XORP Libxorp Library Overview
Version 1.4

XORP Project
International Computer Science Institute
Berkeley, CA 94704, USA
http://www.xorp.org/
feedback@xorp.org

March 20, 2007

1 Introduction

Thelibxorp library contains a set of classes for basic XORP functityalich as IP addresses and subnets,
timers, event loops, etc. It is used by virtually every otK€@RP component, and its main purpose is to
simplify the implementation of those components.

1.1 Overview
Currently, the libxorp library contains the following ctes and components (in alphabetical order):
e asnum.hh: class AsNum class for storing an AS number used by protocols such as BGP
e asyncio.hh: class AsyncFileReader, class AsyncFileWrsynchronous file transfer classes.
e buffer.hh: class BufferA class for storing buffered data.
¢ bufferedasyncio.hh: class BufferedAsyncRead@uffered asynchronous file reader class.
e c_format.hh: cformat(y A macro that creates a C++ string from a C-style printf@)iatted string.
¢ callback.hh, callbacldebug.hh, callbackodebug.hh, safeallback obj.hh Callback mechanism.
e clock.hh: class SystemClack class for providing the interface to obtain the systencklo
e configparam.hh: template class ConfigParas class for storing a configuration parameter.
e debug.h Provides facility for generating debug messages.
e ethercompat.h Ethernet manipulation compatibility functions.

e eventloop.hh: class EventLooRvent loop class for coordinated operations between sraed /O
operations on file descriptors.

exceptions.hhStandard XORP C++ exceptions.
heap.hh: class HeapProvides Heap data structure.
ioevents.hhEnumeration of various event types supported by the |/(baek facade.

ipnet.hh, ipv4net.hh, ipvénet.hh, ipvxnet.hh: class NRet4 class IPv6Net, class IPvXNénplemen-
tation of classes for basic subnet addresses (for IPv4, #adédual IPv4/6 address family respec-
tively).

ipv4.hh, ipv6.hh, ipvx.hh: class IPv4, class IPv6, classXAmplementation of classes for basic IP
addresses (for IPv4, IPv6 and dual IPv4/6 address famipetely).

mac.hh: class Mac, class EtherMaContainers for MAC types.
nexthop.hhClasses that contain routing next-hop information.

popen.hh The interface for the local implementationdpen(2)andpclose(2)
profile.hh Implementation of a mechanism for event profiling.

random.h Local implementation of random(3).

range.hh: class U32Range, class IPv4Range, class IPv4R#@nget of classes that implement linear
ranges €.g.,integers or addresses).

ref_ptr.hh: template class rghtr. Reference counted pointer class.

ref_trie.nh Implementation of a trie to support route lookups. Basedri@thh, but with reference-
counted storage supporting delayed deletion.

round.robin.hit Round-robin queue implementation.
run_.command.hh: class RunCommardclass for running an external command.

safecallback obj.hh: class CallbackSafeObjedimplementation of a base class for objects that are
callback safe.

selector.hh I/O multiplexing interface.
service.hh Provides base for asynchronous service classes.

statuscodes.h Process states status codes used by processes whemgefueir operational status
to the router manager.

task.hh: class XorpTaskriority-based task implementation.
time slice.hh: class TimeSlic& class for computing whether some processing is takinddng.
timer.hh: class XorpTimerXORP timer facility.

timespent.hh: class TimeSpe#t class used for debugging purpose to find code that has taken
long to execute.

e timeval.hh: class TimeVal class for storing time values (similar sbruct timeval.

e tlv.hh: class Tlv Facility for reading and writing TLV (Type-Lenght-Valuegcords.

o token.hh Token related definitions.

e transactions.hhFacility for transaction operations.

e trie.hht Implementation of a trie to support route lookups.

e utility.h: Contains various mini-utilities (mostly compiler-redat helpers).

e utils.hht Contains various utilitiese(g.,to delete a list or array of pointers and the objects poirdgd t
¢ vif.hh: class Vif, class VifAddirtual interface and virtual interface address classes.

e win_dispatcher.hh, wiro.hh Windows-specific header files.

¢ xlog.lt Provides facility for log messages generation.

e xorp.lt The XORP main include file that should be included by all XORBnd C++ files.

xorpfd.hh: class XorpFdimplementation of a wrapper class used to encapsulate @efsieriptor.

