
XORP Forwarding Engine Abstraction

Version 0.4

XORP Project
International Computer Science Institute

Berkeley, CA 94704, USA
feedback@xorp.org

August 28, 2003

1 Introduction

The role of the Forwarding Engine Abstraction (FEA) in XORP is to provide a uniform interface to the
underlying forwarding engine. It shields XORP processes from concerns over variations between platforms.
As a result, XORP processes need not be concerned whether therouter is comprised of a single machine, or
cluster of machines; or whether the network interfaces are simple, like a PCI Ethernet adapter, or are smart
and have processing resources, like an Intel IXP cards.

The FEA performs three distinct roles:interface management, forwarding table management, andinter-
face specific packet I/O. Those are described briefly in Section 1.1, Section 1.2, andSection 1.3 respectively.
Section 2 presents the design and implementation of the FEA components. FEA status summary is in Sec-
tion 3.

Note that the multicast-specific tasks are handled by the Multicast Forwarding Engine Abstraction
(MFEA) which is logically separate from the FEA, but typically would be part of the FEA process. For
information about the MFEA architecture, see [1].

1.1 Interface Management

In the normal course of interaction, the RouterManager process is the principal source of interface con-
figuration requests to the FEA. The RouterManager constructs the interface configuration from the router
configuration files and the input it receives at the command line. The type of requests the RouterManager
sends to the FEA are to enable interfaces, create virtual interfaces, set interface MTU’s, and so forth. The
FEA interprets and executes these requests in a manner appropriate for the underlying forwarding plane.

Processes can register with the FEA to be notified of changes in interface configuration. The registered
processes are notified of changes, and may query the FEA on thereceipt of an update notification to deter-
mine the change that occurred. These notifications are primarily of interest to routing protocols since these
need to know what the state of each interface is at a given time.

Both of the above interactions are depicted in Figure 1.

1.2 Forwarding Table Management

The FEA primarily receives forwarding table configuration information from the RIB process. The RIB
arbitrates between the routes proposed by the different routing processes, and propagates the results into

Configuration

Routing Process

User
Input

Configuration
Files

RouterManager

Configuration

Queries Notification
Update

Configuration

Requests Queries

FEA Interface Manager

Figure 1: FEA Interface Management interaction with other XORP processes

the FEA’s forwarding table interface. The FEA accepts requests to insert and remove routing entries and
propagates the necessary changes into the forwarding plane. The FEA also supports queries on the current
contents of the forwarding table.

1.3 Interface Specific Packet I/O

Routing protocols, such as OSPF, need to be able to send and receive packets on specific interfaces in the
forwarding plane in order to exchange routing information and to determine the liveness of connected paths.
Since the forwarding plane may be distributed across multiple machines, these routing protocols delegate
the I/O operations on these packets to the FEA. The FEA supports sending and receiving raw and UDP1

packets on specific interfaces. The transmission of packetsthrough the FEA is straightforward, the routing
process simply hands the FEA a packet and indicates which interface it should be sent on. The reception
of packets is handled through a register-notify interface where the routing process registers which types of
packets on which interfaces it is interested.

2 Design and Implementation

2.1 Overview

The FEA fulfills three discrete roles: Interface Management, Forwarding Table Management, and Interface
Specific Packet I/O. The Interface Management and Forwarding Table Management roles follow a similar
design pattern since both relate to the setting and getting of configuration state. The Interface Specific Packet
I/O has little in common with the other two roles.

1Currently (August 2003), UDP support is not present.

2

The Interface Management and Forwarding Table Management roles use transactions for setting con-
figuration state. The transactions are a collection of grouped operations that are queued until committed or
aborted. Transactions provide atomic updates to the forwarding plane, which has the virtue of ensuring a
consistent state at any particular instant of time. In addition, forwarding plane updates may incur per update
costs, and grouping operations may help to reduce these. Queries of the configuration state happen on the
immediate state, and are independent of any transactions that are in progress.

The FEA, as with other XORP processes, uses the XRL mechanismfor inter-process communication and
each role of the FEA is represented by a distinct XRL interface. The Interface Management and Interface
Specific Packet I/O roles support the notion of clients that notified when event occur and client processes
are expected to implement known interfaces. The FEA XRL and FEA XRL client interfaces are shown in
Table 1.

