XORP Multicast Routing Design Architecture
Version 0.4

XORP Project
International Computer Science Institute
Berkeley, CA 94704, USA
feedback@xorp.org

August 28, 2003

1 Introduction

1.1 Overview

This document provides an overview of the XORP multicastinguarchitecture. It is intended to provide a
starting point for software developers who wish to modify thulticast-related software.

The XORP multicast architecture consists of user-levetwsofe implementation of multicast routing
protocols such as PIM-SM and IGMP. This document providesvanview of the interaction among them,
as well as the interaction with the underlying multicastsarding engine and other parts of the system.

As with the other parts of the XORP architecture, the mutti@achitecture is based on modularity and
abstraction. In particular, there is one process per pobtanid each process typically communicates with
other processes by using XRLs, the XORP inter-process canmation mechanism [1].

1.2 Acronyms

Acronyms used in this document:

e FEA: ForwardingEngineAbstraction

e MFC: Multicast ForwardingCache: another name for an entry in the multicast forwardimgjres
(typically used on UNIX systems).

e MFEA: MulticastForwardingEngine Abstraction

e MLD/IGMP : MulticastL istenerDiscoveryl nternetGroup M anagemenProtocol
¢ MRIB : MulticastRouting InformationBase

e PIM-SM : Protocoll ndependeniv ulticast-SparseM ode

¢ RIB: RoutingInformationBase

2 Protocol Abstraction

As with the rest of the XORP architecture, the XORP multigasiting architecture is designed such that
each of the implemented protocols can be used for both redtwouting and for network simulations. A
simulation can be composed of several (UNIX) processes,pengrotocol entity controlled by a single
process, or all protocol entities running within a singleqass. For debugging purpose the latter may be
simpler to use and control. Further, the all-in-one modejithbe more scalable. The implication of this is
that a protocol implementation must not keep any globaéstat

In routing, the concept of a network port or interface is adakin a sense that a routing protocol
entity communicates with the rest of the world through suohtgdinterfaces (think of this as a protocol
entity having several virtual interfaces and each virtméiface corresponds to a physical interface, and
those interfaces are used for sending/receiving contrekages to/from other routers). In case of PIM for
example, the routing entity has several virtual interfames per each physical interface it controls. In case
of BGP, the routing entity has several ports, one per each B&&fng.

In term of C++ coding, each virtual interface is a class; gaciiocol entity is a separate class: a single
protocol object has several virtual interfaces (see Fidgre

Retrieve or set PIM—specific information,
start/stop PIM, etc.

| PIM process

PIM-SM

engine (multicast
routing table, etc) | PIM—contrpl messages

/ '/ x \between engine and vifs
[vifO J [vifl J [vif2 J [vif3 J

To some other

/ PIM process
(extreme case

Communication method between PIM vifs and|kernel or

some pther PIM progess (e.g., via|XRL)

PIM|packets PIM |packets User level space

Kernel space

PIM register To/from physical interfaces
vif mapping
in kernel

Figure 1: Multicast protocol abstraction

At the protocol level implementation, the virtual interéscdo not posses knowledge about the particular
communication method used to send or receive packets. Tievacthis, the implementation uses pure
virtual C++ class method®.., methods declared such agrtual int send() = 0;). The declaration of such
methods requires that each class must be inherited by a fyeraglass that implements all pure virtual
methods. Then, all the details about the particular meshatinat is used to send or receive packets are in
this wrapper class. For example, that class might use XRltst loould be any other mechanism that the
developer provides(g., a third-party simulation testbed environment).

Such abstraction makes it very easy to reuse the protoeaifgpcode for any other purpose, or to create
several virtual “nodes” each of them running the particpliatocol. Those nodes can be either within the
same (UNIX) process or each of them running as a separategw,cgs long as we have the right mechanism
that allows them to communicate with each other.

3 MLD/IGMP Daemon/Library

A physical interface is owned by a single multicast routimgtpcol, therefore we can have MLD/IGMP
running as a library linked with a multicast routing protbon each of the interfaces owned by that protocol.
This solution may not work only if there is more than one pecotdhat needs multicast group membership
information on an interface.

The alternative solution is to have a separate MLD/IGMP daethat takes care of multicast group
membership for all interfaces, and then reports that in&dion to all interested parties. Thus, more than
one protocol may receive multicast group membership inftion per interface.

Separating MLD/IGMP from the routing code has the advantdgeducing dependency and improving
robustnesse.g., if the MLD/IGMP code crashes, the routing protocol can ammi running. Further, if we
want to upgrade the software, and if we are running MLD/IGMR @eparate process, then the upgrade can
be performed by starting a new MLD/IGMP daemon in place ofdlieone. Therefore, the upgrade does
not require to stop the PIM daemon for example, which is venydrtant for routers in real-world operation.

4 Multicast Modules Interaction
Figure 2 shows the interactions between the multicasteglmodules. Those interactions are:

e FEA-MFEA: to propagate vif-related information updatemfrthe FEA to the MFEA.

e MFEA-PIM: to send or receive PIM control packets, to forw&id-related signals from the mul-
ticast forwarding engine to PIM, to establish the commuincabetween PIM and the multicast-
forwarding engine, for the MFEA to join or leave a multicasbigp on behalf of PIM, etc.

e MFEA-MLD/IGMP: to send or receive MLD/IGMP control packetnd to join or leave a multicast
group on behalf of MLD/IGMP.

e MLD/IGMP-PIM: for PIM to monitor multicast membership alidacal members.

o RIB-PIM: for PIM to obtain MRIB information.