Each of the components is described in Section 2.

2 Components Description

This section contains a brief description of each of the camepts of thdibxorp library. This description is
for informative purpose only. The source code for each corapbis the ultimate source for programming
reference, and implementation details.

2.1 asnum.hh

This file containglass AsNuma class for storing an AS number used by protocols such as B@s class
can be used to store an AS number that can be either 16 or 3Diggnally, the AS numbers were defined
as 16-bit unsigned numbers. Later the “extended” AS numiers introduced, which are unsigned 32-bit
numbers.

2.2 asyncio.hh

This file contains asynchronous file transfer classes. Tatlsee XORP EventLoop and its SelectorList
to read or write files asynchronously. The user creates andsle{Reader,Writey and adds a buffer for
reading or writing with adduffer(). A callback provided with each buffer is called gvéme 1/0O happens
on the buffer. Reading or writing only begins when start@asied, and normally continues until there are
no buffers left.

From the developer’s point of view, the following classes af interest:.class AsyncFileReader, class
AsyncFileWriter

2.3 buffer.hh

This file containglass Buffer a class for conveniently storing and accessing bufferéal d@@urrently it has
limited applicability.

2.4 Dbuffered.asyncio.hh

This file containsclass BufferedAsyncReadea class for buffered asynchronous file reading. Unlike the
class AsyncFileReadésee Section 2.2) which delivers data whenever it is availdbeclass BufferedAsyn-
cReademuffers the data and delivers it whenever its size has rebalpeedefined threshold.

2.5 cformat.hh

This file containc_format(} a macro that creates a C++ string from a C-style printf@@jdfatted string. It
takes the same arguments as printf(3), but %n is illegal ahdause abort to be called.

In practice,c_format()is a hasty macro, but by doing this we can check the compile sirguments are
sane and the run time arguments.

2.6 callback.hh, callbackdebug.hh, callbacknodebug.hh, safecallback_obj.hh

These files contain an implementation of a callback mechan}ORP is an asynchronous programming
environment and as a result there are many places whereaddllare useful. Callbacks are typically
invoked to signify the completion or advancement of an aSym@ous operation.

XORP provides a generic and flexible callback interface tititizes overloaded templatized functions
for generating callbacks in conjunction with many small pdattized classes. Whilst this makes the syntax
a little unpleasant, it provides a great deal of flexibility.

XorpCallback objects are objects created by the callbdak@tion which returns a reference pointer to
a newly created callback object. The callback is invokeddllng the dispatch() method on that object.

There are two versions of the callback mechanism: debug andlebug version. The debug version
includes additional information with each callbaekd.,file name and line number where the callback was
invoked), records callback tracing events, etc, but ceeatiglitional overhead to the system. Non-debug
callbacks are used by default; the debug callbacks can lmeehly definingDEBUG.CALLBACKbefore
including callback.hh or by running./configure —enable-callback-debigfore compiling XORP.

For more details on the callback mechanism, and for usagem@®a, see the beginning cdllback debug.hh
or callback nodebug.hhNote that these files are auto-generateddijpack-gen.pya Python script), there-
fore they should never be edited.

2.7 clock.hh

This file contains the implementation ofass SystemClocthat provides the interface for obtaining the
system clock.

2.8 configparam.hh

This file contains the implementation tdmplate class ConfigParanma class for storing a configuration
parameter.

This class can be used to store the value of a configurati@ner. Such parameter has a current and
a default value. Th€onfigParamclass has the facility to add a callback that is invoked whenthe value
of the configuration parameter is changed.

2.9 debug.h

This file provides facility for debug messages generationrévspecifically, it defines thdebug_nsg(),
the macro responsible for generating debug messagese#t tiax same arguments as printf(3). For example:

debug_nsg(" The nunber is %d\n", 5);

For more details see the comments inside that file.

2.10 ethercompat.h

This file contains Ethernet-related manipulation coml#tildunctions. For example, it includes the appro-
priate system files, and declares functietsher _at on() andet her _nt oa() (implemented locally in
ethercompat.g if the system is missing the correspondieigher _at on(3) andet her _nt oa(3).

