread wait
for the reply. All calls that have a return value, an out parameter or throw exceptions different
from the RuntimeException must be synchronous.

An asynchronous (or oneway) call sends the request through the connection and immediately
returns without waiting for a reply. It is currently specified at the IDL interface if a request is
synchronous or asynchronous by using the [oneway] modifier.

For synchronous requests, thread identity is guaranteed. When process A calls process B, and
process B calls process A, the same thread waiting in process A will take over the new request.
This avoids deadlocks when the same mutex is locked again. For asynchronous requests, this is
not possible because there is no thread waiting in process A. Such requests are executed in a new
thread. The series of calls between two processes is guaranteed. If two asynchronous requests
from process A are sent to process B, the second request waits until the first request is finished.

The remote bridge can be started in a mode that disables the oneway feature and thus executes
every call a as synchronous call. To do this, the protocol part of the UNO URL on the server and
client must be extended by ',Negotiate=0, forceSynchronous=1'. For example:

soffice -accept=socket,host=0,port=2002;urp,Negotiate=0,forceSynchronous=1;
for starting the office and

""uno:socket,host=localhost,port=2002;urp,Negotiate=0,forceSynchronous=1;
StarOffice.ServiceManager™

as UNO URL for connecting to it. This can be useful to avoid deadlocks within OpenOffice.org.
Note, do not activate this mode unless you experience such problems.

Opening a Connection

The method to import a UNO object using the UnoUr IResolver has drawbacks as described in the
previous chapter. The layer below the UnoUr IResolver offers full flexibility in interprocess
connection handling.

UNO interprocess bridges are established on the com.sun.star.connection.XConnection inter-
face, which encapsulates a reliable bidirectional byte stream connection (such as a TCP/IP connec-
tion).

interface XConnection: com::sun::star::uno::XInterface

long read([out] sequence < byte > aReadBytes , [in] long nBytesToRead)
raises(com::sun::star::io::10Exception);

void write([in] sequence < byte > aData)
raises(com::sun::star::io::10Exception);

void Fflush() raises(com::sun::star::io::10Exception);

Chapter 3 Professional UNO 73

74

void close() raises(com::sun::star::io::10Exception);

string getDescription();
There are different mechanisms to establish an interprocess connection. Most of these mechanisms
follow a similar pattern. One process listens on a resource and waits for one or more processes to
connect to this resource.

This pattern has been abstracted by the services com.sun.star.connection.Acceptor that
exports the com.sun.star.connection.XAcceptor interface and com.sun._star.connection.
Connector that exports the com.sun.star.connection.XConnector interface.

interface XAcceptor: com::sun::star::uno::XInterface

XConnection accept([in] string sConnectionDescription)
raises(AlreadyAcceptingException,
ConnectionSetupException,
com::sun::star::lang::1l1legalArgumentException);

void stopAccepting();
interface XConnector: com::sun::star::uno::XInterface

XConnection connect([in] string sConnectionDescription)
raises(NoConnectException,ConnectionSetupException);
}:
The acceptor service is used in the listening process while the connector service is used in the
actively connecting service. The methods accept() and connect() get the connection string as a
parameter. This is the connection part from the UNO URL (between "uno:' and ';urp’).

The connection string consists of a connection type followed by a comma separated list of name-
value pairs. The following table shows the connection types that are supported by default.

Connection
type
socket Reliable TCP/IP socket connection
Parameter Description
host Hostname or IP number of the resource to listen on/connect. May be
localhost. In an acceptor string, this may be 0 ("host=0'), which means,
that it accepts on all available network interfaces.
port TCP/IP port number to listen on/connect to.
tcpNoDelay Corresponds to the socket option tcpNoDelay. For a UNO connection,
this parameter should be set to 1 (this is NOT the default it must be
added explicitly). If the default is used (0), it may come to 200 ms
delays at certain call combinations.
pipe A named pipe (uses shared memory). This type of interprocess connection is marginally

faster than socket connections and works only if both processes are located on the same
machine. It does not work on Java by default, because Java does not support named pipes

directly
Parameter Description
name Name of the named pipe. Can only accept one process on name on one

machine at a time.

