XORP Forwarding Engine Abstraction

Version 0.4

XORP Project
International Computer Science Institute
Berkeley, CA 94704, USA
feedback@xorp.org

August 28, 2003

1 Introduction

The role of the Forwarding Engine Abstraction (FEA) in XORPtd provide a uniform interface to the
underlying forwarding engine. It shields XORP processemfconcerns over variations between platforms.
As a result, XORP processes need not be concerned whethewutiee is comprised of a single machine, or
cluster of machines; or whether the network interfaces ianpls, like a PCI Ethernet adapter, or are smart
and have processing resources, like an Intel IXP cards.

The FEA performs three distinct rolesiterface managemerfbrwarding table managemerdandinter-
face specific packet I/’hose are described briefly in Section 1.1, Section 1.2Samntion 1.3 respectively.
Section 2 presents the design and implementation of the FEfponents. FEA status summary is in Sec-
tion 3.

Note that the multicast-specific tasks are handled by thetidfist Forwarding Engine Abstraction
(MFEA) which is logically separate from the FEA, but typiyalvould be part of the FEA process. For
information about the MFEA architecture, see [1].

1.1 Interface Management

In the normal course of interaction, the RouterManager ggeds the principal source of interface con-
figuration requests to the FEA. The RouterManager constiihet interface configuration from the router
configuration files and the input it receives at the commamal liThe type of requests the RouterManager
sends to the FEA are to enable interfaces, create virtuaffawes, set interface MTU'’s, and so forth. The
FEA interprets and executes these requests in a manneipaipedor the underlying forwarding plane.

Processes can register with the FEA to be notified of chamgeserface configuration. The registered
processes are notified of changes, and may query the FEA oadbipt of an update notification to deter-
mine the change that occurred. These notifications are phjned interest to routing protocols since these
need to know what the state of each interface is at a given time

Both of the above interactions are depicted in Figure 1.

1.2 Forwarding Table Management

The FEA primarily receives forwarding table configuratioiormation from the RIB process. The RIB
arbitrates between the routes proposed by the differeingpprocesses, and propagates the results into



RouterManager Routing Process

\ \ \
fi i fi i fi [
Configuratio \| Con |.gurat|o \, Updat Con |.gurat|0 \l
Requests , Queries . Notification| Queries /
/ / /

FEA Interface Manager

Figure 1: FEA Interface Management interaction with oth€@R¥ processes

the FEA's forwarding table interface. The FEA accepts ratpi& insert and remove routing entries and
propagates the necessary changes into the forwarding. pldmeeFEA also supports queries on the current
contents of the forwarding table.

1.3 Interface Specific Packet 1/0

Routing protocols, such as OSPF, need to be able to send egida@ackets on specific interfaces in the
forwarding plane in order to exchange routing informatiad o determine the liveness of connected paths.
Since the forwarding plane may be distributed across nialtipachines, these routing protocols delegate
the 1/0 operations on these packets to the FEA. The FEA stgpending and receiving raw and UBP
packets on specific interfaces. The transmission of patkeisgh the FEA is straightforward, the routing
process simply hands the FEA a packet and indicates whielface it should be sent on. The reception
of packets is handled through a register-notify interfater the routing process registers which types of
packets on which interfaces it is interested.

2 Design and Implementation

2.1 Overview

The FEA fulfills three discrete roles: Interface ManagemeEntwarding Table Management, and Interface
Specific Packet I/0O. The Interface Management and Forwgrtible Management roles follow a similar
design pattern since both relate to the setting and gettiogrfiguration state. The Interface Specific Packet
I/O has little in common with the other two roles.

ICurrently (August 2003), UDP support is not present.



The Interface Management and Forwarding Table Managenoésd use transactions for setting con-
figuration state. The transactions are a collection of gedugperations that are queued until committed or
aborted. Transactions provide atomic updates to the faingplane, which has the virtue of ensuring a
consistent state at any particular instant of time. In dmfditforwarding plane updates may incur per update
costs, and grouping operations may help to reduce theseieQwdé the configuration state happen on the
immediate state, and are independent of any transactiaharhin progress.

The FEA, as with other XORP processes, uses the XRL mechdorsnier-process communication and
each role of the FEA is represented by a distinct XRL intexfathe Interface Management and Interface
Specific Packet 1/0 roles support the notion of clients trwified when event occur and client processes
are expected to implement known interfaces. The FEA XRL a@Bd RKRL client interfaces are shown in
Table 1.

| Role | XRL Interface file| Client XRL Interface|
Interface Management fealifmgr.xif fealifmgr_client.xif
Forwarding Table Managementfti.xif
Interface Specific Packet /0 | fea rawpkt.xif fea rawpkt client.xif

Table 1: FEA XRL Interfaces (defined 8XORP/ xr| / t arget/fea. t gt)

The XRL handling code is found i8XORP/ f ea/ xr | t ar get . {hh, cc}. Each XRL interface is
handled by an XRL-aware helper class. The helper class staahels the semantics of the implementation,
and maps errors and responses to the appropriate XRL forheshdlper classes and their relations to the
interfaces are depicted in Figure 2.