2.11 eventloop.hh

This file definesclass EventLoop It is used to co-ordinate interactions between a Timeraisil a Se-
lectorList for XORP processes. All XorpTimer and selectrapiens should be co-ordinated through this
interface.

2.12 exceptions.hh

This file containgclass XorpExceptiara base class for XORP C++ exceptions. It contains alsoaaidstrd
XORP C++ exceptions. An example of such exceptioriass InvalidFamilywhich is thrown if the address
family is invalid (for example, by an IPvX constructor whewaked with an invalid address family).

2.13 heap.hh

This file containglass Heap The Heap class is used by the TimerList class as it’s pyigteue for timers.
This implementation supports removal of arbitrary objdicisn the heap, even if they are not located at the
top.

2.14 ioevents.hh
This file contains the enumeratéoEventTypecodes: various event types supported by the I/O callback
facade. The event types are used by clients when registatiergst in 1/0 events.

2.15 ipnet.hh, ipv4net.hh, ipvénet.hh, ipvxnet.hh

These files contain the declaration of the following classtsss IPv4Net, class IPv6Net, class IPvXNet
which are classes for basic subnet addresses (for IPv4,dRd@lual IPv4/6 address family respectively).
IPvXNet can be used to store a subnet address that has éttheot IPv6 address family.

Most of the implementation is contained in fifgnet.hh which contains demplate class IPNetThe
IPv4Net, IPv6Net, and IPvXNet classes are derived fromtiémaplate.

5

2.16 ipv4.hh, ipv6.hh, ipvx.hh

These files contain the declaration for the following classéass IPv4, class IPv6, class IPyihich are
classes for basic IP addresses (for IPv4, IPv6 and dual 6RPadidress family respectively). IPvX can be
used to store an address that has either IPv4 or IPv6 addiredy. f

2.17 mac.hh

This file declares the following classedass Mac, class EtherMad he first class is a generic container for
any type of MAC. The second class is a container for Ethernr®CMddress.

2.18 nexthop.hh

This file declares a number of classes that can be used tdrcooting next-hop information. For example,
class NextHops the generic class for holding information about routimxthops. NextHops can be of
many types, including immediate neighbors, remote routeith IBGP), discard interfaces, encapsulation
endpoints, etc. NextHop itself doesn’t really do anythisgful, except to provide a generic handle for the
specialized subclasses. The specialized subclasses are:

e IPPeerNextHop is for next hops that are local peers.

e IPEncapsNextHop is for “next hops” that are non-local, aegluire encapsulation to reach. An ex-
ample is the PIM Register Encapsulation.

e |PExternalNextHop An IP nexthop that is not an intermedregghbor.

e DiscardNextHop is a discard interface.

2.19 popen.hh

This file contains the interface for the local implementatad popen(2)andpclose(2) The corresponding
local names ar@open2()and pclose2()respectively. Unlike the systemjsopen(2) the local popen2()

implementation allows the user to specify the streams wterstdoutandstderr of the command will be
redirected to.

2.20 profile.hh

This file implements the mechanism for event profiling. Theettgper can add profiling entries at various
places of the program. Each profiling entry has a hame andhibeaenabled or disabled. In addition, a
number of strings can be added to each profiling entry, argktbtyings can be read at some later stage.

2.21 random.hh

This file declares the API for the local implementation ofdam(3). Currently it is used if the underlying
system doesn’t have random(3).

2.22 range.hh

This file implements the following classedass U32Range, class IPv4Range, class IPv4Range

Those classes implement linear ranges XeX(for integers or addresses). A linear range is defined
by its low and high inclusive boundaries. It is the user'possibility to ensure that the condition (low
high) always holds.

2.23 refptr.hh

This file declaresemplate class reptr: reference counted pointer class.

The refptr class is a strong reference class. It maintains a courawimany references to an object ex-
ist and releases the memory associated with the object veeneference count reaches zero. The reference
pointer can be dereferenced like an ordinary pointer tornathods on the reference counted object.

At the time of writing the only supported memory managemsiiiough the new and delete operators.
At a future date, this class should support the STL allocatasses or an equivalent to provide greater
flexibility.