In the next subsections we describe those interactions.

4.1

Receive MRIB info Receive multicast

membership info

MLD/IGMP

Send/receive MLD/IGMP
control packets

Send/receive PIM
control packets,

communicate with

the forwarding engine,

join/leave multicast groups

Vif info updates
FEA MFEA

Send/receive protocol control packets,
manage multicast—specific state, etc.

Multicast Forwarding Engine

Figure 2: Multicast Modules Interaction

Interaction between the FEA and MFEA modules

The MFEA module needs to interact with the FEA module to abtla¢ vif-related information, and to keep
track if there is any change. If there is any change in thenfdrmation, the MFEA saves that information
locally and propagates it to the modules that have regidieterest with the MFEA&g., MLD/IGMP and
PIM-SM).

4.2

Interaction between the MFEA and PIM modules

PIM-SM needs to interact with the MFEA module for the folloi

Send PIM control packets to other PIM routers, and receik dintrol packets from them.
Start/stop the multicast forwarding engine.

Add/delete multicast interface in the multicast forwagdangine.

Add/delete multicast forwarding entry in the multicastiarding engine.

Receive PIM-related signals from the multicast forwardamgine (when applicable). Examples of
such signals in case of UNIX kernel are NOCACHE or WRONGVIR@NGMIF: the former one

is sent when the underlying multicast forwarding engine hagnulticast forwarding entry for a
multicast packet; the latter one is sent when a multicast patket has arrived on an interface that is
not the expected incoming interface to forward that dat&eftac

Receive bandwidth-related information about multicasa dlaws: e.g., whether a data flow is idle, or
whether the bandwidth of a data flow is above a pre-definedhbtd (needed by PIM-SM to perform
bandwidth-based Shortest-Path switch toward a source).

4

e Join/leave a multicast group.
e Obtain information about existing interfaces on a router.

e Currently (August 2003), the MRIB information is obtaindadugh the MFEA.

On startup, the PIM module registers with the MFEA. As partta$ registration, the MFEA sends
information about existing interfaces on the system, aedthrent unicast forwarding information. If any
of this information changes later, the MFEA sends the apjatgpupdate to PIM. In addition, the MFEA
creates the appropriate state to send and receive PIM tqaickets. After the PIM module receives the
network interface information, it instructs the MFEA torstalM operation on selected interfaces. After that
the PIM module can send and receive PIM control packets aethiierfaces. Also, it can send requests to
the MFEA to add, delete or modify multicast forwarding essrin the kernel.

Note that the default solution in case of UNIX PIM kernel usee more signal from the kernel to
the user-level daemoMWHOLEPKT messages. Those messages are multicast packessdlsuppose to
be encapsulated in a PIM-SM Register message and sent toPth€he encapsulation mechanism must
know the RP address (in general, per multicast group addtbssfore to avoid putting the RP addresses
in the kernel (which would also change the traditional UNIXltitast API), the default solution is to use
user-level encapsulation. To improve performance, the Etlighpsulation should be done in the kernel,
and then we need a sighaling mechanism between the kernghangser process managing the kernel
multicast forwarding entries. That mechanism would deéhwistalling the appropriate information needed
by kernel-level Register encapsulation. Currently (Auq@@93), FreeBSD-CURRENT and the fortcoming
FreeBSD-4.9 do support such kernel-level encapsulation.

4.3 Interaction between the MFEA and MLD/IGMP modules
MLD/IGMP needs to interact with the MFEA module for the fallmg:

¢ Send and receive MLD/IGMP control messages.
¢ Join/leave a multicast group.

e Obtain information about existing interfaces on a router.

On startup, the MLD/IGMP module registers with the MFEA. Aetpof this registration, the MFEA
sends information about existing interfaces on the systénany of this information changes later, the
MFEA sends the appropriate update to MLD/IGMP. In addititve, MFEA creates the appropriate state to
send and receive MLD/IGMP control packets. After the MLD¥8 module receives the network interface
information, it instructs the MFEA to start MLD/IGMP opei@t on selected interfaces. After that the
MLD/IGMP module can send and receive MLD/IGMP control paskan those interfaces.

4.4 Interaction between the MLD/IGMP and PIM modules

PIM-SM needs to interact with the MLD/IGMP module to receimalticast membership information about
local members. On startup, the PIM module registers withiMh®/IGMP module by expressing interest
in tracking multicast membership on selected network faters. After that, if the multicast membership on
any of the selected interfaces changes, the MLD/IGMP modfitems the PIM module about the change:
e.g., “add membership for group 224.0.1.20 on interface vif0”.

Note that control packets used for multicast debugging stscMRINFO or multicast traceroute use
IGMP as the network protocol. Hence, if such messages amvest by the MLD/IGMP module, the

5

appropriate information should be sent to the PIM modulerréuly (August 2003), the handling of such
messages is not implemented yet.

4.5 |Interaction between the RIB and PIM modules

The PIM module needs to interact with the RIB module to obtaénMRIB information, and to keep track
if there is any change. Currently (August 2003), this int@om is not implemented; instead, the MRIB
information is received from the MFEA instead.

A Modification History

e December 11, 2002: Version 0.1 completed.
e March 10, 2003: Updated to match XORP version 0.2 release; abebnup.

e June 9, 2003: Updated to match XORP version 0.3 release chdades related to the MFEA-FEA
merging).

e August 28, 2003: Bump-up the version to 0.4, and the datepnadits.

References

[1] XORP Inter-Process Communication Library. XORP tecahdocument. http://www.xorp.org/.

