XORP Router Manager Process (rtrmgr)
Version 0.4

XORP Project
International Computer Science Institute
Berkeley, CA 94704, USA
feedback@xorp.org

August 28, 2003

1 Introduction

This document provides a high-level technical overviewhs Router Manager (rtrmgr) code structure,
intended to aid anyone needing to understand or modify thea. It is not a user manual.

The XORP software base consists of a number of routing posad@GP, OSPF, PIM-SM, etc), a
Routing Information Base (RIB) process, a Forwarding Eedibstraction (FEA) process, and a forwarding
path. Other management, monitoring or application praessay also supplement this set. Figure 1
illustrates these processes and their principle commtioicahannels.

Management Processes

IPC router

finder manager cu SNMP
BGP4+ \ PIM-SM
OSPF L™ RIB

RIP / IGMP/MLD

/Multicast Routing
I1IS-IS FEA
Unicast Routing $ $

Forwarding Engine

RIB = routing information base
FEA = forwarding engine abstraction

[N

A =&
l:Elick ements

Figure 1: Overview of XORP processes

For research purposes, these processes may be startedlynanfram scripts, so long as the depen-
dencies between then are satisfied. But when using XORP irr@ operational environment, the network
manager typically does not wish to see the software strechut rather would like to interact with the router
as a whole Minimally, this consists of a configuration file for routeéagup, and a command line interface
to interact with the router during operation. The rtrmgrqass provides this unified view of the router.

The rtrmgr is normally the only process explicitly startedauter startup. The rtrmgr process includes
a built-in XRL finder, so no external finder process is reqlird he following sequence of actions then
occurs:

1. The rtrmgr reads all the template files in the router’s temepdirectory. Typically there is one tem-
plate file per XORP process that might be needed. A templateldéiscribes the functionality that is
provided by the corresponding process in terms of all of tdiguration parameters that may be set.
It also describes the dependencies that need to be satigfiedk lihe process can be started. After
reading the template files, the rtrmgr knows all the confitjoinaparameters currently supportable on
this router, and it stores this information in tesmplate tree

2. The rtrmgr next reads the contents of the XRL directoryisoaler all the XRLs that are supported
by the processes on this router. These XRLs are then chedgatustithe XRLs in the template tree.
As it is normal for the XRLs in the XRL directory to be used tongeate stub code in the XORP
processes, this forms the definitive version of a partic§lt.. Checking against this version detects
if a template file has somehow become out of sync with the rsutedebase. Doing this check at
startup prevents subtle run time errors later. The rtrmgjrexit if a mismatch is discovered.

3. The rtrmgr then reads the router configuration file. Alle¢bafiguration options in the config file must
correspond to configurable functionality as described bytéimplate files. As it reads the config file,
the rtrmgr stores the intended configuration indtsfiguration tree At this point, the nodes in the
configuration tree are annotatedrag existing- that is this part of the configuration has not yet been
communicated to the process that will implement the fumetiiby.

4. The rtrmgr next traverses the configuration tree to discthe list of processes that need to be started
to provide the required functionality. Typically not allgtavailable software on the router will be
needed for a specific configuration.

5. The rtrmgr traverses the template tree again to discaverder for starting the required processes
that satisfies all their dependencies.

6. The rtrmgr starts the first process in the list of procetsée started.

7. If no error occurs, the rtrmgr traverses the configuratiee to build the list of XRLs that need
to be called to configure the process just started. These XRédhen called, one after another,
with the successful completion of one XRL triggering thdingl of the next. Some processes may
require calling a transaction start XRL before configuratiand a transaction complete XRL after
configuration - the rtrmgr can do this if required.

8. If no error occurred during configuration, the next pracesstarted, and configured, and so forth,
until all the required processes are started and configured.

9. At this point, the router is up and running. The rtrmgr witlw allow connections from the xorpsh
process to allow interactive operation.