2.24 reftrie.hh

This file implements a trie to support route lookups. The engpntation is template-based, and is based
on the code in trie.hh. From deleloper’s point of view, teat@é RefTrie, RefTrieNode, RefTriePreOrderlt-
erator, and RefTriePostOrderlterator are the most impbrtéhose templates should be invoked with two
classes, the basetype “A’ for the search Key (which is a subiiNet <A>), and the Payload.

RefTrie differs from Trie (and its associated classes) &t the RefTrieNode includes a reference count
of how many RefTrielterators are pointing at it. If a RefNizde is deleted, but has a non-zero reference
count, deletion will be delayed until the reference countdmees zero. In this way, additions and dele-
tions to the RefTrie cannot cause a RefTriePreOrderltemtBRefTriePostOrderlterator to reference invalid
memory, although a deletion and subsequent addition casedae payload data referenced by an iterator
to change.

2.25 round.robin.hh

This file implements round-robin queue which is used by therity-based task implementation (see Sec-
tion 2.31). It is used internally by libxorp and shouldn’t lieed by the rest of the system.

2.26 run.command.hh

This file implementslass RunCommanahich provides the mechanism for running an external contman
In addition to the command name and its arguments, the dexetan specify three callbacks:

¢ stdoutch: the callback to call when there is data on the standard tutpu
e stderr.ch: the callback to call when there is data on the standard.error

e donech: the callback to call when the command is completed.

2.27 safecallback obj.hh

This file declares clas€allbackSafeObjectObjects that wish to be callback safe should be derived from
this class. When a CallbackSafeObiject is destructed itnméaall the callbacks that refer to it that this is the
case and invalidates (sets to null) the object they point to.

2.28 selector.hh

This file contains the I/O multiplexing interface. The pawtar class of interest idlass SelectorList

A SelectorList provides an entity where callbacks for pagdiO operations on file descriptors may be
registered. The callbacks are invoked when one of the seiletiiods is called and I/O is pending on the
particular descriptors.

2.29 service.hh

This file declareglass ServiceBasé\ service is a class that can be started and stopped and typiddlly
involve some asynchronous processing to transition betweses. The base class provides a state model
and methods for transitioning between states. Mandatangition methods, like start and stop, are abstract
in the base class.

2.30 statuscodes.h

This file contains the enumeratBdocessStatusodes that a XORP process should report to the XORP router
manager 1ifrmgr) [1]. The file itself contains a detailed explanation of theqess states (valid transaction
between states, triggering events, actions, etc).

2.31 task.hh

This file declares and implements cladass XorpTask ClassXorpTaskis used for priority-based tasks.
Each task can have a priority betweRRIORITYHIGHESTandPRIORITYLOWEST A number of sug-
gested priorities and weights are declared inside thas:.clas

cl ass XorpTask {

public:
11
[l Task/Timer priorities. Those are suggested val ues.
11
static const int PRIORI TY_H GHEST = 0;
static const int PRI ORI TY_XRL_KEEPALIVE = 1;
static const int PRRORITY_H GH = 2;
static const int PRICORI TY _DEFAULT = 4;
static const int PRI ORI TY_BACKGROUND = 7;
static const int PRIORITY LONEST = 9;
static const int PRRORITY_INFIN TY = 255;

11

/| Task/ Ti mer weights. Those are suggested val ues.
11

static const int WEIGHT_DEFAULT = 1;

b

2.32 timeslice.hh

This file declareglass TimeSliceThis class can be used to compute whether some processaking too
long time to complete. It is up to the program that uses Tinee3b check whether the processing is taking
too long, and suspend processing of that task if necessary.

2.33 timer.hh

This file declares the XORP timer facility. The only class mterest from a developer’s point of view is
class XorpTimer

2.34 timespent.hh

This files declares and implemeriass TimeSpent his class used for debugging purpose to find code that
has taken too long to execute.

2.35 timeval.hh

This file contains implementation ofass TimeValor storing time values (similar tstruct timeva). TimeVal
implements the appropriate constructors and numerousihelpthods€.g.,Less-Than and Addition oper-
ators, etc).

2.36 tlv.hh
This file contains the implementation ciiss TIVfor reading and writing TLV (Type-Lenght-Value) records
from/to a file. The records are stored in network byte ordenéd.

