XORP Libxorp Library Overview
Version 1.1

XORP Project
International Computer Science Institute
Berkeley, CA 94704, USA
http://www.xorp.org/
feedback@xorp.org

April 13, 2005

1 Introduction

Thelibxorp library contains a set of classes for basic XORP functityalich as IP addresses and subnets,
timers, event loops, etc. It is used by virtually every otK€@RP component, and its main purpose is to
simplify the implementation of those components.

1.1 Overview
Currently, the libxorp library contains the following ctes and components (in alphabetical order):
e asnum.hh: class AsNum class for storing an AS number used by protocols such as BGP
e asyncio.hh: class AsyncFileReader, class AsyncFileWrsynchronous file transfer classes.
e buffer.hh: class BufferA class for storing buffered data.
¢ bufferedasyncio.hh: class BufferedAsyncRead@uffered asynchronous file reader class.
e c_format.hh: cformat(y A macro that creates a C++ string from a C-style printf@)iatted string.
¢ callback.hh, callbacldebug.hh, callbackodebug.hh, safeallback obj.hh Callback mechanism.
e clock.hh: class SystemClack class for providing the interface to obtain the systencklo
e configparam.hh: template class ConfigParas class for storing a configuration parameter.
e debug.h Provides facility for generating debug messages.
e ethercompat.h Ethernet manipulation compatibility functions.

e eventloop.hh: class EventLooRvent loop class for coordinated operations between sraed /O
operations on file descriptors.

exceptions.hhStandard XORP C++ exceptions.
heap.hh: class HeapProvides Heap data structure.

ipnet.hh, ipv4net.hh, ipvbnet.hh, ipvxnet.hh: class Nest4 class IPv6Net, class IPvXNé&hplemen-
tation of classes for basic subnet addresses (for IPv4, #adédual IPv4/6 address family respec-
tively).

ipv4.hh, ipv6.hh, ipvx.hh: class IPv4, class IPv6, classXAmplementation of classes for basic IP
addresses (for IPv4, IPv6 and dual IPv4/6 address famipetely).

mac.hh: class Mac, class EtherMaContainers for MAC types.
nexthop.hhClasses that contain routing next-hop information.

popen.hh The interface for the local implementation mdpen(2)andpclose(2)
profile.hh Implementation of a mechanism for event profiling.

ref_ptr.hh: template class rghtr. Reference counted pointer class.

ref_trie.nh: Implementation of a trie to support route lookups. Basedri@thh, but with reference-
counted storage supporting delayed deletion.

run_.command.hh: class RunCommardclass for running an external command.

safecallback obj.hh, class CallbackSafeObjedimplementation of a base class for objects that are
callback safe.

selector.hh I/O multiplexing interface.
service.hh Provides base for asynchronous service classes.

statuscodes.h Process states status codes used by processes whemgepwetr operational status
to the router manager.

time_slice.hh: class TimeSlic& class for computing whether some processing is takinddng.
timer.hh, class XorpTimetXORP timer facility.

timespent.hh: class TimeSpe#t class used for debugging purpose to find code that has taken
long to execute.

timeval.hh: class TimeVaA class for storing time values (similar sruct timeva).
token.hh Token related definitions.

transactions.hhFacility for transaction operations.

trie.hit Implementation of a trie to support route lookups.

utility.h: Contains various mini-utilities (mostly compiler-retat helpers).

utils.hht Contains various utilitiese(g.,to delete a list or array of pointers and the objects poirgd t

2

e vif.hh: class Vif, class VifAddirtual interface and virtual interface address classes.
¢ xlog.h Provides facility for log messages generation.

e xorp.lt The XORP main include file that should be included by all XORBnd C++ files.

Each of the components is described in Section 2.

2 Components Description

This section contains a brief description of each of the camepts of théibxorp library. This description is
for informative purpose only. The source code for each campbis the ultimate source for programming
reference, and implementation details.

2.1 asnum.hh

This file containglass AsNuma class for storing an AS number used by protocols such as B@s class
can be used to store an AS number that can be either 16 or 3Diggnally, the AS numbers were defined
as 16-bit unsigned numbers. Later the “extended” AS numiers introduced, which are unsigned 32-bit
numbers.