2 Template Files

The router manager reads a directory of template files tamdiscahe configuration options that the router
supports. A fragment of such a configuration file might loddeli

protocol s {
ospf {
router-id: ipv4,;
nmospf: toggle = fal se;
flood rate: int;
area @ ipv4 {
stub: toggle = fal se;
interface @ text {
di sabl e: toggle = fal se;
hell o-interval: uint = 30;
dead-interval: uint = 95;
}
}
}
}

This defines a subset of the configuration options for OSPE. cimfiguration options form a tree, with
three types of nodes:

e Structural nodes such @as ot ocol andospf that exist merely to provide scope.

e Named interior nodes such aar‘ea @ and “i nterface @, where there can be multiple in-
stances of the node. Here indicates that a name is requiratipicase of “area @” the fragment
above specifies that the name must be an IPv4 address.

e Leaf nodes such asl ood_r at e andhel | o-i nt erval . These nodes are also typed, and may
optionally specify a default value. In the example abdwel, | o-i nt er val is of typeui nt (un-
signed 32 bit integer), and takes the default value of 30.

Thus the template tree created from this template file wandd like:

ROOT _{ protocols || ospf router—id |

|area @ stub |
interface @ disable |

hello-interval
dead-interval

The same node may occur multiple times in the template filés fitiight happen because the node can
take more than one type (for example, it might have an IPvhdP&a6 address), or it might happen because
the second definition adds information to the existing diedini

In addition to specifying the configurable options, the té&atgfile should also specify what the rtrmgr
should do when an option is modified. These commands anngtide template file begin with &5. Thus
the template file above might also contain the following dateal version of the template tree:

prot ocol s ospf {
%rodi nf o: provi des ospf;
%rodi nf o: depends ri b;
%odi nfo: path "ospfd/ xorp/ospfd";
router-id {
%et: xrl "ospf/ospf/0.1/set _router _id?id:u32=$(@";
%get: xrl "ospf/ospf/0.1/get_router_id->id:u32";

}
area @{
%reate: xrl "ospf/ospf/0.1/add_or_configure_area?
area_i d: u32=$(area. @& s_stub: bool =$(@ st ub) ";
%lel ete: xrl "ospf/ospf/0.1/delete_area?area_id:u32=%(area. @";
}

}

The first three annotations apply to the “protocols ospf” eqodnd specify the “%modinfo” command,
which provides information about the module providing flisctionality. In this case they specify that this
functionality is provided by the module called pf , that this module depends on the module cailéed,
and that the software inspf d/ xor p/ ospf d is the software to run to provide this module.

The “pr ot ocol s ospf router-id”node carries annotations to set the value of the router ID in
the ospf process, and to get the value back. The set command is

%set: xrl "ospf/ospf/0.1/set_router_id?id:u32=$(@";

This specifies that to set this value, the rtrmgr must calktiexified XRL. In this case it specifies a variable
expansion of the variabl®(@ . All variables take the forn$(...) .

The variables(@ means the value of the current node, so if the router ID notieeiconfiguration tree
had the value 1.2.3.4, then the XRL to call would be:

ospf/ospf/0.1/set_router_id?id:u32=1.2.3.4

The¥%set command only applies to leaf nodes.

Internal nodes would typically use tBé&r eat e command to create a new instance of the node, as
shown with the pr ot ocol s ospf area @ node. In the example above, tB&r eat e command
involves two variable expansion$(area. @ and$(@ st ub). The form$(area. @ means “this
area”, and so in this case it is directly equivalen${d@ meaning “this node”. The variab® @ st ub)
means the value of the leaf node callgdub that is a child node of “this node”.

Thus the template tree specifies the following information:

e The nodes of the tree specify all the configuration optiorssitde on the router.

e Some of the nodes are annotated with information to indieditieh software to run to provide the
functionality rooted at that node, and to indicate whicheottmodules this software depends on being
running.

e Most of the nodes are annotated with commands to be run wigevathe of the node changes in the
configuration tree, when a new instance of the node is cremtad instance of the node is deleted in
the configuration tree, or to get the current value of a node fthe running processes providing the
functionality.