OpenOffice.org 1.0.2 Developer's Guide January 2003

W

You can add more kinds of interprocess connections by implementing connector and acceptor services, and
choosing the service name by the scheme 'om.sun.star.connection.Connector.connection-type', where connec-
tion-type is the name of the new connection type.

If you implemented the service 'com.sun.star.connection.Connector.mytype', use the UnoUr IResolver with
the url 'uno:mytype,paraml=foo;urp;StarOffice.ServiceManager' to establish the interprocess connection to
the office.

Creating the Bridge
XAcceptor XConnector
Acceptor B Connector _
accept connect
stopAccepting stopAccepting
accept () = connect () i
D e e e e e e e e e e = —— 1
|
|
\4
. XConnection XlnstanceProvider
Connection _O —_— mi)t\z?ig: —O _
write () XInterface getinstance ()
read ()
close () i
|
|
| getInstance ()
|
|
Q XBridge \/
XInterface getlnstance () Stub
Bridge (for a local
XComponent object)
addEventListener ()
/\ I removeEventListener ()
| | dispose ()
b o e e e e e e e e e e e e e
: : getinstance ()
: createBridge () v
. XBridgeFactory Proxy
I?arc'fge _ (for a remote
ry createBridge object)
(name, protocol,
connection, instanceProv)

getBridge (name)

Illustration 14: The interaction of services that are needed to initiate a UNO interprocess bridge. The
interfaces have been simplified.

The XConnection instance can now be used to establish a UNO interprocess bridge on top of the
connection, regardless if the connection was established with a Connector or Acceptor service (or
another method). To do this, you must instantiate the service com.sun.star.bridge.
BridgeFactory. It supports the com.sun.star.bridge.XBridgeFactory interface.

interface XBridgeFactory: com::sun::star::uno::XInterface

XBridge createBridge(

Chapter 3 Professional UNO 75

76

[in] string sName,
[in] string sProtocol ,
[in] com::sun::star::connection::XConnection aConnection ,
[in] XInstanceProvider anlnstanceProvider)
raises (BridgeExistsException , com::sun::star::lang::11legalArgumentException);
XBridge getBridge([in] string sName);
sequence < XBridge > getExistingBridges();
¥
The BridgeFactory service administrates all UNO interprocess connections. The createBridge()
method creates a new bridge:

You can give the bridge a distinct name with the sName argument. Later the bridge can be
retrieved by using the getBridge() method with this name. This allows two independent code
pieces to share the same interprocess bridge. If you call createBridge() with the name of an
already working interprocess bridge, a BridgeExistsException is thrown. When you pass an
empty string, you always create a new anonymous bridge, which can never be retrieved by
getBridge() and which never throws a BridgeExistsException.

The second parameter specifies the protocol to be used on the connection. Currently, only the
‘urp' protocol is supported. In the UNO URL, this string is separated by two ';'. The urp string
may be followed by a comma separated list of name-value pairs describing properties for the
bridge protocol. The urp specification can be found on udk.openoffice.org.

The third parameter is the XConnection interface as it was retrieved by Connector/Acceptor
service.

The fourth parameter is a UNO object, which supports the com.sun.star.bridge.
XInstanceProvider interface. This parameter may be a null reference if you do not want to
export a local object to the remote process.

interface XlnstanceProvider: com::sun::star::uno::XInterface

com::sun::star::uno::XInterface getlnstance([in] string slnstanceName)
raises (com::sun::star::container::NoSuchElementException);

¥
The BridgeFactory returns a com.sun.star.bridge.XBridge interface.
interface XBridge: com::sun::star::uno::XInterface

XInterface getlnstance([in] string slnstanceName);
string getName(Q);
string getDescription();

The XBridge.getlInstance() method retrieves an initial object from the remote counterpart. The
local XBridge.getlInstance() call arrives in the remote process as an XInstanceProvider.
getlinstance() call. The object returned can be controlled by the string sInstanceName. It
completely depends on the implementation of XInstanceProvider, which object it returns.

The XBridge interface can be queried for a com.sun.star . lang.XComponent interface, that adds a
com._sun.star.lang.XEventListener to the bridge. This listener will be terminated when the
underlying connection closes (see above). You can also call dispose() on the XComponent inter-
face explicitly, which closes the underlying connection and initiates the bridge shutdown proce-
dure.

