
XORP PIM-SM Routing Daemon

Version 0.4

XORP Project
International Computer Science Institute

Berkeley, CA 94704, USA
feedback@xorp.org

August 28, 2003

1 Introduction

1.1 Overview

This document provides an overview of the XORP PIM-SM [2] Routing Daemon. It is intended to provide
a starting point for software developers who wish to modify this software.

A router running PIM-SM interacts with other PIM-SM routersand multicast group members, com-
putes the multicast routing state, and installs the corresponding multicast forwarding state in the multicast
forwarding engine.

The chosen architecture for the XORP PIM-SM implementationemphasizes on correctness and extensi-
bility rather than high performance or minimal memory footprint. PIM-SM is a fairly complicated protocol,
therefore it is very important that the implementation follows closely the protocol specification. Otherwise,
premature optimization or “cutting corners” might introduce problems that are difficult to find. Only after
the implementation is well tested, we would try to optimize those parts of the implementation that should
prove to be a bottleneck.

Currently (August 2003), the PIM-SM implementation is based on the specification in the following
documents:

• draft-ietf-pim-sm-v2-new-05.{ps,txt} (The core PIM-SM specification).

• draft-ietf-pim-sm-bsr-03.{ps,txt} (The Bootstrap mechanism specification).

The only major features not implemented yet are SSM support and security.

1.2 Acronyms

Acronyms used in this document:

• MFC : MulticastForwardingCache: another name for an entry in the multicast forwarding engine
(typically used on UNIX systems).

• MFEA : MulticastForwardingEngineAbstraction

• MLD/IGMP : MulticastL istenerDiscovery/InternetGroupManagementProtocol

• MRIB : MulticastRouting InformationBase

• PIM-SM : Protocol IndependentMulticast–SparseMode

• RIB : Routing InformationBase

1.3 PIM-SM Design Architecture Overview

(from MFEA or RTRMGR)

PimScopeZoneTable

PimBsr

PimConfig

PimVif PimVif PimVifPimVif PimVif PimVif ...

RpTable

PimMrt

PimNode

PimMribTable
Set MRIB info (from RIB)

Receive MFEA signals

Receive membership
info (from MLD/IGMP)

Multicast forwarding
state to the MFEA

Send/receive PIM messages
(to/from MFEA)

Get/set configuration or running state info
(to/from user and/or RTRMGR)

Receive vif info

Figure 1: PIM-SM design overview

Figure 1 provides a general overview of the PIM-SM components. For each component there is a C++
class with exactly the same name. The main components are briefly described below:

• PimNode: a representation of a single PIM-SM routing unit (e.g.,a virtual PIM-SM router). Typi-
cally, there would be a single PimNode per PIM-SM router.

• PimVif: PIM-specific virtual (network) interface that is used for sending and receiving PIM control
packets.

• PimScopeZoneTable:the table that contains information about scoped zones.

• PimMrt: PIM-specific multicast routing table.

2

• PimBsr: the PIM-Bootstrap mechanism unit.

• RpTable: the table with the PIM-SM RP information.

• PimMribTable: the table with the MRIB information.

• PimConfig: contains PIM-specific configuration.

Those components are described in details in Section 2. For information about the interaction between
the PIM-SM and other modules see [1].

2 Components Description

2.1 PimNode Description

PimNode is a representation of a single PIM-SM routing unit (e.g.,a virtual PIM-SM router). Typically,
there would be a single PimNode per PIM-SM router. However, in some cases a PIM-SM router may have
more than one routing unit. For example, it could have one PimNode for IPv4, and another one for IPv6
multicast routing. Further, if we want to run PIM-SM in a simulation environment, each PIM-SM router
within that simulation will be represented by a single PimNode.

From a developer’s point of view, PimNode contains all the state related to the PIM-SM routing unit,
and exports the front-end interface to interact with that unit. For example, PimNode contains the methods
to start/stop or configure PIM-SM, or to send/receive PIM control packets to/from the routing unit. Those
methods are described in the following files:

• pim/pim_node.hh

• libproto/proto_node.hh

• libproto/proto_unit.hh

PimNode itself does not implement the mechanisms to communicate with other routing units (e.g.,to
send or receive control packets to/from the network), or to perform other PIM-independent operations such
as installing multicast forwarding entries in the multicast forwarding engine. Those mechanisms are outside
the scope of PimNode, and must be implemented separately.

