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ABSTRACT

Many problems with today’s Internet routing infrastruc-
ture—slow BGP convergence times exacerbated by timer-
based route scanners, the difficulty of evaluating new pro-
tocols—are not architectural or protocol problems, but
software problems. Router software designers have tack-
led scaling challenges above all, treating extensibility and
latency concerns as secondary. At this point in the In-
ternet’s evolution, however, further scaling and security
issues require tackling latency and extensibility head-on.

We present the design and implementation of XORP,
an IP routing software stack with strong emphases on la-
tency, scaling, and extensibility. XORP is event-driven,
and aims to respond to routing changes with minimal
delay—an increasingly crucial requirement, given rising
expectations for Internet reliability and convergence time.
The XORP design consists of a composable framework
of routing processes, each in turn composed of modular
processing stages through which routes flow. Extensibil-
ity and latency concerns have influenced XORP through-
out, from IPC mechanisms to process arrangements to
intra-process software structure, and leading to novel de-
signs. In this paper we discuss XORP’s design and im-
plementation, and evaluate the resulting software against
our performance and extensibility goals.

1 INTRODUCTION

The Internet has been fabulously successful; previously
unimagined applications frequently arise, and changing
usage patterns have been accommodated with relative
ease. But underneath this veneer, the low-level proto-
cols that support the Internet have largely ossified, and
stresses are beginning to show. Examples include secu-
rity and convergence problems with BGP routing [20],
deployment problems with multicast [12], QoS, and IPv6,
and the lack of effective defense mechanisms against de-
nial-of-service attacks. The blame for this ossification
has been placed at various technical and non-technical
points in the Internet architecture, from limits of lay-
ered protocol design [6] to the natural conservatism of
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commercial interests [11]; suggested solutions have in-
cluded widespread overlay networks [25, 26] and active
networking [8, 32]. But less attention has been paid to
a simple, yet fundamental, underlying cause: the lack of
extensible, robust, high-performance router software.

The router software market is closed: each vendor’s
routers will run only that vendor’s software. This makes
it almost impossible for researchers to experiment in real
networks, or to develop proof-of-concept code that might
convince network operators that there are alternatives to
current practice. A lack of open router APIs additionally
excludes startup companies as a channel for change.

The solution seems simple in principle: router soft-
ware should have open APIs. (This somewhat resembles
active networks, but we believe that a more conservative
approach is more likely to see real-world deployment.)
Unfortunately, extensibility can conflict with the other
fundamental goals of performance and robustness, and
with the sheer complexity presented by routing protocols
like BGP. Relatively few software systems have robust-
ness and security goals as stringent as those of routers,
where localized instability or misconfiguration can rip-
ple throughout the Internet [5]. Routers must also juggle
hundreds of thousands of routes, which can be installed
and withdrawn en masse as links go up and down. This
limits the time and space available for extensions to run.
Unsurprisingly, then, existing router software was not
written with third-party extension in mind, so it doesn’t
generally include the right hooks, extension mechanisms
and security boundaries.

We therefore saw the need for a new suite of router
software: an integrated open-source software router plat-
form running on commodity hardware, and viable both in
research and production. The software architecture would
have extensibility as a primary goal, permitting experi-
mental protocol deployment with minimal risk to exist-
ing services. Internet researchers needing access to router
software would share a common platform for experimen-
tation, and get an obvious path to deployment for free.
The loop between research and realistic real-world ex-
perimentation would eventually close, allowing innova-
tion to take place much more freely. We have made sig-
nificant progress towards building this system, which we
call XORP, the eXtensible Open Router Platform [15].

This paper focuses on the XORP control plane: rout-
ing protocols, the Routing Information Base (RIB), net-



work management software, and related user-level pro-
grams that make up the vast majority of software on a
router today. This contrasts with the forwarding plane,
which processes every packet passing through the router.
Prior work on component-based forwarding planes has
simultaneously achieved extensibility and good perfor-
mance [18, 28], but these designs, which are based on the
flow of packets, don’t apply directly to complex protocol
processing and route wrangling. XORP’s contributions,
then, consist of the strategies we used to break the control
plane, and individual routing protocols, into components
that facilitate both extension and good performance.