2.2 asyncio.hh

This file contains asynchronous file transfer classes. Tutssee XORP EventLoop and its SelectorList
to read or write files asynchronously. The user creates andkSle{Reader,Writef and adds a buffer for
reading or writing with adduffer(). A callback provided with each buffer is called gvéme 1/0O happens
on the buffer. Reading or writing only begins when start@asied, and normally continues until there are
no buffers left.

From the developer’s point of view, the following classes af interest:class AsyncFileReader, class
AsyncFileWriter

2.3 buffer.hh

This file containglass Buffer a class for conveniently storing and accessing bufferéal daurrently it has
limited applicability.

2.4 Dbuffered.asyncio.hh

This file containsclass BufferedAsyncReaden class for buffered asynchronous file reading. Unlike the
class AsyncFileReadésee Section 2.2) which delivers data whenever it is availdheclass BufferedAsyn-
cReadelbuffers the data and delivers it whenever its size has relsalpeedefined threshold.

2.5 cformat.hh

This file containc_format(} a macro that creates a C++ string from a C-style printf@jratted string. It
takes the same arguments as printf(3), but %n is illegal alhdawuse abort to be called.

In practice,c_format() is a nasty macro, but by doing this we can check the compile irguments are
sane and the run time arguments.

2.6 callback.hh, callbackdebug.hh, callbacknodebug.hh, safecallback_obj.hh

These files contain an implementation of a callback mechankORP is an asynchronous programming
environment and as a result there are many places wheradadllare useful. Callbacks are typically
invoked to signify the completion or advancement of an asym@ous operation.

XORP provides a generic and flexible callback interface tititizes overloaded templatized functions
for generating callbacks in conjunction with many small pdettized classes. Whilst this makes the syntax
a little unpleasant, it provides a great deal of flexibility.

XorpCallback objects are objects created by the callbdak@tion which returns a reference pointer to
a newly created callback object. The callback is invokeddllng the dispatch() method on that object.

There are two versions of the callback mechanism: debug andlebug version. The debug version
includes additional information with each callbaekd.,file name and line number where the callback was
invoked), records callback tracing events, etc, but ceeatiglitional overhead to the system. Non-debug
callbacks are used by default; the debug callbacks can lixeehby definingDEBUG_.CALLBACKDbefore
including callback.hh or by running./configure —enable-callback-debbgfore compiling XORP.

For more details on the callback mechanism, and for usagem@®a, see the beginning cdllback debug.hh
or callback nodebug.hhNote that these files are auto-generateddijpack-gen.pya Python script), there-
fore they should never be edited.

2.7 clock.hh

This file contains the implementation ofass SystemClocthat provides the interface for obtaining the
system clock.

2.8 configparam.hh

This file contains the implementation tdmplate class ConfigParama class for storing a configuration
parameter.

This class can be used to store the value of a configurati@nmer. Such parameter has a current and
a default value. Th€onfigParamclass has the facility to add a callback that is invoked whenthe value
of the configuration parameter is changed.

2.9 debug.h

This file provides facility for debug messages generatioorévkpecifically, it defines theéebug_nsg(),
the macro responsible for generating debug messageseéttias same arguments as printf(3). For example:

debug_nsg(" The nunber is %d\n", 5);

For more details see the comments inside that file.

2.10 ethercompat.h

This file contains Ethernet-related manipulation comi#tiitfunctions. For example, it includes the appro-
priate system files, and declares functietser _at on() andet her _nt oa() (implemented locally in
ethercompat.g if the system is missing the correspondieigher _at on(3) andet her _nt oa(3).

2.11 eventloop.hh

This file definesclass EventLoop It is used to co-ordinate interactions between a Timeraisi a Se-
lectorList for XORP processes. All XorpTimer and selectragiens should be co-ordinated through this
interface.

2.12 exceptions.hh

This file containglass XorpExceptiana base class for XORP C++ exceptions. It contains alsoaidstrd
XORP C++ exceptions. An example of such exceptiotiass InvalidFamilywhich is thrown if the address
family is invalid (for example, by an IPvX constructor whewaoked with an invalid address family).

2.13 heap.hh

This file containglass Heap The Heap class is used by the TimerList class as it’s pyigteue for timers.
This implementation supports removal of arbitrary objdicisn the heap, even if they are not located at the
top.

2.14 ipnet.hh, ipv4net.hh, ipvénet.hh, ipvxnet.hh

These files contain the declaration of the following classtsss IPv4Net, class IPv6Net, class IPvXNet
which are classes for basic subnet addresses (for IPv4,dRd@lual IPv4/6 address family respectively).
IPvXNet can be used to store a subnet address that has éttheot IPv6 address family.