PimNode contains several pure virtual methods (e.g.,join_multicast_group() is used to join a
multicast group on an interface) that must be implemented bya class that inherits PimNode. For example,
XrlPimNode is a class that uses PimNode as a base class; XrlPimNode uses XRL-based communication
mechanisms between PimNode and other XORP components such as the MFEA and MLD/IGMP modules.

By default, PimNode is disabled; therefore, on startup it must be enabled explicitly.

2.2 PimVif Description

PimVif is a PIM-specific virtual (network) interface that isused for sending and receiving PIM control
packets. It includes the methods for processing and composing PIM control messages, as well as various
state per interface (e.g.,the information about PIM-SM neighbors).

Typically, there would be one PimVif per network interface such as physical interface, tunnel, or the
loopback interface. In addition, there would be one specialPimVif virtual interface: the PIM Register
virtual interface that is used for sending and receiving PIMRegister messages. Not all virtual interfaces

3

are used by PIM; for example, all interfaces that are not multicast capable, and the loopback interface are
ignored for multicast routing.

Typically, from developer’s point of view, all interactionwith PimVif would be through PimNode1.
The public interface for PimVif contains the methods to manipulate a virtual (network) interface. Those

methods are to start/stop/enable/disable a virtual interface, and to configure it. The methods are described
in the following files:

• pim/pim_vif.hh

• libxorp/vif.hh

• libproto/proto_unit.hh

PimVif contains state such as PIM Hello related information. Also, all the PIM-specific methods for
parsing or constructing PIM control messages when a PIM packet is received or sent are implemented
as methods in PimVif. The parsing or construction of each message type is implemented in a separate
file with a name prefix ofpim_proto. For example,pim_proto_cand_rp_adv.cc implements
sending and receiving of PIM Candidate-RP-Advertisement messages. The handing of other message types
is implemented in similarly named files.

By default, each PimVif is disabled; therefore, on startup it must be enabled explicitly.

2.3 PimScopeZoneTable Description

PimScopeZoneTable is a table that contains information about scoped zones. There is one such table per
PimNode. This table is used to check whether various controlmessages are allowed to be sent or accepted
a specific network interface2.

By default, PimScopeZoneTable is empty;i.e., there are no scoping zone restrictions.

2.4 PimMrt Description

PimMrt is the PIM-specific multicast routing table. It is thecentral and most important component: its state
is modified by the PIM control messages, and the output of it isthe multicast forwarding state information
that is installed in the multicast forwarding engine.

The multicast routing table is composed of four tables. Eachtable contains PimMre entries (described
in file pim/pim_mre.hh):

• (*,*,RP) multicast routing table. This table contains all (*,*,RP) multicast routing entries3. For
simplicity of implementation, this table contains an (*,*,RP) entry for each RP in the RpTable, even
if no (*,*,RP) Join messages for that RP were received. The iterator for this table returns the entries
ordered by their RP address: the numerically smallest addresses first. Note that each PimMre entry
in this table has the source address set to the RP address, andthe group address set to zero (i.e.,
IPvX::ZERO()).

• (*,G) multicast routing table. This table contains all (*,G) multicast routing entries. Each entry in that
table contains a pointer to the corresponding (*,*,RP) entry for that group, or NULL if the group has

1For simplicity, currently (August 2003) there are few occasions when XrlPimNode uses direct access to PimNode.
2Note that in the current implementation (August 2003) the PimScopeZoneTable is used only for PIM Bootstrap messages. In

the future, the scope zone information would be used for other control messages as well.
3(*,*,RP) entry is an entry that matches all multicast groupsthat use one specific RP.

4

no RP yet. The iterator for this table returns the entries ordered by their group address: the numerically
smallest addresses first. Note that each PimMre entry in thistable has the source address set to zero
(i.e.,IPvX::ZERO()).