For example, we treat both BGP and the RIB as net-
works of routing stages, through which routes flow. Par-
ticular stages within those networks can combine routes
from different sources using various policies, or notify
other processes when routes change. Router functionality
is separated into many Unix processes for robustness. A
flexible IPC mechanism lets modules communicate with
each other independent of whether those modules are
part of the same process, or even on the same machine;
this allows untrusted processes to be run entirely sand-
boxed, or even on different machines from the forward-
ing engine. XORP processes are event-driven, avoiding
the widely-varying delays characteristic of timer-based
designs (such as those deployed in most Cisco routers).
Although XORP is still young, these design choices are
stable enough to have proven their worth, and to demon-
strate that extensible, scalable, and robust router software
is an achievable goal.

The rest of this paper is organized as follows. Af-
ter discussing related work (Section 2), we describe a
generic router control plane (Section 3) and an overview
of XORP (Section 4). Sections 5 and 6 describe par-
ticularly relevant parts of the XORP design: the rout-
ing stages used to compose the RIB and routing proto-
cols like BGP and our novel inter-process communica-
tion mechanism. The remaining sections discuss our se-
curity framework; present a preliminary evaluation, which
shows that XORP’s extensible design does not impact its
performance on macro-benchmarks; and conclude.

2 RELATED WORK

Previous work discussed XORP’s requirements and high-
level design strategy [15]; this paper presents specific
solutions we developed to achieve those requirements.
We were inspired by prior work on extensible forward-
ing planes, and support Click [18], one such forwarding
plane, already.

Individual open-source routing protocols have long
been available, including routed [31] for RIP, OSPFd [22]
for OSPF, and pimd [16] for PIM-SM multicast routing.
However, interactions between protocols can be prob-
lematic unless carefully managed. GateD [23] is perhaps

the best known integrated routing suite, although it began
as an implementation of a single routing protocol. GateD
is a single process within which all routing protocols
run. Such monolithic designs are fundamentally at odds
with the concept of differentiated trust, whereby more
experimental code can be run alongside existing services
without destabilizing the whole router. MRTD [30] and
BIRD [4], two other open-source IP router stacks, also
use a single-process architecture. In the commercial world,
Cisco IOS [9] is also a monolithic architecture; experi-
ence has shown that this significantly inhibits network
operators from experimenting with Cisco’s new protocol
implementations.

Systems that use a multi-process architecture, per-
mitting greater robustness, include Juniper’s JunOS [17]
and Cisco’s most recent operating system IOS XR [10].
Unfortunately, these vendors do not make their APIs ac-
cessible to third-party developers, so we have no idea if
their internal structure is well suited to extensibility. The
open-source Zebra [33] and Quagga [27] stacks use mul-
tiple processes as well, but their shared inter-process API
is limited in capability and may deter innovation.

Another important distinguishing factor between im-
plementations is whether a router is event-driven or uses
a periodic route scanner to resolve dependencies between
routes. The scanner-based approach is simpler, but has a
rather high latency before a route change actually takes
effect. Cisco IOS and Zebra both use route scanners, with
(as we demonstrate) a significant latency cost; MRTD
and BIRD are event-driven, but this is easier given a sin-
gle monolithic process. In XORP, the decision that ev-
erything is event-driven is fundamental and has been re-
flected in the design and implementation of all protocols,
and of the IPC mechanism.