Closing a Connection
The closure of an interprocess connection can occur for the following reasons:

The bridge is not used anymore. The interprocess bridge will close the connection when all the
proxies to remote objects and all stubs to local objects have been released. This is the normal
way for a remote bridge to destroy itself. The user of the interprocess bridge does not need to
close the interprocess connection directly—it is done automatically. When one of the communi-

OpenOffice.org 1.0.2 Developer's Guide * January 2003

cating processes is implemented in Java, the closure of a bridge is delayed to that point in time
when the VM finalizes the last proxies/stubs. Therefore it is unspecified when the interprocess
bridge will be closed.

The interprocess bridge is directly disposed by calling its dispose() method.
The remote counterpart process crashes.

The connection fails. For example, failure may be due to a dialup internet connection going
down.

An error in marshalling /unmarshalling occurs due to a bug in the interprocess bridge imple-
mentation, or an IDL type is not available in one of the processes.

Except for the first reason, all other connection closures initiate an interprocess bridge shutdown
procedure. All pending synchronous requests abort with a com.sun.star. lang.
DisposedException, which is derived from the com.sun.star.uno.RuntimeException. Every
call that is initiated on a disposed proxy throws a DisposedException. After all threads have left
the bridge (there may be a synchronous call from the former remote counterpart in the process),
the bridge explicitly releases all stubs to the original objects in the local process, which were previ-
ously held by the former remote counterpart. The bridge then notifies all registered listeners about
the disposed state using com.sun.star.lang.XEventListener. The example code for a connec-
tion-aware client below shows how to use this mechanism. The bridge itself is destroyed, after the
last proxy has been released.

Unfortunately, the various listed error conditions are not distinguishable.

Example: A Connection Aware Client

The following example shows an advanced client which can be informed about the status of the
remote bridge. A complete example for a simple client is given in the chapter 2 First Steps.

The following Java example opens a small awt window containing the buttons new writer and
new calc that opens a new document and a status label. It connects to a running office when a
button is clicked for the first time. Therefore it uses the connector/bridge factory combination, and
registers itself as an event listener at the interprocess bridge.

When the office is terminated, the disposing event is terminated, and the Java program sets the
text in the status label to 'disconnected' and clears the office desktop reference. The next time a
button is pressed, the program knows that it has to re-establish the connection.

The method getComponentLoader () retrieves the XComponentLoader reference on demand:
(ProfUNO/InterprocessConn/ConnectionAwareClient.java)

XComponentLoader _officeComponentLoader = null;

// local component context
XComponentContext _ctx;

protected com.sun.star.frame.XComponentLoader getComponentLoader()
throws com.sun.star.uno.Exception {
XComponentLoader officeComponentLoader = _officeComponentLoader;

iT (officeComponentLoader == null) {
// instantiate connector service
Object x = _ctx.getServiceManager() .createlnstanceWithContext(
*'com.sun.star.connection.Connector™, _ctx);

XConnector xConnector = (XConnector) UnoRuntime.querylnterface(XConnector.class, X);
// helper function to parse the UNO URL into a string array
String a[l = parseUnoUrl(url);

if (null == a) {
throw new com.sun.star.uno.Exception(‘'‘Couldn®"t parse UNO URL "+ _url);
3

Chapter 3 Professional UNO 77

// connect using the connection string part of the UNO URL only.
XConnection connection = xConnector.connect(a[0]);

X = _ctx.getServiceManager() .createlnstanceWithContext(
""com.sun.star.bridge.BridgeFactory", _ctx);

XBridgeFactory xBridgeFactory = (XBridgeFactory) UnoRuntime.querylnterface(
XBridgeFactory.class , Xx);

// create a nameless bridge with no instance provider
// using the middle part of the UNO URL
XBridge bridge = xBridgeFactory.createBridge(*"™ , a[l1] , connection , null);

// query for the XComponent interface and add this as event listener

XComponent xComponent = (XComponent) UnoRuntime.querylnterface(
XComponent.class, bridge);

XxComponent.addEventListener(this);

// get the remote instance
X = bridge.getinstance(a[2]);

// Did the remote server export this object ?
it (null == x) {
throw new com.sun.star.uno.Exception(
"Server didn"t provide an instance for"™ + a[2], null);

}

// Query the initial object for its main factory interface
XMultiComponentFactory xOfficeMultiComponentFactory = (XMultiComponentFactory)
UnoRuntime.querylnterface(XMultiComponentFactory.class, x);

// retrieve the component context (it"s not yet exported from the office)

// Query for the XPropertySet interface.