Role XRL Interface file Client XRL Interface

Interface Management fea ifmgr.xif fea ifmgr client.xif
Forwarding Table Managementfti.xif
Interface Specific Packet I/O fea rawpkt.xif fea rawpkt client.xif

Table 1: FEA XRL Interfaces (defined in$XORP/xrl/target/fea.tgt)

The XRL handling code is found in$XORP/fea/xrl target.{hh,cc}. Each XRL interface is
handled by an XRL-aware helper class. The helper class understands the semantics of the implementation,
and maps errors and responses to the appropriate XRL forms. The helper classes and their relations to the
interfaces are depicted in Figure 2.

3

XrlFeaTarget

XrlInterfaceManager

XrlRawSocket4Manager

XrlUDPSocketManager

Interface
Management

Forwarding Table
Management

Interface Specific
Packet I/O

fea_rawpkt_client.xif

xrl/interfaces/fea_ifmgr.xif

xrl/interfaces/fea_fti.xif

(not implemented)

fea/xrl_rawsock4.hh

fea/xrl_ifmgr.hh

XrlIfConfigUpdateReporter
fea/xrl_ifupdate.hh

fea/xrl_fti.hh
XrlFtiTransactionManager

xrl/interfaces/fea_rawpkt.xif

fea/xrl_target.hh

fea_ifmgr_client.xif

Observer
Interface Event

Observer
Raw Packet Event

F
igure

2:
X

R
L

Interfaces
in

relation
to

F
E

A
classes

4

2.2 Interface Management

To succinctly explain the interface management classes andhow they interact we first describe the repre-
sentation of interface configuration state. Interface configuration state is held withinIfTree class. The
IfTree structure is used and manipulated by all of the the interfacemanagement classes. TheIfTree
class is a container of interface state information organized in a hierarchy:

IfTree contains:

IfTreeInterface physical interface representation, contains:

IfTreeVif virtual (logical) interface representation, contains:

IfTreeAddr4 Interface IPv4 address and related attributes.

IfTreeAddr6 Interface IPv6 address and related attributes.

Each item in the IfTree hierarchy is derived fromIfTreeItem. IfTreeItem is a base class to
track the state of a configurable item. Items may be in one of four states:CREATED,DELETED,CHANGED,
NO CHANGE. For example, if an item is added to the tree it will be in theCREATED state. The IfTreeItem::finalizestate()
method places the item in theNO CHANGE state and items marked asDELETED are actually removed at this
time.

The state labeling associated withIfTreeItem adds a small degree of complexity to theIfTree
classes. However, it allows for one entity to manipulate an interface configuration tree and pass it to another
entity which can immediately determine the changes from thestate labels.

The interface management functionality of the FEA is represented by three interacting classes:IfCon-
fig, InterfaceManager, InterfaceTransactionManager. The interaction of these classes is
managed by theXrlInterfaceManager, which takes external XRL requests and maps them onto the
appropriate operations. The interactions between these classes and related classes are shown in Figure 3.
TheXrlInterfaceManager is sufficiently aware of the semantics of the operations to pass back human
parseable error messages when operations fail.

TheIfConfig class is an interface configurator, and contains plug-ins for each supported forwarding
plane architecture to access, set, or monitor the interface-related information. The functionality of the
IfConfig is conceptually simple: it can push-down anIfTree to the forwarding plane or pull-up the
live configuration state from the forwarding plane as anIfTree.

TheInterfaceManager class contains theIfTree representing the live configuration, and a ref-
erence to theIfConfig that should be used to perform the configuration. TheInterfaceTransac-
tionManager class holds and dispatches transactions. Each operation within a transaction operates on
an item within aIfTree structure. Each transaction operates on a copy of the liveIfTree and when the
commit is made, this structure is pushed down into theIfConfig.

The process of configuration is asynchronous, and two phase.Errors can occur whilst a transaction is
being committed and operating on anIftree (e.g.,because of a bad operation within a transaction), and
errors can occur when the configuration is pushed down to the forwarding plane (e.g.,the configuration has
an inconsistent number of interfaces). Errors in the first phase are reported by theInterfaceTransac-
tionManager. Errors in the second phase are reported by theIfConfig through a helper class derived
from IfConfigErrorReporterBase.

The interface management role of the FEA is expected to report configuration changes to other XORP
processes. Hence, theIfConfig class uses theXrlIfConfigUpdateReporter class to report con-
figuration changes.