3 CONTROL PLANE FUNCTIONAL OVERVIEW

The vast majority of the software on a router is control-
plane software: routing protocols, the Routing Informa-
tion Base (RIB), firewall management, command-line in-
terface, and network management—and, on modern rout-
ers, much else, including address management and “mid-
dlebox” functionality. Figure 1 shows a basic functional
breakdown of the most common software on a router.
The diagram’s relationships correspond to those in XORP
and, with small changes, those in any router. The rest of
this section explores those relationships further.

The unicast routing protocols (BGP, RIP, OSPF, and
IS-IS) are clearly functionally separate, and most routers
only run a subset of these. However, as we will see later,
the coupling between routing protocols is fairly complex.
The arrows on the diagram illustrate the major flows of
routing information, but other flows also exist.

The Routing Information Base (RIB) serves as the
plumbing between routing protocols. Protocols such as
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RIP and OSPF receive routing information from remote
routers, process it to discover feasible routes, and send
these routes to the RIB. As multiple protocols can supply
different routes to the same destination subnet, the RIB
must arbitrate between alternatives.

BGP has a more complex relationship with the RIB.
Incoming IBGP routes normally indicate a nexthop router
for a destination, rather than an immediate neighbor. If
there are multiple IBGP routes to the same subnet, BGP
will typically need to know the routing metrics for each
choice so as to decide which route has the nearest exit
(so-called “hot potato” routing). Thus, BGP must exam-
ine the routing information supplied to the RIB by other
routing protocols to make its own routing decisions.

A key instrument of routing policy is the process of
route redistribution, where routes from one routing pro-
tocol that match certain policy filters are redistributed
into another routing protocol for advertisement to other
routers. The RIB, as the one part of the system that sees
everyone’s routes, is central to this process.

The RIB is thus crucial to the correct functioning of
a router, and should be extended only with care. Routing
protocols may come and go, but the RIB should ideally
be general enough to cope with them all; or failing that, it
should support small, targeted extensions that are easily
checked for correctness.

The Forwarding Engine Abstraction (FEA) provides
a stable API for communicating with a forwarding en-
gine or engines. In principle, its role is syntactic, and
many single-platform routers leave it out, communicat-
ing with the forwarding plane directly.

PIM-SM (Protocol Independent Multicast—Sparse
Mode [14]) and IGMP provide multicast routing func-
tionality, with PIM performing the actual routing and
IGMP informing PIM of the existence of local receivers.

PIM contributes routes not to the RIB, but directly via
the FEA to the forwarding engine. Thus, the FEA’s inter-
face is important for more than just the RIB. However,
PIM does use the RIB’s routing information to decide on
the reverse path back to a multicast source.

The “Router Manager” holds the router configura-
tion and starts, configures, and stops protocols and other
router functionality. It hides the router’s internal structure
from the user, providing operators with unified manage-
ment interfaces for examination and reconfiguration.

Our goal is a router control plane that provides all this
functionality, including all the most widely used routing
protocols, in a way that encourages extensibility. At this
point, we do not automatically protect operators from
malicious extensions or experimental code. Instead, our
software architecture aims to minimize extension foot-
print, making it feasible for operators to check the code
themselves. This requires a fundamental design shift from
the monolithic, closely-coupled designs currently preva-
lent. In Section 7 we will discuss in more detail our cur-
rent and future plans for XORP’s security framework.

4 XORP OVERVIEW

The XORP control plane implements this functionality
diagram as a set of communicating processes. Each rout-
ing protocol and management function is implemented
by a separate process, as are the RIB and the FEA. Pro-
cesses communicate with one another using an extensi-
ble IPC mechanism called XORP Resource Locators, or
XRLs. This blurs the distinction between intra- and inter-
process calls, and will even support transparent commu-
nication with non-XORP processes. The one important
process not represented on the diagram is the Finder,
which acts as a broker for IPC requests; see Section 6.2.
(XORP 1.0 supports BGP and RIP; support for OSPF
and IS-IS is under development.)