XPropertySet xProperySet = (XPropertySet)
UnoRuntime.querylnterface(XPropertySet.class, xOfficeMultiComponentFactory);

// Get the default context from the office server.
Object oDefaultContext =
XProperySet.getPropertyValue(''Defaul tContext™);

// Query for the interface XComponentContext.
XComponentContext xOfficeComponentContext =
(XComponentContext) UnoRuntime.querylnterface(
XComponentContext.class, oDefaultContext);

// now create the desktop service

// NOTE: use the office component context here !

Object oDesktop = xOfficeMultiComponentFactory.createlnstanceWithContext(
"'com.sun.star.frame.Desktop', xOfficeComponentContext);

officeComponentLoader = (XComponentLoader)
UnoRuntime.querylnterface(XComponentLoader.class, oDesktop);

if (officeComponentLoader == null) {
throw new com.sun.star.uno.Exception(
"Couldn®t instantiate com.sun.star.frame.Desktop"™ , null);

_officeComponentLoader = officeComponentLoader;

return officeComponentLoader ;

This is the button event handler:

public void actionPerformed(ActionEvent event) {
try {
String sUrl;
if (event.getSource() == _btnWriter) {
sUrl = "private:factory/swriter";
} else {
sUrl = "private:factory/scalc";

getComponentLoader() - loadComponentFromURL (
sUrl, "_blank™, 0,new com.sun.star.beans.PropertyValue[0]);

_txtLabel.setText(*'connected");

} catch (com.sun.star.connection.NoConnectException exc) {
_txtLabel .setText(exc.getMessage());

} catch (com.sun.star.uno.Exception exc) {
_txtLabel .setText(exc.getMessage());
exc.printStackTrace();
throw new java.lang.RuntimeException(exc.getMessage());

3

}

And the disposing handler clears the _officeComponentLoader reference:

78 OpenOffice.org 1.0.2 Developer's Guide * January 2003

public void disposing(com.sun.star.lang.EventObject event) {
// remote bridge has gone down, because the office crashed or was terminated.
_officeComponentLoader = null;
_txtLabel .setText(*'disconnected™);

¥

3.3.2 Service Manager and Component Context

This chapter discusses the root object for every UNO application, including OpenOffice.org. The
root object serves as the entry point for every UNO application and is passed to every UNO
component during instantiation.

Two different concepts to get the root object currently exist. StarOffice6.0 and OpenOffice.orgl.0
use the previous concept. Newer versions or product patches use the the newer concept and
provide the previous concept for compatibility issues only. First we will look at the previous
concept, the service manager as it is used in the main parts of the underlying OpenOffice.org imple-
mentation of this guide. Second, we will introduce the component context—which is the newer
concept and explain the migration path.

Service Manager

The com.sun.star. lang.ServiceManager is the main factory in every UNO application. It instan-
tiates services by their service name, to enumerate all implementations of a certain service, and to
add or remove factories for a certain service at runtime. The service manager is passed to every
UNO component during instantiation.

XMultiServiceFactory Interface

The main interface of the service manager is the com.sun_star. lang.XMultiServiceFactory
interface. It offers three methods: createlnstance(), createlnstanceWithArguments() and
getAvailableServiceNames().

interface XMultiServiceFactory: com::sun::star::uno::XInterface

com::sun::star::uno::XInterface createlnstance([in] string aServiceSpecifier)
raises(com::sun::star::uno::Exception);

com: :sun::star::uno::XInterface createlnstanceWithArguments(
[in] string ServiceSpecifier,
[in] sequence<any> Arguments)
raises(com::sun::star::uno::Exception);

sequence<string> getAvailableServiceNames();

createlnstance() returns a default constructed service instance. The returned service is guar-
anteed to support at least all interfaces, which were specified for the requested servicename.
The returned XInterface reference can now be queried for the interfaces specified at the
service description.