2.37 token.hh

This file contains various token-related definitions. Tolea sequence of symbols separated from other
tokens by some pre-defined symbols. In this implementatiom,separators are thedpace(3) and '—
characters. The facilities in that file are to copy tokenmaeng them from a token line, etc. Currently,
this file is used only by the CLI, therefore in the future it nimymoved to the CLI itself.

2.38 transactions.hh

This file contains facility for transactions. A transacticonsists of a sequence of transaction operations,
each of which is a command. The TransactionManager clastgdpoa front-end for creating, dispatching,
and destroying transactions.

2.39 trie.hh

This file implements a trie to support route lookups. The enmntation is template-based. From deleloper’s
point of view, templates Trie, TrieNode, TriePreOrderdter, and TriePostOrderlterator are the most im-
portant. Those templates should be invoked with two claseedasetype “A’ for the search Key (which is
a subnet] PNet <A>), and the Payload.

2.40 utility.h

This file contains various mini-utilities. Those utilitiese mostly compiler-related helpersg.,compile-
time assertionlUNUSED(var)macro to suppress warnings about unused functions argapetot

2.41 utils.hh

This file contains various helper utilities. Currently, @y two utilities are template functions to delete a
list or array of pointers and the objects pointed to.

2.42 vif.hh

This file declares the following classedass Vif, class VifAddr

Class Vif holds information about a virtual interface. A Viifay represent a physical interface, or may
represent more abstract entities such as the Discardang&rér a VLAN on a physical interface. VifAddr
holds information about an address of a virtual interfacevirtual interface may have more than one
VifAddr.
2.43 windispatcher.hh, win.io.hh
Those are Windows-specific header files which are used adteroy libxorp and shouldn't be used by the
rest of the system.
2.44 xlog.h

This file provides facility for log messages generation,ilsinto syslog. The log messages may be output
to multiple output streams simultaneously. Below is a dpion of how to use the log utility.

e The xlog utility assumes tha{ORP_MODULE _NAME is defined (per module). To do so, you must
have in your directory a file like “foonodule.h”, and inside it should contain something like:

#defi ne XORP_MODULE_NAME " BGP"

This file then has to be included by each *.c and *.cc file, andIMUe the first of the included local
files.

e Before using the xlog utility, a program MUST initialize itgt (think of this as the xlog constructor):

int xlog init(const char *process_nanme, const char *preanbl e _nessage);

10

Further, if a program tries to use xlog without initializirdirst, the program will exit.

To add output streams, you MUST use one of the following (@h}o

int x| og_add_out put (FILE* fp);
int xl og_add_default_output(void);

To change the verbosity of all xlog messages, use:
xl og_set _verbose(xl og_verbose_t verbose_| evel);
where “verbosdevel” is one of the following XLOG_VERBOSE _NMAX excluded):

typedef enum {

XLOG_VERBOSE_LOW = 0, [* 0 *]
XLOG_VERBOSE_MEDI UM, [* 1 %]
XLOG VERBOSE_HI GH, [* 2 %]

XLOG_VERBOSE_MAX
} xlog_verbose_t;

Default value isXLOG_VERBOSE _LOW(least details). Larger value for “verbassrel” adds more
details to the preamble message (e.g., file name, line nurehgrabout the place where the log
message was initiated).

Note that the verbosity level of message tyfie€0G LEVEL_FATAL (see below) cannot be changed
and is always set to the most verbose le¥&I@G VERBOSE _HI GH).

To change the verbosity of a particular message type, use:

voi d xl og_l evel set _verbose(xl og_level t Iog_|evel,
xl og_verbose_t verbose_l evel);

where “loglevel” is one of the following XLOG_LEVEL_M NandXLOG_LEVEL_MAX excluded):

typedef enum {

XLOG LEVEL_M N = 0, [* 0 *]
XLOG_LEVEL_FATAL = 0, [* 0 *]
XLOG_LEVEL_ERROR, [* 1 %]
XLOG_LEVEL_WARNI NG, [* 2 %]
XLOG_LEVEL_I NFOQ, [* 3 *]
XLOG_LEVEL_TRACE, [* 4 %]

XLOG_LEVEL_MAX
} xlog_level _t;

Note that the verbosity level of message tyfiOG LEVEL _FATAL cannot be changed and is always
set to the most verbose lev{l(OG VERBOSE HI GH).