2.1 Template Tree Node Types

The following types are currently supported for templage thodes:

ui nt
Unsigned 32 bit integer

i nt
Signed 32 bit integer
bool
Boolean - valid values arter ue andf al se.
toggl e
Similar to boolean, but requires a default value. Displayhef config tree node is suppressed if the
value is the default.
i pv4
An IPv4 address in dotted decimal format.
i pv4_prefix
An IPv4 address and prefix length in the conventional formaag.: 1. 2. 3. 4/ 24.
i pv6
An IPv6 address in the canonical colon-separated humatabéaformat.
i pve_prefix
An IPv6 address and prefix in the conventional format. H.g80: : 1/ 64
macaddr

An MAC address in the conventional colon-separated hexdbria.g.:00: c0: 4f : 68: 8c: 58

It is likely that additional types will be added in the futuess they are found to be needed.

2.2 Template Tree Commands

This section provides a complete listing of all the temptete commands that the rtrmgr supports.

2.2.1 The%odi nf o Command.
The sub-commands to tBéodi nf o command are:

%rodi nfo: provi des ModuleName
Theprovi des subcommand takes one additional parameter, which givesame of the module
providing the functionality rooted at this node.

5

%rodi nfo: depends list of modules
Thedepends subcommand takes at least one additional parameter, gidiagjof the other modules
that must be running and configured before this module mayaboted.

%rodi nfo: pat h ProgramPath
The pat h subcommand takes one additional parameter giving the gatlrof the software to be
run to provide this functionality. The pathname may be alisobr relative to the root of the XORP
tree. The ordering in computing the root of the tree is: (& shell environment XORROOT
(if exists); (b) the parent directory the rtrmgr is run froomly if it contains the etc/templates and
the xrl/targets directories); (c) the XOBROOT value as defined in config.h (currently this is the
installation directory, and defaults to “/usr/local/xdrp

%modi nfo: startcommit XRL
Thest art conm t subcommand takes one additional parameter, and gives theX&all before
performing any change to the configuration of the module.

%modi nfo: endcommit XRL
Theendconm t subcommand takes one additional parameter, and gives thaoxgll to complete
any change to the configuration of the module. startcomnadiezgcommit are optional. They provide
a way to make batch changes to a module configuration as ancatperation.

%rodi nfo: st atusnet hod method
Thest at usnmet hod subcommand indicates the mechanism to be used to discavstatus of the
module. The only method current supportecid which indicates usage of the common interface
get _st at us XRL.

%odi nfo: shut downnet hod method
The shut downnet hod subcommand indicates the mechanism to be used to gracefuitglown
the module. The only method current supportecdris which indicates usage of the common interface
shut down XRL. If the process does not then transitionRBOC_SHUTDOWN state, the rtrmgr will
then kill the process.

2.2.2 The%r eat e Command.

% r eat e is used to create a new instance of an interior node in thegroafion tree.

e The first parameter indicates the form of action to take tdgper this action - typically it isxr |
which indicates an XRL should be called.

e If the action isxr | , then the second parameter gives the XRL to call to creatadheconfiguration
tree instance of this template tree node.

2.2.3 The%acti vat e Command.

%acti vat e is used to activate a new instance of an interior node in tmfiguration tree. It is typi-
cally paired with%cr eat e - the%er eat e command is executed before the relevant configuration of the
node’s children has been performed, whergast i vat e is executed after the node’s children have been
configured. A particular interior node might have eitber eat e, %act i vat e or both.

e The first parameter indicates the form of action to take tdoper this action - typically it isxr |
which indicates an XRL should be called.

e Ifthe action isxr | , then the second parameter gives the XRL to call to active@éw configuration
tree instance of this template tree node

For example, if the template tree held the following:

address @ ipv4 {
%reate: xrl XRL1
Y%activate: xrl XRL2
net mask: ipv4d {
%set: xrl XRL3