• (S,G) multicast routing table. This table contains all (S,G) multicast routing entries. Each entry in
that table contains a pointer to the corresponding (*,G) entry for that group, or NULL if there is no
(*,G) entry. It also contains a pointer to the corresponding(S,G,rpt) entry if such entry exists (seen
below). There are two iterators for this table: an iterator for the entries ordered by the numerically
smallest source address first, and an iterator for the entries ordered by the numerically smallest group
address first.

• (S,G,rpt) multicast routing table. This table contains all(S,G,rpt) multicast routing entries. Each entry
in that table contains a pointer to the corresponding (*,G) entry for that group, or NULL if there is
no (*,G) entry. It also contains a pointer to the corresponding (S,G) entry if such entry exists. There
are two iterators for this table: an iterator for the entriesordered by the numerically smallest source
address first, and an iterator for the entries ordered by the numerically smallest group address first.

For simplicity of implementation, currently (August 2003)PimMrt contains one more table: PimM-
rtMfc PIM-specific table with Multicast Forwarding Cache (PimMfc) entries (in the future, this table may
be moved out of PimMrt to PimNode). This table contains all entries that have been installed in the multi-
cast forwarding table in the multicast forwarding engine. Currently (August 2003), those entries are source-
group-specific, and are installed “on-demand” (i.e., only if there is an active source for some multicast
group). In the future, group-specific entries may be supported as well (assuming that that multicast forward-
ing engine supports (*,G) multicast forwarding entries).

In addition to the above tables, PimMrt contains a mechanismfor tracking dependencies among the
PimMre and PimMfc entries, as well as the PimMre and PimMfc dependencies on external state such as
the RP set or the MRIB information. For example, if the MRIB for a specific network prefix changes, then
all PimMre and PimMfc entries that depend on that network prefix must be updated accordingly. A single
change may trigger a number of operations that must be performed on a number of entries, therefore we
need to carefully track the state dependency. Below is a summary of some of the events that may trigger
actions to process entries in PimMrt:

• RP-Set change:e.g.,if there is any change to the RP-Set that affects the group-to-RP mapping.

• MRIB change: any change in the underlying unicast routing that affects the Reverse-Path Forwarding
information toward an RP or a source.

• Next-Hop PIM neighbor change: any change to the set of PIM neighbors that may affect the Next-Hop
PIM Router toward a destination.

• Reception of a PIM Join/Prune message.

• Reception of a PIM Assert message.

• Add/deletion of a local multicast member.

• Change in the Designated Router on an interface.

• Change in the IP address or IP subnet on an interface.

• Start or stop a virtual interface.

5

• Addition or deletion of a PimMre entry.

A complete list of all input events that may trigger actions is in filepim/pim_mre_track_state.hh
(see theinput_state_t INPUT_STATE_* events).

In some cases, keeping track of the entries that need to be processed for a given input event is relatively
simple. For example, if the MRIB for a network prefix changes,processing all (S,G) PimMre entries that
might be affected can be done by using the source-first iterator for the (S,G) multicast routing table, and
then iterating over all (S,G) PimMre entries whose source address matches that network prefix. However,
in other cases we cannot use those table iterators. For example, if an RP is deleted, we need to process all
corresponding (*,G) entries that match to that RP, and to reassign them to a new RP. In that case, to keep
track of the dependencies between the RP and the (*,G) entries, each RP entry in the RpTable contains a list
of PimMre entries that match to that RP. Similarly, each PimNbr entry (an entry that contains information
about a PIM neighbor) contains a list of all PimMre entries that use that PIM neighbor as the Next-Hop
Router toward the RP or the source.

The dependency tracking mechanism needs to solve another problem: for each input event, find all the
operations and their ordering that need to be performed on some of the PimMre and PimMfc entries. The
solution chosen to solve this problem is to enumerate all possible input events and output operations, and to
compute in advance a table. Lookup to this table for a given input event returns a list of the ordered output
operations that need to be performed for that event.