This multi-process design limits the coupling between
components; misbehaving code, such as an experimen-
tal routing protocol, cannot directly corrupt the mem-
ory of another process. Performance is a potential down-
side, due to frequent IPCs; to address it, we implemented
various ways to safely cache IPC results such as routes
(Section 5.2.1). The multi-process approach also serves
to decouple development for different functions, and en-
courages the development of stable APIs. Protocols such
BGP and RIP are not special in the XORP design—they
use APIs equally available to all. Thus, we have confi-
dence that those APIs would prove sufficient, or nearly
so, for most experimental routing protocols developed in
the future.1

We chose to implement XORP primarily in C++, be-
cause of its object orientation and good performance. Re-
alistic alternatives would have been C and Java. When we
started implementing XORP, the choice was not com-



pletely clear cut, but we’ve become increasingly satis-
fied; for example, extensive use of C++ templates allows
common source code to be used for both IPv4 and IPv6,
with the compiler generating efficient implementations
for both.

Each XORP process adopts a single-threaded event-
driven programming model. An application such as a rout-
ing protocol, where events affecting common data come
from many sources simultaneously, would likely have
high locking overhead; but, more importantly, our ex-
perience is that it is very hard for new programmers to
understand a multi-threaded design to the point of be-
ing able to extend it safely. Of course, threaded programs
could integrate with XORP via IPC.

The core of XORP’s event-driven programming model
is a traditional select-based event loop based on the
SFS toolkit [21]. Events are generated by timers and file
descriptors; callbacks are dispatched whenever an event
occurs. Callbacks are type-safe C++ functors, and allow
for the currying of additional arguments at creation time.

When an event occurs, we attempt to process that
event to completion, including figuring out all inter-process
dependencies. For example, a RIP route may be used
to resolve the nexthop in a BGP route; so a RIP route
change must immediately notify BGP, which must then
figure out all the BGP routes that might change as a re-
sult. Calculating these dependencies quickly and efficiently
is difficult, introducing strong pressure toward a periodic
route scanner design. Unfortunately, periodic scanning
introduces variable latency and can lead to increased load
bursts, which can affect forwarding performance. Since
low-delay route convergence is becoming critical to ISPs,
we believe that future routing implementations must be
event-driven.

Even in an event-driven router, some tasks cannot
be processed to completion in one step. For example,
a router with a full BGP table may receive well over
100,000 routes from a single peer. If that peering goes
down, all these routes need to be withdrawn from all
other peers. This can’t happen instantaneously, but a flap-
ping peer should not prevent or unduly delay the process-
ing of BGP updates from other peers. Therefore, XORP
supports background tasks, implemented using our timer
handler, which run only when no events are being pro-
cessed. These background tasks are essentially coopera-
tive threads: they divide processing up into small slices,
and voluntarily return execution to the process’s main
event loop from time to time until they complete.

We intend for XORP to run on almost any modern
operating system. We initially provide support, including
FEA support, for FreeBSD and Linux, and for FreeBSD
and Linux running Click as a forwarding path. Windows
support is under development.
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FIGURE 2—Abstract routing protocol

5 ROUTING TABLE STAGES

From the general process structure of the XORP control
plane, we now turn to modularity and extensibility within
single processes, and particularly to the ways we divide
routing table processing into stages in BGP and the RIB.
This modularization makes route dataflow transparent,
simplifies the implementation of individual stages, clari-
fies overall organization and protocol interdependencies,
and facilitates extension.

At a very high level, the abstract model in Figure 2
can represent routing protocols such as RIP or BGP. (Link-
state protocols differ slightly since they distribute all rout-
ing information to their neighbors, rather than just the
best routes.) Note that packet formats and state machines
are largely separate from route processing, and that all
the real magic—route selection, policy filtering, and so
forth—happens within the table of routes. Thus, from a
software structuring point of view, the interesting part is
the table of routes.