Most of the implementation is contained in fifgnet.hh which contains demplate class IPNetThe
IPv4Net, IPv6Net, and IPvXNet classes are derived fromtimaplate.

2.15 ipv4.hh, ipv6.hh, ipvx.hh

These files contain the declaration for the following classtass IPv4, class IPv6, class IPy¥hich are
classes for basic IP addresses (for IPv4, IPv6 and dual 6Padidress family respectively). IPvX can be
used to store an address that has either IPv4 or IPv6 addredy. f

2.16 mac.hh
This file declares the following classedass Mac, class EtherMad he first class is a generic container for
any type of MAC. The second class is a container for Ethern®€CMddress.

2.17 nexthop.hh

This file declares a number of classes that can be used tdrcooting next-hop information. For example,
class NextHops the generic class for holding information about routirxtrhops. NextHops can be of
many types, including immediate neighbors, remote rouieith IBGP), discard interfaces, encapsulation
endpoints, etc. NextHop itself doesn'’t really do anythisgful, except to provide a generic handle for the
specialized subclasses. The specialized subclasses are:

e |PPeerNextHop is for next hops that are local peers.

e IPEncapsNextHop is for “next hops” that are non-local, aegluire encapsulation to reach. An ex-
ample is the PIM Register Encapsulation.

¢ |PExternalNextHop An IP nexthop that is not an intermedreggghbor.

e DiscardNextHop is a discard interface.

2.18 popen.hh

This file contains the interface for the local implementatad popen(2)andpclose(2) The corresponding
local names ar@open2()and pclose2()respectively. Unlike the systemjsopen(2) the local popen2()

implementation allows the user to specify the streams wtiherstdoutandstderr of the command will be
redirected to.

2.19 profile.hh

This file implements the mechanism for event profiling. Theettgper can add profiling entries at various
places of the program. Each profiling entry has a nhame andibeaenabled or disabled. In addition, a
number of strings can be added to each profiling entry, argktbtysings can be read at some later stage.

2.20 refptr.hh

This file declaresemplate class reptr: reference counted pointer class.

The refptr class is a strong reference class. It maintains a courawimany references to an object ex-
ist and releases the memory associated with the object veenreference count reaches zero. The reference
pointer can be dereferenced like an ordinary pointer tornathods on the reference counted object.

At the time of writing the only supported memory managemesiiiough the new and delete operators.
At a future date, this class should support the STL allocatasses or an equivalent to provide greater
flexibility.

2.21 reftrie.hh

This file implements a trie to support route lookups. The enpntation is template-based, and is based
on the code in trie.hh. From deleloper’s point of view, teat@é RefTrie, RefTrieNode, RefTriePreOrderlt-
erator, and RefTriePostOrderlterator are the most impbrtéhose templates should be invoked with two
classes, the basetype “A’ for the search Key (which is a dubmiNet <A>), and the Payload.

RefTrie differs from Trie (and its associated classes) @ the RefTrieNode includes a reference count
of how many RefTrielterators are pointing at it. If a RefNi@de is deleted, but has a non-zero reference
count, deletion will be delayed until the reference courtdmees zero. In this way, additions and dele-
tions to the RefTrie cannot cause a RefTriePreOrderltematRefTriePostOrderlterator to reference invalid
memory, although a deletion and subsequent addition casedae payload data referenced by an iterator
to change.

2.22 run.command.hh

This file implementslass RunCommanahich provides the mechanism for running an external contman
In addition to the command name and its arguments, the desetan specify three callbacks:

e stdoutch: the callback to call when there is data on the standard autpu
e stderr.ch: the callback to call when there is data on the standard.error

e donech: the callback to call when the command is completed.

2.23 safecallback obj.hh

This file declares clas€allbackSafeObjectObjects that wish to be callback safe should be derived from
this class. When a CallbackSafeObiject is destructed itnméaall the callbacks that refer to it that this is the
case and invalidates (sets to null) the object they point to.

2.24 selector.hh

This file contains the I/O multiplexing interface. The pawtar class of interest idlass SelectorList

A SelectorList provides an entity where callbacks for pagdiO operations on file descriptors may be
registered. The callbacks are invoked when one of the seletiiods is called and I/O is pending on the
particular descriptors.