When using the service name, the caller does not have any influence on which concrete imple-
mentation is instantiated. If multiple implementations for a service exist, the service manager is
free to decide which one to employ. This in general does not make a difference to the caller
because every implementation does fulfill the service contract. Performance or other details
may make a difference. So it is also possible to pass the implementation name instead of the
service name, but it is not advised to do so as the implementation name may change.

In case the service manager does not provide an implementation for a request, a null reference
is returned, so it is mandatory to check. Every UNO exception may be thrown during instantia-
tion. Some may be described in the specification of the service that is to be instantiated, for

Chapter 3 Professional UNO 79

80

instance, because of a misconfiguration of the concrete implementation. Another reason may be
the lack of a certain bridge, for instance the Java-C++ bridge, in case a Java component shall be
instantiated from C++ code.

createlnstanceWithArguments() instantiates the service with additional parameters. A
service signals that it expects parameters during instantiation by supporting the com.sun.
star.lang.XInitialization interface. The service definition should describe the meaning of
each element of the sequence. There maybe services which can only be instantiated with
parameters.

getAvai lableServiceNames() returns every servicename the service manager does support.

XContentEnumerationAccess Interface

The com.sun.star .container .XContentEnumerationAccess interface allows the creation of an
enumeration of all implementations of a concrete servicename.

interface XContentEnumerationAccess: com::sun::star::uno::XInterface
com::sun::star::container::XEnumeration createContentEnumeration([in] string aServiceName);
sequence<string> getAvailableServiceNames();

3

The createContentEnumeration() method returns a com.sun.star.container.XEnumeration

interface. Note that it may return an empty reference in case the enumeration is empty.

interface XEnumeration: com::sun::star::uno::XInterface
boolean hasMoreElements();

any nextElement()
raises(com::sun::star::container: :NoSuchElementException,
com: :sun::star::lang: :WrappedTargetException);

¥s

In the above case, the returned any of the method Xenumeration.nextElement() contains a com.
sun.star_lang.XSingleServiceFactory interface for each implementation of this specific
service. You can, for instance, iterate over all implementations of a certain service and check each
one for additional implemented services. The XSingleServiceFactory interface provides such a
method. With this method, you can instantiate a feature rich implementation of a service.

XSet Interface

The com.sun.star.container.XSet interface allows the insertion or removal of com.sun.star.
lang.XSingleServiceFactory or com.sun.star. lang.XSingleComponentFactory implementa-
tions to the service manager at runtime without making the changes permanent. When the office
application terminates, all the changes are lost. The object must also support the com.sun_star.
lang.XServicelnfo interface that provides information about the implementation name and
supported services of the component implementation.

This feature may be of particular interest during the development phase. For instance, you can
connect to a running office, insert a new factory into the service manager and directly instantiate
the new service without having it registered before.

The chapter 4.7.6 Writing UNO Components - Deployment Options for Components - Special Service
Manager Configurations shows an example that demonstrates how a factory is inserted into the
service manager.

OpenOffice.org 1.0.2 Developer's Guide * January 2003

Component Context

The service manager was described above as the main factory that is passed to every new instanti-
ated component. Often a component needs more functionality or information that must be
exchangeable after deployment of an application. In this context, service manager approach is
limited.

Therefore, the concept of the component context was created. In future, it will be the central object in
every UNO application. It is basically a read-only container offering named values. One of the
named values is the service manager. The component context is passed to a component during its
instantiation. This can be understood as an environment where components live (the relationship
is similar to shell environment variables and an executable program).

XComponentContext
ComponentContext
getValueByName ()
getServiceManager ()
other Service XMultiComponentFactory
Singletons Manager
<<singleton>> <<singletons> createlnstanceWithContext ()

[llustration 15: ComponentContext and the ServiceManager

ComponentContext API

The component context only supports the com.sun.star.uno.XComponentContext interface.