If there are just few input events and output operations, it might be possible to create such table manually.
However, currently (August 2003) there are 52 input events and 77 output operations, therefore it is not
feasible to crate manually such table. The solution is on startup to automatically compute this table based on
a set of rules about the various state dependencies as definedin the PIM-SM spec. Those state dependencies
are derived from the macros in the PIM-SM protocol specification. For example, the specification document
contains macros like:

pim_include(S,G) =
{ all interfaces I such that:
((I_am_DR(I) AND lost_assert(S,G,I) == FALSE)
OR AssertWinner(S,G,I) == me)
AND local_receiver_include(S,G,I) }

Then, the corresponding state dependency rule in the implementation is:

void
PimMreTrackState::track_state_pim_include_sg(list<PimMreAction> action_list)
{

track_state_i_am_dr(action_list);
track_state_lost_assert_sg(action_list);
track_state_assert_winner_sg(action_list);
track_state_local_receiver_include_sg(action_list);

}

In other words, if the value oflost_assert(S,G,I) for example changes, then the value of
pim_include(S,G) must be recomputed. However, we may have some state dependency rules for
lost_assert(S,G,I) itself, hence if we combine all state dependency rules, we can represent the de-
pendencies with a collection of uni-directional graphs. Then, to create the list of actions for each input entry,
we need to consider all paths from the graph node for that input entry to all reachable output actions. The

6

uni-directional graphs creation and the extraction of the lists of actions for each input entry is performed
once on startup. The result lists are saved internally inside PimMrt, and used during processing of input
actions.

Finally, the last major problem that the dependency tracking mechanism needs to solve is how to process
a large number of entries triggered by a single event withoutstopping processing of other components in
the router (e.g.,receiving PIM control packets, or responding to a command sent by the CLI). This problem
requires attention because the implementation is single-threaded, therefore if processing a single event takes
too long, the rest of the pending events may be processed too late (e.g.,if the periodic sending of PIM Hello
messages is delayed for too long, the PIM neighbors may timeout this router). The solution of this problem
is to voluntarily suspend the processing if it is taking too long, then save the necessary state to continue the
processing sometime later, and finally return control to thecontrol loop which handles all events. Typically,
the processing of some event may take too long if there is a large number of PimMre or PimMrt entries
that need to be processed (for example, thousands of (*,G) entries if the RP for those entries changes). In
that case, we use “time-slices” to compute how long has takenthe processing so far. In the above example,
we check the processing time after we process each (*,G) entry: if the elapsed time is above a threshold
(default to 100ms as of August 2003), we save the appropriatestate to continue the processing later (e.g.,in
the above example we save the address of the next multicast group to process).

All dependency tracking processing and time-slicing uses PimMreTask entries to keep the appropriate
state. There is a single list of PimMreTask entries per PimNode, and the list is FIFO: new tasks are added to
the end of the lists, and the task at the front of the list is processed until it is completed (e.g.,within one or
several time-slices).

2.5 PimBsr Description

PimBsr is the PIM-Bootstrap mechanism unit. It implements the Bootstrap mechanism as described in [3].
There is one PimBsr unit per PimNode. The main purpose of the PimBsr is to run the Bootstrap mechanism,
and to update accordingly the RpTable with the current RP-Set.

The data contained in PimBsr is organized as described below. PimBsr keeps three lists of BsrZone
entries: one list for the active BSR zones, a second list thatcontains information about expiring Candidate-
RPs for group prefixes that the lastest Bootstrap message didnot contain information about, and a third
list for the locally configured Cand-BSR zones and/or Cand-RP information. On startup, the active and
expire BSR zone lists are empty. If the node is configured as a Candidate-BSR and/or a Candidate-RP, this
information will be added to the third list; otherwise that list is also empty.

Each scope zone is identified by a scope zone ID, and a flag. The flag, if true, indicates that this is scoped
zone, otherwise the zone is non-scoped. The scope zone ID is the network prefix address that corresponds to
that zone. By definition, scoped zones cannot overlap, therefore it is not permitted to configure the PimBsr
with overlapping scoped zones and/or to accept Bootstrap messages with scoped zones that overlap. If the
zone is non-scoped, then the scope zone ID is set to the multicast base prefix address (i.e., 224.0.0.0/4 for
IPv4 or FF00::/8 for IPv6).