}

Then when an instance of address and netmask are createdrdiggied, the execution order of the XRLs
will be: XRL1, XRL3, XRL2

2.2.4 The% i st Command.

% i st is called to obtain a list of all the configuration tree instas of a particular template tree node. For
example, a particular template tree node might represenintbarfaces on a router. The configuration tree
would then contain an instance of this node for each interGagrently configured. Thé i st command
on this node would then return the list of interfaces.

e The first parameter indicates the form of action to take tdogper this action - typically it isxr |
which indicates an XRL should be called.

e If the action isxr | , then the second parameter gives the XRL to call to returfighe

2.2.5 The%lel et e Command.

%lel et e is called to delete a configuration tree node and all its obild A node that has%®cr eat e or
%act i vat e command should also havé/del et e command.

e The first parameter indicates the form of action to take tdoper this action - typically it isxr |
which indicates an XRL should be called.

e If the action isxr | , then the second parameter gives the XRL to call to deletedh&guration tree
instance of this template tree node.
2.2.6 The¥%set Command.

Uset is called to set the value of a leaf node in the configuratiea.tr

e The first parameter indicates the form of action to take tdoper this action - typically it isxr |
which indicates an XRL should be called.

e If the action isxr | , then the second parameter gives the XRL to call to set thee\al configuration
tree instance of this template tree node.

2.2.7 The%unset Command.

Yunset is called to unset the value of a leaf node in the configuratiea. The value will return to its
default value if a default value is specified.

e The first parameter indicates the form of action to take tdoper this action - typically it isxr |
which indicates an XRL should be called.

e Ifthe actionisxr | , then the second parameter gives the XRL to call to unsetdhe vf configuration
tree instance of this template tree node.

2.2.8 The%get Command.

%get is called to get the value of a leaf node in the configuratiee.tNormally the rtrmgr will know the
value if there is no external means to change the value, bt command provides a way for the rtrmgr
to re-sync if the value has changed.

e The first parameter indicates the form of action to take tdgper this action - typically it isxr |
which indicates an XRL should be called.

e If the action isxr | , then the second parameter gives the XRL to call to get theswafl configuration
tree instance of this template tree node.

2.2.9 The%al | owCommand.

The%al | owcommand provides a way to restrict the value of certain ntmlepecific values.

e The first parameter gives the name of the variable to be ctedri

e The remaining parameters are a list of possible allowedegdlor this variable.

For example, a node might specify an address family, whiatténded to be one of “inet” or “inet6”. The
type of the node i$ ext , which would allow any value, so the allow command mightwlihe rtrmgr to
restrict the legal values without having to communicatélhie process providing this functionality.
A more subtle use might be to allow certain nodes to exist rdyparent node was of a certain value.
For example:

famly @ text {
%l low. $(@ "inet" "inet6";
address @ ipv4d {
%l low. $(famly.@ "inet";
br oadcast: i pv4;
}
address @ ipv6 {
%l low. $(famly. @ "inet6";
}
}

In this case, there are two different typed versions of tedr ess @ node, once for IPv4 and one for
IPv6. Only one of them has a leaf node calledbadcast . The allow command permits the rtrmgr to do
type-checking to ensure that only the permitted combinatire allowed.

3 The Configuration File

Whereas the template files inform the rtrmgr aspibssibleconfiguration of the router, the configuration file

provides the specific startup configuration to be used bysghesific router. The syntax is similar to, but not

the same as, that of template files - the differences aretioteh - template files are intended to be written

by software developers, whereas configuration files aradee to be written by network managers. Hence
the syntax of configuration files is simpler and more inteitibut less powerful. However, both specify

the same sort of tree structure, and the nodes in the conffiguitaee must correspond to the nodes in the
template tree.

An example fragment of a configuration file might be:

protocol s {

ospf {
router-id: 1.2.3.4
nos pf
area 1.2.3.27 {
st ub

interface fxpl {
hello-interval: 10
}
interface fxp2
}
}
}

Note that unlike in the template tree, semicolons are nadede the configuration tree, and that line-breaks
are significant.