// module com::sun::star::uno
interface XComponentContext : XlInterface

any getValueByName([in] string Name);
com: :sun::star::lang: :XMultiComponentFactory getServiceManager();

¥

The getValueByName () method returns a named value. The getServiceManager() is a conven-
ient way to retrieve the value named /singleton/com.sun.star. lang.theServiceManager. It
returns the ServiceManager singleton, because most components need to access the service
manager. The component context offers at least three kinds of named values:

Singletons (/singleton/...)
The singleton concept was introduced in 3.2.1 Professional UNO - API Concepts - Data Types.
Currently, there is only the ServiceManager singleton.

Implementation properties (not yet defined)
These properties customize a certain implementation and are specified in the module descrip-
tion of each component. A module description is an xml-based description of a module (DLL
or jar file) which contains the formal description of one or more components.

Service properties (not yet defined)
These properties can customize a certain service independent from the implementation and are
specified in the IDL specification of a service.
Note that service context properties are different from service properties. Service context prop-
erties are not subject to change and are the same for every instance of the service that shares the

Chapter 3 Professional UNO 81

same component context. Service properties are different for each instance and can be changed
at runtime through the XPropertySet interface.

Note, that in the scheme above, the ComponentContext has a reference to the Service Manager, but
not conversely.

Beside the interfaces discussed above, the ServiceManager supports the com.sun_star.lang.
XMultiComponentFactory interface.

interface XMultiComponentFactory : com::sun::star::uno::XInterface

com: :sun::star::uno::XInterface createlnstanceWithContext(
[in] string aServiceSpecifier,
[in] com::sun::star::uno::XComponentContext Context)
raises (com::sun::star::uno::Exception);

com::sun::star::uno::XInterface createlnstanceWithArgumentsAndContext(
[in] string ServiceSpecifier,
[in] sequence<any> Arguments,
[in] com::sun::star::uno::XComponentContext Context)
raises (com::sun::star::uno::Exception);

sequence< string > getAvailableServiceNames();
};
It replaces the XMul tiServiceFactory interface. It has an additional XComponentContext
parameter for the two object creation methods. This parameter enables the caller to define the
component context that the new instance of the component receives. Most components use their
initial component context to instantiate new components.

However, a user might want a special component to get a customized context. Therefore, the user
creates a new context by simply wrapping an existing one. The user overrides the desired values
and delegates the properties that he is not interested into the original C1 context.

createlnstanceWithContext
(C1)

createlnstanceWithContext
(C1)

Instance B
Ctx C1

getsContext ()
->C1

Instance D
Ctx C1

creates a new Context
(ontop of C1)
>C2

Instance A
Ctx C2

createlnstanceWithContext
(€2)

createlnstanceWithContext
(€2)

Illustration 16: Context propagation. The user defines which context Instance A and B receive. Instance A
and B propagate their context to every new object that they create. Thus, the user has established two
instance trees, the first tree completely uses Ctx C1, while the second tree uses Ctx C2.

82 OpenOffice.org 1.0.2 Developer's Guide January 2003

Availability

The final API for the component context is available in StarOffice 6.0 and OpenOffice 1.0. Use this
APl instead of the API explained in the service manager section. Currently the component context
does not have a persistent storage, so named values can not be added to the context of a deployed
OpenOftfice.org. Presently, there is no additional benefit from the new API until there is a future
release.

Compatibility Issues and Migration Path

ComponentContext

o XComponentContext

getValueByName ()
getServiceManager ()

ServiceManager —O XMultiServiceFactroy

DefaultContext —O XMultiComponentFactroy

[llustration 17Compromise between service-manger-only und component context
concept

As discussed previously, both concepts are currently used within the office. The ServiceManager
supports the interfaces com.sun.star.lang.XMultiServiceFactory and com.sun.star.lang.
XMultiComponentFactory. Calls to the XMul tiServiceFactory interface are delegated to the
XMultiComponentFactory interface. The service manager uses its own XComponentContext refer-
ence to fill the missing parameter. The component context of the ServiceManager can be retrieved
through the XPropertySet interface as 'DefaultContext'.

// Query for the XPropertySet interface.