Unfortunately, BGP and other modern routing proto-
cols are big and complicated, with many extensions and
features, and it is very hard to understand all the interac-
tions, timing relationships, locking, and interdependen-
cies that they impose on the route table. For instance,
as we mentioned, BGP relies on information from intra-
domain routing protocols (IGPs) to decide whether the
nexthop in a BGP route is actually reachable and what
the metric is to that nexthop router. Despite these depen-
dencies, BGP must scale well to large numbers of routes
and large numbers of peers. Thus, typical router imple-
mentations put all routes in the same memory space as
BGP, so that BGP can directly see all the information
relevant to it. BGP then periodically walks this jumbo
routing table to figure out which routes win, based on
IGP routing information. This structure is illustrated in
Figure 3. While we don’t know how Cisco implements
BGP, we can infer from clues from Cisco’s command line
interface and manuals that it probably works something
like this.

Unfortunately, this structure makes it very hard to
separate functionality in such a way that future program-
mers can see how the pieces interact or where it is safe to
make changes. Without good structure we believe that it
will be impossible for future programmers to extend our
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software without compromising its stability.
Our challenge is to implement BGP and the RIB in

a more decoupled manner that clarifies the interactions
between modules.

5.1 BGP Stages

The mechanism we chose is the clear one of data flow.
Rather than a single, shared, passive table that stores in-
formation and annotations, we implement routing tables
as dynamic processes through which routes flow. There
is no single routing table object, but rather a network of
pluggable routing stages, each implementing the same
interface. Together, the network stages combine to im-
plement a routing table abstraction. Although unusual—
to our knowledge, XORP is the only router using this
design—stages turn out to be a natural model for routing
tables. They clarify protocol interactions, simplify the
movement of large numbers of routes, allow extension,
ease unit testing, and localize complex data structure ma-
nipulations to a few objects (namely trees and iterators;
see Section 5.3). The cost is a small performance penalty
and slightly greater memory usage, due to some dupli-
cation between stages. To quantify this, a XORP router
holding a full backbone routing table of about 150,000
routes requires about 120 MB for BGP and 60 MB for
the RIB, which is simply not a problem on any recent
hardware. The rest of this section develops this stage de-
sign much as we developed it in practice.

To a first approximation, BGP can be modeled as the
pipeline architecture, shown in Figure 4. Routes come in
from a specific BGP peer and progress through an in-
coming filter bank into the decision process. The best
routes then proceed down additional pipelines, one for
each peering, through an outgoing filter bank and then
on to the relevant peer router. Each stage in the pipeline
receives routes from upstream and passes them down-
stream, sometimes modifying or filtering them along the
way. Thus, stages have essentially the same API, and
are indifferent to their surroundings: new stages can be
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added to the pipeline without disturbing their neighbors,
and their interactions with the rest of BGP are constrained
by the stage API.

The next issue to resolve is where the routes are ac-
tually stored. When a new route to a destination arrives,
BGP must compare it against all alternative routes to that
destination (not just the previous winner), which dictates
that all alternative routes need to be stored. The natural
place might seem to be the Decision Process stage; but
this would complicate the implementation of filter banks:
Filters can be changed by the user, after which we need to
re-run the filters and re-evaluate which route won. Thus,
we only store the original versions of routes, in the Peer
In stages. This in turn means that the Decision Process
must be able to look up alternative routes via calls up-
stream through the pipeline.

The basic interface for a stage is therefore:

• add route: A preceding stage is sending a new route
to this stage. Typically the route will be dropped,
modified, or passed downstream to the next stage un-
changed.

• delete route: A preceding stage is sending a delete
message for an old route to this stage. The deletion
should be dropped, modified, or passed downstream
to the next stage unchanged.

• lookup route: A later stage is asking this stage to look
up a route for a destination subnet. If the stage cannot
answer the request itself, it should pass the request
upstream to the preceding stage.