5

Notification

InterfaceManager

SimpleIfConfigErrorReporter

XrlFeaTargetXrlIfManager

InterfaceTransactionManager

Confiiguration
IfTree

Configuration

Commands

IfConfig

Confiiguration
IfTree

Update Notification

Error Report

Xrl Update

Confiiguration
IfTree

IfConfigUpdateReporter

Error Report Xrl Responses

Xrl Requests

Configuration Queryt

Configuration Info XrlResponses

Xrl Requests

IfConfig::push_config()IfConfig::pull_config()

F
igure

3:
F

E
A

Interface
M

anagem
entclasses

and
their

intera
ctions

6

2.3 Forwarding Table Management

The Forwarding Table Management role propagates routes into the forwarding plane. The Forwarding Table
Management role does not shadow the forwarding informationoutside of the forwarding plane itself; rather,
it relies on the RIB to do this. As a result, it is considerablysimpler than the Interface Management role.

The classes interacting to provide the Forward Table Management role are: theXrlFtiTransac-
tionManager class, a class that adapts requests and responses from the subset ofXrlFeaTarget
methods that represent the forwarding table management externally; theFtiTransactionManager
that builds and executes transactions to configure the forwarding table; and classFti that understands how
to program the forwarding plane.

TheFti class provides the interface for accessing the forwarding plane. It includes methods for adding
and removing routes, as well as resolving routes in the forwarding table. Modifications to theFti state
are only permitted during a configuration interval. The configuration interval is started and stopped using
Fti::start configuration andFti:end configuration. The particular access to the for-
warding plane is performed by plug-ins that are specific to that plane. For example, to read the forwarding
table currently there are plug-ins that utilize the sysctl(3) mechanism (e.g., in case of FreeBSD) or the
netlink mechanism (e.g.,in case of Linux). There are plug-ins to read, set or monitor the forwarding table
information at the granularity of one entry, or the whole table.

TheFtiTransactionManager presents a transactional interface for configuring theFti instance.
Command classes exist for each possible modifier operation on the Fti instance. TheFti methods
start configuration andend configuration are called at the start and end of the transaction.

2.4 Interface Specific Packet I/O

The Interface Specific Packet I/O role of the FEA provides a means for XORP processes to send and receive
packets on particular interfaces. This is an essential function since in a XORP router the forwarding plane
may reside on a different machine to the routing processes, it may be distributed across several machines, or
may have custom network interfaces that require special programming. Currently (August 2003), only the
sending and receiving of raw IPv4 packets is implemented. Support for UDP and IPv6 will follow in future
and should follow a similar design pattern to the raw IPv4 packet handling.

The raw packet interface is managed by theXrlRawSocket4Manager class. This manages a single
instance of aFilterRawSocket42. TheFilterRawSocket4 encapsulates a raw socket and allows
raw IPv4 packets to be written and filters attached to parse raw packets as they are received. TheXrlRaw-
Socket4Manager allows an arbitrary number of filters to be associated with the active raw socket. The
filters are each notified when a raw packet is received on the raw socket. The XrlRawSocket4Manager al-
lows other XORP processes to receive packets via XRL on the basis on filter conditions. Currently (August
2003), the only implemented filter is theXrlVifInputFilter which allows processes to receive raw
packets on the basis of the receiving VIF. In principle, filters could be written to match on any field within a
packet and perform an action.

3 Status

Currently (August 2003), two versions of the FEA are supported: fea andfea dummy. Thefea is a
version of the FEA that contains plug-ins to access the forwarding plane by using the following mechanisms:

• getifaddrs(3), sysctl(3), ioctl(3), and Linux /proc to obtain interface-specific information.
2The current implementation only works on single machine XORP forwarding planes

7

• ioctl(3) to set interface-specific information.

• routing socketsfor observing changes in the interface-specific information.

• routing socketsandnetlink socketsto lookup a single forwarding entry in the forwarding plane.

• sysctl(3)andnetlink socketsto obtain the whole forwarding table from the forwarding plane.

• routing socketsto set a single forwarding entry or the whole table in the forwarding plane.

• routing socketsto observe changes in the forwarding table.

In other words, currently (August 2003) thefea supports FreeBSD for reading and writing to the for-
warding plane, and Linux for reading only (so far it has been tested on FreeBSD-4.x and Linux-2.4.20). The
fea dummy is a substitute FEA and may be used for development testing purposes. Thefea dummy rep-
resents an idealized form of FEA, other FEA’s may differ in their responses due to architectural differences.
Therefore processes that interact with the FEA should regard fea dummy interactions as indicative, but not
definitive.

The FEA’s are still a work in progress and no doubt have some bugs. Any contributions or bug fixes are
welcome. Completing the FEA support for Linix is work-in-progress. FEA support for Click is yet to be
written, and FEA’s for any other architecture would be welcomed. There is a now defunct Click FEA in the
$XORP/fea directory that should be possible to resurrect.

References

[1] XORP Multicast Forwarding Engine Abstraction. XORP technical document. http://www.xorp.org/.

8