Sasse|d Y34 01 Uone|al Ul Sagepaiul X :Z ainbi4

Interface Event
Observer

Raw Packet Event
Observer

<

Xrll nterfaceManager
fea/xrl_ifmgr.hh

- - - —

XrllfConfigUpdateReporter

fea/xrl_ifupdate.hh

XrlFtiTransactionManager

- - - —

fea/xrl_fti.hh

XrlRawSocket4Manager

fea/xrl_rawsock4.h

- - - —

XrlUDPSocketM anager

(not implemented

- - — —

XrlFeaTarget

fea/xrl_target.h

>

Interface
Management

Forwarding Table
Management

Interface Specific
Packet I/O

_____ T




2.2 Interface Management

To succinctly explain the interface management classehawcthey interact we first describe the repre-
sentation of interface configuration state. Interface gométion state is held withihf Tr ee class. The

| f Tr ee structure is used and manipulated by all of the the interfna@agement classes. TheTr ee
class is a container of interface state information orgathin a hierarchy:

| f Tr ee contains:

| f Tr eel nt er f ace physical interface representation, contains:

I f TreeVif virtual (logical) interface representation, contains:
| f Tr eeAddr 4 Interface IPv4 address and related attributes.
| f Tr eeAddr 6 Interface IPv6 address and related attributes.

Each item in the IfTree hierarchy is derived frdnfi Treelt em | f Tr eel t emis a base class to
track the state of a configurable item. Items may be in onewfdtatesCREATED, DELETED, CHANGED,
NO_CHANCGE. For example, if an item is added to the tree it will be in@REATEDstate. The IfTreeltem::finalizetate()
method places the item in tiO_CHANGE state and items marked BELETED are actually removed at this
time.

The state labeling associated with Tr eel t emadds a small degree of complexity to theTr ee
classes. However, it allows for one entity to manipulatergéerface configuration tree and pass it to another
entity which can immediately determine the changes fronstate labels.

The interface management functionality of the FEA is repmésd by three interacting classé$:Con-
fig,lnterfaceManager,| nterfaceTransacti onManager. The interaction of these classes is
managed by thr | | nt er f aceManager , which takes external XRL requests and maps them onto the
appropriate operations. The interactions between thessed and related classes are shown in Figure 3.
TheXr | | nt er f aceManager is sufficiently aware of the semantics of the operations &3 jm@ck human
parseable error messages when operations fail.

Thel f Confi g class is an interface configurator, and contains plug-ingd&ch supported forwarding
plane architecture to access, set, or monitor the interfigleded information. The functionality of the
I f Confi g is conceptually simple: it can push-down BhTr ee to the forwarding plane or pull-up the
live configuration state from the forwarding plane ad &fr ee.

Thel nt er f aceManager class contains thef Tr ee representing the live configuration, and a ref-
erence to the f Conf i g that should be used to perform the configuration. Théer f aceTr ansac-

t i onManager class holds and dispatches transactions. Each operatthim\ai transaction operates on
an item within a f Tr ee structure. Each transaction operates on a copy of thé file ee and when the
commit is made, this structure is pushed down intolth€onf i g.

The process of configuration is asynchronous, and two pt&asers can occur whilst a transaction is
being committed and operating on bft r ee (e.g.,because of a bad operation within a transaction), and
errors can occur when the configuration is pushed down tootfvearding plane€.g.,the configuration has
an inconsistent number of interfaces). Errors in the firstsghare reported by thent er f aceTr ansac-

t i onManager . Errors in the second phase are reported by th€onf i g through a helper class derived
from| f Confi gErr or Report er Base.

The interface management role of the FEA is expected to repafiguration changes to other XORP
processes. Hence, thé Confi g class uses th¥r | | f Conf i gUpdat eReport er class to report con-
figuration changes.