These messages can pass up and down the pipeline, with
the constraint that messages must be consistent. There
are two consistency rules: (1) Any delete route message
must correspond to a previous add route message; and
(2) the result of a lookup route should be consistent with
previous add route and delete route messages sent down-
stream. These rules lessen the stage implementation bur-
den. A stage can assume that upstream stages are consis-
tent, and need only preserve consistency for downstream
stages.

For extra protection, a BGP pipeline could include
stages that enforced consistency around possibly-erro-



neous experimental extensions, but so far we have not
needed to do this. Instead, we have developed an extra
consistency checking stage for debugging purposes. This
cache stage, just after the outgoing filter bank in the out-
put pipeline to each peer, has helped us discover many
subtle bugs that would otherwise have gone undetected.
While not intended for normal production use, this stage
could aid with debugging if a consistency error is sus-
pected.

5.1.1 Decomposing the Decision Process

The Decision Process in this pipeline is rather complex:
in addition to deciding which route wins, it must get
nexthop resolvability and metric information from the
RIB, and fan out routing information to the output peer
pipeline branches and to the RIB. This coupling of func-
tionality is undesirable both because it complicates the
stage, and because there are no obvious extension points
within such a macro-stage. XORP thus further decom-
poses the Decision Process into Nexthop Resolvers, a
simple Decision Process, and a Fanout Queue, as shown
in Figure 5.
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The Fanout Queue, which duplicates routes for each
peer and for the RIB, is in practice complicated by the
need to send routes to slow peers. Routes can be received
from one peer faster than we can transit them via BGP
to other peers. If we queued updates in the n Peer Out
stages, we could potentially require a large amount of
memory for all n queues. Since the outgoing filter banks
modify routes in different ways for different peers, the
best place to queue changes is in the fanout stage, after
the routes have been chosen but before they have been
specialized. The Fanout Queue module then maintains a
single route change queue, with n readers (one for each
peer) referencing it.

The Nexthop Resolver stages talk asynchronously to
the RIB to discover metrics to the nexthops in BGP’s
routes. As replies arrive, it annotates routes in add route
and lookup route messages with the relevant IGP metrics.

Routes are held in a queue until the relevant nexthop met-
rics are received; this avoids the need for the Decision
Process to wait on asynchronous operations.

5.1.2 Dynamic Stages

The BGP process’s stages are dynamic, not static; new
stages can be added and removed as the router runs. We
made use of this capability in a surprising way when we
needed to deal with route deletions due to peer failure.
When a peering goes down, all the routes received by
this peer must be deleted. However, the deletion of more
than 100,000 routes takes too long to be done in a single
event handler. This needs to be divided up into slices of
work, and handled as a background task. But this leads
to a further problem: a peering can come up and go down
in rapid succession, before the previous background task
has completed.

To solve this problem, when a peering goes down we
create a new dynamic deletion stage, and plumb it in di-
rectly after the Peer In stage (Figure 6).
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Filter
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FIGURE 6—Dynamic deletion stages in BGP

The route table from the Peer In is handed to the deletion
stage, and a new, empty route table is created in the Peer
In. The deletion stage ensures consistency while grad-
ually deleting all the old routes in the background; si-
multaneously, the Peer In—and thus BGP as a whole—
is immediately ready for the peering to come back up.
The Peer In doesn’t know or care if background dele-
tion is taking place downstream. Of course, the deletion
stage must still ensure consistency, so if it receives an
add route message from the Peer In that refers to a prefix
that it holds but has not yet got around to deleting, then
first it sends a delete route downstream for the old route,
and then it sends the add route for the new route. This
has the nice side effect of ensuring that if the peering
flaps many times in rapid succession, each route is held
in at most one deletion stage. Similarly, routes not yet
deleted will still be returned by lookup route until after
the deletion stage has sent a delete route message down-
stream. In this way none of the downstream stages even
know that a background deletion process is occurring—
all they see are consistent messages. Even the deletion
stage has no knowledge of other deletion stages; if the
peering bounces multiple times, multiple dynamic dele-
tion stages will be added, one for each time the peer-



ing goes down. They will unplumb and delete themselves
when their tasks are complete.