2.25 service.hh

This declareglass ServiceBaseA service is a class that can be started and stopped and vyquidally
involve some asynchronous processing to transition betweses. The base class provides a state model
and methods for transitioning between states. Mandatangition methods, like start and stop, are abstract
in the base class.

2.26 statuscodes.h

This file contains the enumeratBdocessStatusodes that a XORP process should report to the XORP router
managerrigrmgr) [1]. The file itself contains a detailed explanation of theqess states (valid transaction
between states, triggering events, actions, etc).

2.27 timeslice.hh

This file declareslass TimeSliceThis class can be used to compute whether some processaigng too
long time to complete. It is up to the program that uses TiiceSb check whether the processing is taking
too long, and suspend processing of that task if necessary.

2.28 timer.hh

This file declares the XORP timer facility. The only class mterest from a developer’s point of view is
class XorpTimer

2.29 timespent.hh

This files declares and implemeriass TimeSpent his class used for debugging purpose to find code that
has taken too long to execute.

2.30 timeval.hh

This file contains implementation ofass TimeValor storing time values (similar tstruct timeva). TimeVal
implements the appropriate constructors and numeroushelpthods€.g.,Less-Than and Addition oper-
ators, etc).

2.31 token.hh

This file contains various token-related definitions. Tolea sequence of symbols separated from other
tokens by some pre-defined symbols. In this implementatiom,separators are the $pace(3) and '—
characters. The facilities in that file are to copy tokenmjaeing them from a token line, etc. Currently,
this file is used only by the CLI, therefore in the future it meymoved to the CLI itself.

2.32 transactions.hh

This file contains facility for transactions. A transacticonsists of a sequence of transaction operations,
each of which is a command. The TransactionManager clastdpoa front-end for creating, dispatching,
and destroying transactions.

2.33 trie.hh

This file implements a trie to support route lookups. The enmntation is template-based. From deleloper’s
point of view, templates Trie, TrieNode, TriePreOrderdter, and TriePostOrderlterator are the most im-
portant. Those templates should be invoked with two claseedasetype “A’ for the search Key (which is
a subnet] PNet <A>), and the Payload.

2.34 utility.h

This file contains various mini-utilities. Those utilitiese mostly compiler-related helpeesg.,compile-
time assertionlUNUSED(var)macro to suppress warnings about unused functions argapetot

2.35 utils.hh

This file contains various helper utilities. Currently, i@y two utilities are template functions to delete a
list or array of pointers and the objects pointed to.

2.36 vif.hh

This file declares the following classedass Vif, class VifAddr

Class Vif holds information about a virtual interface. A Vifay represent a physical interface, or may
represent more abstract entities such as the Discardanggrér a VLAN on a physical interface. VifAddr
holds information about an address of a virtual interfacevirtual interface may have more than one
VifAddr.

2.37 xlog.h

This file provides facility for log messages generation,ilsinto syslog. The log messages may be output
to multiple output streams simultaneously. Below is a dpion of how to use the log utility.

e The xlog utility assumes tha{ORP_MODULE _NAME is defined (per module). To do so, you must
have in your directory a file like “foonodule.h”, and inside it should contain something like:

#defi ne XORP_MODULE_NAME " BGP"

This file then has to be included by each *.c and *.cc file, and3MUe the first of the included local
files.

e Before using the xlog utility, a program MUST initialize itdt (think of this as the xlog constructor):
int xlog_init(const char *process_nanme, const char *preanbl e_nessage);

Further, if a program tries to use xlog without initializiitdirst, the program will exit.

e To add output streams, you MUST use one of the following (@h}o

int x| og_add_out put (FILE* fp);
int xl og_add_default_output(void);

e To change the verbosity of all xlog messages, use:
xl og_set _verbose(xl og_verbose_t verbose_| evel);
where “verbosdevel” is one of the following XLOG_VERBOSE_MAX excluded):

typedef enum {

XLOG_VERBOSE_LOW = 0, [* 0 *]
XLOG_VERBOSE_MEDI UM [* 1 %]
XLOG_VERBOSE_HI GH, [* 2 %]

XLOG_VERBOSE_MAX
} xl og_verbose_t;

Default value isXLOG_VERBOSE _LOW(least details). Larger value for “verbassrel” adds more
details to the preamble message (e.g., file name, line nyreberabout the place where the log
message was initiated).