Each BsrZone contains information about the current BSR forthat zone, and a list of BsrGroupPrefix
entries for that zone. Each BsrGroupPrefix corresponds to a multicast group prefix within that zone that has
Candidate-RPs, and contains the list of BsrRp entries for each Candidate-RP for that prefix.

All information from the Bootstrap and Candidate-RP messages is kept in the above data structures.
Further, those structures are used to keep various timers such as to timeout Candidate RPs or to timeout
the current BSR. If the RP-Set is changed after receiving a Bootstrap message or after a timeout of an
Candidate-RP, then the RpTable is updated accordingly.

7

2.6 RpTable Description

RpTable is the table that contains the current RP-Set. Thereis one table per PimNode. This table is updated
by PimBsr if the RP-Set is propagated through the Bootstrap mechanism, or by PimConfig if the RP-Set is
configured manually.

RpTable contains a list of all RPs with one PimRp entry per RP per multicast group prefix. To compute
the RP for a given group, we just scan the whole list to find the RP. Typically, the list of RPs would be
relatively short, therefore for simplicity we scan the whole list. If the overhead becomes too large, then the
scan can be optimized by grouping the Candidate-RPs for eachgroup prefix, and by considering only the
Candidate-RPs with the highest priority.

If the RP-Set is modified, then all affected PimMre and PimMfcentries must be updated accordingly.
For this reason, each PimRp entry contains lists of the PimMre and PimMfc entries that map to that RP. If
the RP is removed, then each of the entries on those lists is re-mapped to the new RP for its group. This is
achieved by scheduling a PimMreTask by the PimMrt, that performs the appropriate dependency actions for
each entry.

The RpTable may contain one special PimRp entry with an RP address of all-zeroes (i.e.,IPvX::ZERO()).
This entry is used to keep the lists of all PimMre and PimMfc entries that have no RP yet. If a new RP is
added to the RpTable, then all entries that have no RP yet are processed to find if some of them may map to
this new RP. Those who do map to the new RP are moved to the appropriate list for that RP.

2.7 PimMribTable Description

PimMribTable is the table with the MRIB information. The MRIB is used to compute the Reverse-Path
Forwarding information toward the RPs (needed by the (*,*,RP), (*,G) and (S,G,rpt) state), and toward each
active multicast sender (needed by the (S,G) state). This information contains the next-hop router address
and the interface toward that router, the routing metric andthe metric preference:

// Reverse-Path Forwarding information (MRIB payload entry)
class Mrib {

...
IPvXNet _dest_prefix; // The destination prefix address
IPvX _next_hop_router_addr; // The address of the next-hop router
uint16_t _next_hop_vif_index; // The vif index to the next-hop router
uint32_t _metric_preference; // The metric preference to the

// destination
uint32_t _metric; // The metric to the destination

};

The MRIB information is obtained from the RIB module4; if the RIB changes, the PimMribTable is
updated as well. Examples when the MRIB information may change are: the unicast routing changes the
next-hop router address toward a destination, local configuration changes some of the routing preference
metrics, or local interface configuration changes the virtual interface and/or the next-hop router toward a
destination.

An update to the PimMribTable may affect a number of PimMre and PimMfc entries in the PimMrt
table. The update of the affected entries is handled by the dependency-tracking and time-slice processing
mechanism implemented by the PimMrt table. Note that we do not need to link all PimMre and PimMfc
entries into lists of entries that depend on a particular entry in the PimMribTable. The reason is because the
dependency is implied by the network prefix address covered by an entry in the PimMribTable, that overlaps
the RP or source address of a given PimMre or PimMfc entry.

4Currently (August 2003), the information is received from the MFEA instead.

8

2.7.1 MRIB Changes Update

In general, there are two mechanisms to inform the PIM-SM module about MRIB changes:

• Filtering at the PIM-SM module:Whenever there are any changes about the MRIB information kept
inside the RIB module, the RIB module informs the PIM-SM module about the changes. Then the
PIM-SM module processes those changes to find whether they would affect in any way the current
multicast routing.

• Filtering at the RIB module:The PIM-SM module “registers” in advance with the RIB moduleabout
the particular destination addresses/prefixes it is interested at, and only if the MRIB information about
any of those registered destinations is changed, the RIB module informs the PIM-SM module about
the change.