The example fragment of a configuration file above will camstthe following configuration tree from
the template tree example given earlier:

ROOT I protocols || ospf router—id=1.2.3.4 |
area 1.2:3:27 stub=true
interface fxpl hello-interval=10 |
dead-inteval=90
[interface fxp2 hello-interval=30 |

dead-interval=90

Note that configuration tree nodes have been createddad- i nt er val and (in the case of fxpl)
for hel | o-i nt erval even though this was not mentioned in the configuration fileis 15 because the
template tree contains a default value for this leaf node.

4 Command Line Interface: xorpsh

The rtrmgr process is the core of a XORP router - it starts aopssprocesses and keeps track of the
configuration. To do its task, it must run as root, whereast wiher XORP processes don't need privileged
operation and so can be sandboxed. This makes the rtrmgegwadle single most critical point from a
security point of view. Thus we would like the rtrmgr to be @mse as possibfe and to isolate it from
possibly hostile input as far as is reasonable.

For these reasons we do not build a command line interfaeettirinto the rtrmgr, but instead use an
external process calledbr psh to interact with the user, while limiting the rtrmgr’s ingation with xorpsh
to simple authentication mechanisms, and exchanges ofgtwafion tree data. Thus the command line
interface architecture looks like:

xorpsh processes
running from unprivileged
user accounts

Constrained

CLI = interface
interaction
with = rtrmgr
users process
_ N XRLs for

onfiguration

‘ RIB H BGP HOSPF H PIM—SM‘

The interface between the rtrmgr and a xorpsh instance stsnsi XRLs that the xorpsh may call to
query or configure rtrmgr, and a few XRLs that the rtrmgr maynakronously call to alert the xorpsh
process to certain events.

The rtrmgr exports the following XRLs that may be called bypsh:

regi ster_client
This XRL is used by a xorpsh instance to register with thegirrm response, the rtrmgr provides the
name of a file containing a nonce - the xorpsh must read thiarfidereturn the contents to the rtrmgr
to authenticate the user.

aut henti cateclient
Xorpsh uses this to complete the authentication process.

get runni ngconfig
Xorpsh uses this to request the current running configurdtmm the rtrmgr. The response is text in
the same syntax as the rtrmgr configuration file that providestrmgr’s view of the configuration.

ent er _confi g_.node
A xorpsh process must be in configuration mode to submit cordtgpn changes to the rtrmgr. This
XRL requests that the rtrmgr allows the xorpsh to enter condion mode. Not all users have
permission to enter configuration mode, and it is also ps#iat a request may be refused because
the configuration is locked.

Unfortunately the router manager is not simple as we wol li

10

get config_users
Xorpsh uses this to request the list of users who are cuyrentonfiguration mode.

appl y_confi g.change
Xorpsh uses this to submit a request to change the runninggooation of the router to the rtrmgr.
The change consists of a set of differences from the curvemting configuration.

| ock_config
Xorpsh uses this to request an exclusive lock on configuratianges. Typically this is done just
prior to submitting a set of changes.

unl ock_config
Unlocks the rtrmgr configuration that was locked by a presioall tol ock confi g.

| ock_node
Xorpsh uses this to request a lock on configuration changespecific config tree node. Usually this
will be called because the user has made local changes tortlfig but not yet committed them, and
wishes to prevent another user making changes that corifticking is no substitute for human-to-
human configuration, but it can alert users to potential lerok.

Note: node locking is not yet implemented.

unl ock_node
Xorpsh uses this to request a lock on a config tree node be exmov

save_config
Xorpsh uses this to request the configuration be saved to. artile actual save is performed by the
rtrmgr rather than by xorpsh, but the resulting file will bermd by the user running this instance of
xorpsh, and the file cannot overwrite files that this user daalt otherwise be able to overwrite.

| oad_config
Xorpsh uses this to request the rtrmgr reloads the routdigeoation from the named file. The file
must be readable by the user running this instance of xoeghthe user must be in configuration
mode when the request is made.

| eave_confi g_node
Xorpsh uses this to inform rtrmgr that it is no longer in coaf@tion mode.