// Note xOfficeServiceManager is the object retrieved by the

// uno-url-resolver

XPropertySet XxPropertySet = (XPropertySet)
UnoRuntime.querylnterface(XPropertySet.class, xOfficeServiceManager);

// Get the default context from the office server.
Object oDefaultContext = xpropertysetMultiComponentFactory.getPropertyValue('DefaultContext');

// Query for the interface XComponentContext.
xComponentContext = (XComponentContext) UnoRuntime.querylnterface(
XComponentContext.class, objectDefaultContext);

This solution allows the use of the same service manager instance, regardless if it uses the old or

new style APL In future, the whole OpenOffice.org code will only use the new APL. However, the
old API will still remain to ensure compatibility.

The described compromise has a drawback. The service manager now knows the component context, that
was not necessary in the original design. Thus, every component that uses the old API (plain createln-
stance()) breaks the context propagation (see Illustration 11). Therefore, it is recommended to use the new
APl in every new piece of code that is written.

Chapter 3 Professional UNO 83

84

3.3.3 Using UNO Interfaces

Every UNO object must inherit from the interface com.sun.star.uno.XInterface. Before using
an object, know how to use it and how long it will function. By prescribing XInterface to be the
base interface for each and every UNO interface, UNO lays the groundwork for object communi-
cation.

// module com::sun::star::uno
interface Xlnterface

any querylnterface([in] type aType);
[oneway] void acquire();
[oneway] void release();

The methods acquire() and release() handle the lifetime of the UNO object by reference
counting. Detailed information about Reference counting is discussed in chapter 3.3.7 Professional
UNO - UNO Concepts - Lifetime of UNO Objects. All current language bindings take care of acquire
O and release() internally whenever there is a reference to a UNO object.

The queryInterface() method obtains other interfaces exported by the object. The caller asks the
implementation of the object if it supports the interface specified by the type argument. The type
parameter is an UNO IDL base type, and generally stores the name of a type and its com.sun.
star.uno.TypeClass. The call may return with an interface reference of the requested type or
with a void any. In C++ or Java simply test if the result is not equal null.

Unknowingly, we encountered XInterface when the service manager was asked to create a
service instance:

XComponentContext xLocalContext =
com.sun.star.comp.helper.Bootstrap.createlnitialComponentContext(null);

// initial serviceManager
XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager();

// create a urlresolver

Object urlResolver = xLocalServiceManager.createlnstanceWithContext(
“'com.sun.star.bridge.UnoUrlIResolver', xLocalContext);

The IDL specification of XmultiComponentFactory shows:

// module com::sun::star::lang
interface XMultiComponentFactory : com::sun::star::uno::XInterface

com: :sun::star::uno: :XInterface createlnstanceWithContext(
[in] string aServiceSpecifier,
[in] com::sun::star::uno::XComponentContext Context)
raises (com::sun::star::uno::Exception);

}

The above code shows that createInstanceWithContext() provides an instance of the given
service, but it only returns a com.sun.star.uno.XInterface. This is mapped to java.lang.Object
by the Java UNO binding afterwards.

Accessing the Functionality of a Service

First you need to know which interfaces the service exports. This information is available in the
IDL reference. For instance, for the com.sun_star_bridge.UnoUrIResolver service, you learn:
// module com::sun::star::bridge

service UnoUrlResolver

interface com::sun::star::bridge::XUnoUrlResolver;

OpenOffice.org 1.0.2 Developer's Guide * January 2003

This means the service you ordered at the service manager must support com.sun.star.bridge.
XUnoUr IResolver. Next query the returned object for this interface:

// query urlResolver for its com.sun.star.bridge.XUnoUrlIResolver interface
XUnoUrIResolver xUrlResolver = (XUnoUrlResolver)
UnoRuntime.querylnterface(UnoUrlResolver.class, urlResolver);

// test if the interface was available
if (null == xUrlResolver) {
throw new java.lang.Exception(
“Error: UrlResolver service does not export XUnoUrlResolver interface”);

// use the interface

Object remoteObject = xUrlResolver.resolve(
“uno:socket,host=0,port=2002;urp;StarOffice.ServiceManager™);

The object decides whether or not it returns the interface. You have encountered a bug if the object

does not return an interface that is specified to be mandatory in a service. When the interface refer-

ence is retrieved,