UGN JI9Y) pue Sasse|d Wwawabeuey adeualul Y34 € ainbig

I nterfaceTransactionManager

Confiiguration
IfTree

I nterfaceManager

Configuration Queryt|

Configuration
Commands

IfConfig::pull_config()

Confiiguration
IfTree IfTree

Configuration Info

IfConfig::push_config()

Confiiguration

IfConfig

XrllfManager

Xrl Requests

Xrl Requests

Error Report

Simplel fConfigError Reporter

Error Report

XrlResponses

XrlFeaTarget

>
Xrl Responses

Update Notification

IfConfigUpdateReporter

Xrl Updaté =
Notification



2.3 Forwarding Table Management

The Forwarding Table Management role propagates routeshiatforwarding plane. The Forwarding Table
Management role does not shadow the forwarding informatidside of the forwarding plane itself; rather,
it relies on the RIB to do this. As a result, it is consideragilypler than the Interface Management role.

The classes interacting to provide the Forward Table Mamage role are: theXr| Fti Tr ansac-
ti onManager class, a class that adapts requests and responses frombet sfXr | FeaTar get
methods that represent the forwarding table managemeetnaliy; theFti Tr ansact i onManager
that builds and executes transactions to configure the fdmgtable; and clagst i that understands how
to program the forwarding plane.

TheFti class provides the interface for accessing the forwardiagep It includes methods for adding
and removing routes, as well as resolving routes in the fating table. Modifications to thét i state
are only permitted during a configuration interval. The agunfation interval is started and stopped using
Fti::start _configurationandFti:end_configuration. The particular access to the for-
warding plane is performed by plug-ins that are specific & fane. For example, to read the forwarding
table currently there are plug-ins that utilize the sy8gtifhechanisméd.g.,in case of FreeBSD) or the
netlink mechanismeg.g.,in case of Linux). There are plug-ins to read, set or monherforwarding table
information at the granularity of one entry, or the wholeléab

TheFti Transact i onManager presents a transactional interface for configuringRhé instance.
Command classes exist for each possible modifier operatoth®Ft i instance. The~ti methods
start configurati onandend_confi gurati on are called at the start and end of the transaction.

2.4 Interface Specific Packet I/O

The Interface Specific Packet I/O role of the FEA provides amsdor XORP processes to send and receive
packets on particular interfaces. This is an essentialtfiomsince in a XORP router the forwarding plane
may reside on a different machine to the routing processe®gy be distributed across several machines, or
may have custom network interfaces that require specigranoming. Currently (August 2003), only the
sending and receiving of raw IPv4 packets is implementegp8id for UDP and IPv6 will follow in future
and should follow a similar design pattern to the raw IPvdgabandling.

The raw packet interface is managed by ¥né RawSocket 4Manager class. This manages a single
instance of &i | t er RawSocket 42 TheFi | t er RawSocket 4 encapsulates a raw socket and allows
raw IPv4 packets to be written and filters attached to pamseezkets as they are received. TXrd Raw
Socket 4Manager allows an arbitrary number of filters to be associated withabtive raw socket. The
filters are each notified when a raw packet is received on thesogket. The XrIRawSocket4Manager al-
lows other XORP processes to receive packets via XRL on this loa filter conditions. Currently (August
2003), the only implemented filter is té& | Vi f | nput Fi | t er which allows processes to receive raw
packets on the basis of the receiving VIF. In principle, fdteould be written to match on any field within a
packet and perform an action.

3 Status

Currently (August 2003), two versions of the FEA are supgmhrf ea andf ea_dumry. Thefeais a
version of the FEA that contains plug-ins to access the fating plane by using the following mechanisms:

e getifaddrs(3) sysctl(3) ioctl(3), and Linux /proc to obtain interface-specific information.

2The current implementation only works on single machine Xd&warding planes



e ioctl(3) to set interface-specific information.

e routing socketsor observing changes in the interface-specific infornmatio

e routing socketandnetlink socketso lookup a single forwarding entry in the forwarding plane.
¢ sysctl(3)andnetlink socket$o obtain the whole forwarding table from the forwardingrnga

e routing socketso set a single forwarding entry or the whole table in the fmding plane.

e routing socketso observe changes in the forwarding table.

In other words, currently (August 2003) thea supports FreeBSD for reading and writing to the for-
warding plane, and Linux for reading only (so far it has beested on FreeBSD-4.x and Linux-2.4.20). The
f ea_dumy is a substitute FEA and may be used for development testingppeas. Thé ea_dumy rep-
resents an idealized form of FEA, other FEA's may differ iaithhesponses due to architectural differences.
Therefore processes that interact with the FEA should ddfgaa_dumnry interactions as indicative, but not
definitive.

The FEA's are still a work in progress and no doubt have songe.b@iny contributions or bug fixes are
welcome. Completing the FEA support for Linix is work-inegress. FEA support for Click is yet to be
written, and FEA's for any other architecture would be wetenl. There is a now defunct Click FEA in the
$XORP/ f ea directory that should be possible to resurrect.

References

[1] XORP Multicast Forwarding Engine Abstraction. XORPHaizal document. http://www.xorp.org/.