The basic difference between the above two methods is where we move the complexity about the MRIB
changes: at the RIB side, or the PIM-SM side. Some other differences are:

• If we perform filtering at the PIM-SM module, and if the unicast routing is changing quite rapidly,
and if most of those changes do not affect the PIM-SM module, this will add unnecessary overhead
to the communication from the RIB to the PIM-SM module.

• If we perform filtering at the RIB module, and if there is a large number of destinations the PIM-SM
module needs to be informed about, registering all of those destinations at the RIB may introduce an
“explosion” of communication from the RIB to the PIM-SM module in case when there is a change
in the routing information about a large number of destinations.

• If we perform filtering at the PIM-SM module, the implementation may require the PIM-SM to keep
a local (simplified) copy of all the RIB information, therefore it may increase notably the memory
usage. This copy however can be used to perform the proper comparison and modification whenever
MRIB update is received from the RIB module.

It may be possible to use some hybrid methods of propagating the MRIB changes from the RIB module
to the PIM-SM module, but based on the above comparison it seems thatfiltering at the PIM-SM module
is the simpler and more appropriate solution. Therefore, the RIB module needs to inform the PIM-SM
module whenever the MRIB information for any destination prefix is changed. The simplest solution for
the RIB module would be whenever any entry is changed, the RIBmodule would “dump” all RPF entries.
This however may increase the communication overhead, and may complicate additionally the PIM-SM
module. A better solution would be if the RIB modules sends only atomic updates of the RPF information
to the PIM-SM module. For example, a single message would contain all affected entries:e.g.,a list of
MRIB ADD andMRIB DELETEcommands, and the particular ordering of those entries would specify also
the order the PIM-SM module should apply them.

Note that as we mentioned earlier, currently (August 2003),the MRIB information is received from the
MFEA, which reads directly the unicast forwarding table from the (UNIX) kernel, and PIM-SM keeps a
local copy of the whole table. The MFEA periodically reads (e.g.,every 10 seconds) the unicast forwarding
table, and if there is any change, it sends the changes to all interested modules (that includes the PIM-SM
module). Similarly, the MFEA informs PIM-SM about any virtual interfaces information changes (e.g.,an
address has been added or deleted)5.

5Strictly speaking, the VIF (Virtual InterFace) abstraction is based on information that can be obtained directly from the kernel.
However, the VIF information is also related with the RIB information as well, therefore for consistency reason, probably it is

9

2.8 PimConfig Description

PimConfig handles the PIM-specific configuration6. This configuration is used to configure the following
units:

• PimVif: protocol version, Hello-related options and timervalues, etc.

• PimScopeZone table: add and delete information about scoped zones.

• PimBsr: configure the local routing unit as a Candidate-BSR or a Candidate-RP.

• RpTable: add static RPs to the RP-Set.

A Modification History

• December 11, 2002: Version 0.1 completed.

• March 10, 2003: Updated to match XORP version 0.2 release code; cleanup.

• June 9, 2003: Bump-up the version to 0.3, and the date.

• August 28, 2003: Bump-up the version to 0.4, and the date.

References

[1] XORP Multicast Routing Design Architecture. XORP technical document. http://www.xorp.org/.

[2] Bill Fenner, Mark Handley, Hugh Holbrook, and Isidor Kouvelas. Protocol Independent Multicast -
Sparse Mode (PIM-SM): Protocol Specification (Revised).Internet Draft, draft-ietf-pim-sm-v2-new-
05.txt, March 2002. Work in progress.

[3] Bill Fenner, Mark Handley, Roger Kermode, and David Thaler. Bootstrap Router (BSR) Mechanism
for PIM Sparse Mode.Internet Draft, draft-ietf-pim-sm-bsr-03.txt, February 2003. Work in progress.

better if any VIF information changes is propagated via the RIB module to the PIM-SM module, especially because any change in
the VIF information may affect the unicast routing as well. This is an open issue, therefore in the future the current behavior may
be changed.

6Currently (August 2003), PimConfig is not implemented; rather, all state is kept inside PimNode instead.

10