11

e To start the xlog utility, you MUST use:
int xlog_start(void);
e To enable or disable a particular message type, use:

int xl og_enabl e(xl og |l evel t log |Ievel);
int x|l og_disabl e(xlog_level _t |og_Ievel);

By default, all levels are enabled. Note txtOG LEVEL _FATAL cannot be disabled.

e To stop the logging, use:
int xlog_stop(void);

Later you can restart it again byt og_start ()

e To gracefully exit the xlog utility, use
i nt x| og_exit(void);

(think of this as the xlog destructor).

Below is an example of using the XLOG facility:

i nt
mai n(int argc, char *argv[])
{
11
/1l Initialize and start xlog
11
xlog_init(argv[0], NULL);
x| og_set _verbose(XLOG VERBOSE LOW ; // Least verbose nessages
/1l Increase verbosity of the error nmessages
xl og_l evel _set verbose(XLOG LEVEL ERROR, XLOG VERBOSE H GH);
x| og_add_def aul t _out put () ;
xl og_start();
/1 Do somet hing
11
/[l Gracefully stop and exit xlog
11
xl og_stop();
x|l og_exit();
exit (0);
}

12

Typically, a developer would use the macros described btgwint a message, add an assert statement,
place a marker, etc. If a macro accepts a message to prirforthat of the message is same as printf(3).
The only difference is that the xlog utility automaticallgdds’ \ n’ , (i.e. end-of-line) at the end of each
string specified by or mat :

e XLOG FATAL(const char *format, ...)
Write a FATAL message to the xlog output streams and abonpribgram.

e XLOG ERROR(const char *format, ...)
Write an ERROR message to the xlog output streams.

e XLOG_ WARNI NG const char *format, ...)
Write a WARNING message to the xlog output streams.

e XLOG_ | NFO(const char *format, ...)
Write an INFO message to the xlog output streams.

e XLOG TRACE(i nt cond_bool ean, const char *format, ...)
Write a TRACE message to the xlog output stream, but ordpiid _bool eanis not 0.

e XLOG ASSERT(assertion)
The XORP replacement for assert(3), except that it cannaohditionally disabled and logs error
messages through the standard xlog mechanism. ItXas FATAL() if the assertion fails.

e XLOG UNREACHABLE()
A marker that can be used to indicate code that should nevexdmuted.

e XLOG_UNFI NI SHEDX)
A marker that can be used to indicate code that is not yet imgateed and hence should not be run.

2.45 xorp.h

This is the XORP main include file that should be included byX@RP C and C++ files. This file itself
includes a number of frequently used system header filesiadesieveral commonly used values, etc.

2.46 xorpfd.hh

This file contains the implementation cifass XorpFdused to encapsulate a file descriptor.

It exists because of fundamental differences between UNIX Windows in terms of how the two
families of operating systems deal with file descriptorsmiast flavours of UNIX, all file descriptors are
created equal, and may be represented using an ’int’ typehaiki usually 32 bits wide. In Windows,
sockets are of type SOCKET, which is a typedef alias_oftuwhereas all other system objects are of type
HANDLE, which in turn is a typedef alias of 'void *'.

A Modification History

e December 11, 2002: Initial version 0.1 completed.

e March 10, 2003: Updated to match XORP release 0.2: addedmatoon about RefTrie; cleanup.

13

e June 9, 2003: Updated to match XORP release 0.3.

e August 28, 2003: Updated to match XORP release 0.4.

e November 6, 2003: Updated to match XORP release 0.5.
e July 8, 2004: Updated to match XORP release 1.0.

e April 13, 2005: Updated to match XORP release 1.1: addedrimdtion for bufferedasyncio.hh
clock.hh popen.hhprofile.hhandrun_.command.hh

e March 8, 2006: Updated to match XORP release 1.2: addedmafiton for range.hh tiv.hh and
xorpfd.hh

e August 2, 2006: Updated the version to 1.3, and the date.

e March 20, 2007: Updated to match XORP release 1.4: addedmatmn forioevents.hhrandom.h
round._robin.hh task.hh win_dispatcher.hrandwin_io.hh

References

[1] XORP Router Manager Process (rtrmgr). XORP technicalidwent. http://www.xorp.org/.

14