Each xorpsh process exports the following XRLs that thegtroan use to asynchronously communicate
with the xorpsh instance:

new.confi g_user
Rtrmgr uses this XRL to inform all xorpsh instances that arednfig mode than another user has
entered config mode.

confi g_change_done
When a xorpsh instance submits a request to the rtrmgr tayehidne running config or to load a con-
fig from a file, the rtrmgr may have to perform a large number Bio€alls to implement the config

11

change. Due to the single-threaded nature of XORP progeigsestrmgr cannot do this while re-
maining in theappl y_confi g_change XRL, so it only performs local checks on the sanity of the
request before returning success or failure - the configuratill not have actually been changed at
that point. When the rtrmgr finishes making the change, omvaiture occurs part way through mak-
ing the change, the rtrmgr will caionf i g_change_done on the xorpsh instance that requested
the change to inform it of the success or failure.

confi g_changed
When multiple xorpsh processes are connected to the rtaemdrone of them submits a successful
change to the configuration, the differences in the conftgurawill then be communicated to the
other xorpsh instances to keep their version of the configuran sync with the rtrmgr’s version.

4.1 Operational Commands and xorpsh

Up to this point, we have been dealing with changes to theercudnfiguration. Indeed this is the role
of the rtrmgr process. However a router's command line fateris not only used to change or query the
router configuration, but also to learn about the dynami sitbthe router, such as link utilization or routes
learned by a routing protocol. To keep it as simple and roasigtossible, the rtrmgr is not involved in these
operational modeommands. Instead these commands are executed directlydrpsh process itself.

To avoid the xorpsh implementation needing in-built knadge of router commands, the information
about operational mode commands is loaded from anothef sshplate files. A simple example might be:

show i nterface $(interfaces.interface.*) {
%command: show i nterface;
%odul e: fea;
Y%opt paraneter: brief;
Y%opt paraneter: detail;
Yopt _parameter: extensive;
}
show vif $(interfaces.interface.*.vif.*) {
%command: show vif;
%odul e: fea;
Yopt paraneter: brief;
Yopt _paraneter: detail;
Y%opt _paraneter: extensive;

}

This template file defines two operational mode commarglsoWw i nt er f ace”and “show vi f .

The “show interface” command takes one mandatory paranvetese value must be the name of one of
the configuration tree nodes taken from the variable nandeaitl expansiofi(i nt er f aces. i nterface. *).
Thus if the router had config tree nodes callest erf aces i nterface x| 07, and “i nterfaces
i nterface x| 1", then the value of the mandatory parameter must be ekhéror x| 1.

Additional optional parameters mightbei ef ,det ai | , orext ensi ve -the set of allowed optional
parameters is specified by th@pt _par amet er commands.

The % omrand command indicates the program or script to be executed temgmt this command
- the script should return human-readable output precegdedMIME content type indicating whether the

12

text is structured or nét The entire command line typed by the user is passed intodimenand. Thus the
xorpsh might invoke thehow.i nt er f ace command using the Unix command line:

pat h/to/ show_i nterface show interface xlI 0 bri ef

The pathname to a command must be relative to the root of tHeFXttee. The ordering in computing the
root of the tree is: (a) the shell environment XORPOT (if exists); (b) the parent directory the xorpsh is
run from (only if it contains the etc/templates and the arjets directories); (¢) the XORROOT value as
defined in config.h (currently this is the installation dicey, and defaults to “/usr/local/xorp”).

The command#rodul e indicates that this command should only be available thidhg CLI when
the router configuration has required that the named moaddben started.

Note: currently there is no security mechanism restricacgess to operational mode commands beyond
the restrictions imposed by Unix file permissions. This ismended to be the long-term situation.

20nly t ext / pl ai nis currently supported.

13