Note that the verbosity level of message tyfieOG LEVEL _FATAL (see below) cannot be changed
and is always set to the most verbose lex¢I@G_VERBCSE_HI GH).

e To change the verbosity of a particular message type, use:

voi d xl og_l evel set_verbose(xl og_level t log_|evel,
xl og_verbose_t verbose_l evel);

where “loglevel” is one of the following XLOG_LEVEL_MAX excluded):

typedef enum {

XLOG_LEVEL_FATAL = 0, [* 0 *]
XLOG_LEVEL_ERROR, [* 1 %]
XLOG_LEVEL_WARNI NG, [* 2 %]
XLOG_LEVEL_I NFOQ, [* 3 *]
XLOG_LEVEL_TRACE, [* 4 %]

XLOG_LEVEL_MAX
} xlog_level _t;

Note that the verbosity level of message tyfOG LEVEL _FATAL cannot be changed and is always
set to the most verbose lev{l(OG VERBOSE HI GH).

e To start the xlog utility, you MUST use:
int xlog start(void);
e To enable or disable a particular message type, use:

int xl og_enabl e(xl og |l evel t log |Ievel);
int xlog _disable(xlog |level t log |evel);

By default, all levels are enabled. Note txtOG LEVEL _FATAL cannot be disabled.

e To stop the logging, use:
int xlog_stop(void);

Later you can restart it again byt og_start ()

e To gracefully exit the xlog utility, use
i nt x| og_exit(void);

(think of this as the xlog destructor).

Below is an example of using the XLOG facility:

10

i nt

mai n(int argc, char *argv[])

{

11

/1l Initialize and start xlog

11

xlog_init(argv[0], NULL);

xl og_set _verbose(XLOG VERBOSE LOW; // Least verbose nessages
/1l Increase verbosity of the error nessages

xl og_l evel _set _verbose(XLOG LEVEL_ERROR, XLOG VERBCSE H GH);
x| og_add_def aul t _out put () ;

xl og_start();

/1 Do somet hing

11

/'l Gracefully stop and exit xlog
11

xl og_stop();

xl og_exit();

exit (0);

Typically, a developer would use the macros described belqgwint a message, add an assert statement,
place a marker, etc. If a macro accepts a message to prirfprinat of the message is same as printf(3).
The only difference is that the xlog utility automaticallgds’ \ n’ , (i.e. end-of-line) at the end of each
string specified by or mat :

XLOG FATAL(const char *format, ...)
Write a FATAL message to the xlog output streams and abonpribgram.

XLOG_ERROR(const char *format, ...)
Write an ERROR message to the xlog output streams.

XLOG_WARNI N const char *format, ...)
Write a WARNING message to the xlog output streams.

XLOG | NFQ(const char *format, ...)
Write an INFO message to the xlog output streams.

XLOG TRACE(i nt cond_bool ean, const char *format, ...)
Write a TRACE message to the xlog output stream, but ontpiid_bool eanis not 0.

XLOG_ASSERT(asserti on)
The XORP replacement for assert(3), except that it cannaohditionally disabled and logs error
messages through the standard xlog mechanism. ItXa& FATAL() if the assertion fails.

11

o XLOG_UNREACHABLE()

A marker that can be used to indicate code that should nevexdmuted.

e XLOG_UNFI NI SHEDY)

A marker that can be used to indicate code that is not yet ingatéed and hence should not be run.

2.38 xorp.h

This is the XORP main include file that should be included byX@RP C and C++ files. This file itself
includes a number of frequently used system header filesiadesieveral commonly used values, etc.

A Modification History

December 11, 2002: Version 0.1 completed.

March 10, 2003: Updated to match XORP version 0.2 release; @utl information about RefTrie;
cleanup.

June 9, 2003: Updated to match XORP version 0.3 release code.
August 28, 2003: Updated to match XORP version 0.4 releade.co
November 6, 2003: Updated to match XORP version 0.5 releade. c
July 8, 2004: Updated to match XORP version 1.0 release code.

April 13, 2005: Updated to match XORP version 1.1 releasecadded information fdsufferedasyncio.hh
clock.hh popen.hhprofile.hhandrun_.command.hh

References

[1] XORP Router Manager Process (rtrmgr). XORP technicabdwent. http://www.xorp.org/.

12