We use the ability to add dynamic stages for many
background tasks, such as when routing policy filters are
changed by the operator and many routes need to be re-
filtered and reevaluated. The staged routing table design
supported late addition of this kind of complex function-
ality with minimal impact on other code.

5.2 RIB Stages

Other XORP routing processes also use variants of this
staged design. For example, Figure 7 shows the basic
structure of the XORP RIB process. Routes come into the
RIB from multiple routing protocols, which play a simi-
lar role to BGP’s peers. When multiple routes are avail-
able to the same destination from different protocols, the
RIB must decide which one to use for forwarding. As
with BGP, routes are stored only in the origin stages, and
similar add route, delete route and lookup route messages
traverse between the stages.
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Unlike with BGP, the decision process in the RIB is
distributed as pairwise decisions between Merge Stages,
which combine route tables with conflicts based on a
preference order, and an ExtInt Stage, which composes
a set of external routes with a set of internal routes. In
BGP, the decision stage needs to see all possible alter-
natives to make its choice; the RIB, in contrast, makes
its decision purely on the basis of a single administra-
tive distance metric. This single metric allows more dis-
tributed decision-making, which we prefer, since it better
supports future extensions.

Dynamic stages are inserted as different watchers reg-
ister themselves with the RIB. These include Redist
Stages, which contain programmable policy filters to re-
distribute a route subset to a routing protocol, and Regis-
ter Stages, which redistribute routes depending on prefix
matches. This latter process, however, is slightly more
complex than it might first appear.

5.2.1 Registering Interest in RIB Routes

A number of core XORP processes need to be able to
track changes in routing in the RIB as they occur. For

example, BGP needs to monitor routing changes that af-
fect IP addresses listed as the nexthop router in BGP
routes, and PIM-SM needs to monitor routing changes
that affect routes to multicast source addresses and PIM
Rendezvous-Point routers. We expect the same to be true
of future extensions. This volume of registrations puts
pressure on the Register Stage interface used to register
and call callbacks on the RIB. In monolithic or shared-
memory designs centered around a single routing table
structure, a router could efficiently monitor the structure
for changes, but such a design cannot be used by XORP.
We need to share the minimum amount of information
between the RIB and its clients, while simultaneously
minimizing the number of requests handled by the RIB.

What BGP and PIM want to know about is the rout-
ing for specific IP addresses. But this list of addresses
may be moderately large, and many addresses may be
routed as part of the same subnet. Thus when BGP asks
the RIB about a specific address, the RIB informs BGP
about the address range for which the same answer ap-
plies.

128.16.0.0/16

128.16.128.0/17

128.16.192.0/18.

128.16.0.0/18

128.16.0.0/18 128.16.128.0/18

Routes
in RIB

Relevant
Routing info
sent to BGP

Interested in
128.16.32.1

Interested in
128.16.160.1

FIGURE 8—RIB interest registration

Figure 8 illustrates this process. The RIB holds routes
for 128.16.0.0/16, 128.16.0.0/18, 128.16.128.0/17 and
128.16.192.0/18. If BGP asks the RIB about address 128.
16.32.1, the RIB tells BGP that the matching route is 128.
16.0.0/18, together with the relevant metric and nexthop
router information. This address also matched 128.16.0.
0/16, but only the more specific route is reported. If BGP
later becomes interested in address 128.16.32.7, it does
not need to ask the RIB because it already knows this
address is also covered by 128.16.0.0/18.

However, if BGP asks the RIB about address 128.16.
160.1, the answer is more complicated. The most spe-
cific matching route is 128.16.128.0/17, and indeed the
RIB tells BGP this. But 128.16.128.0/17 is overlayed
by 128.16.192.0/18, so if BGP only knew about 128.16.
128.0/17 and later became interested in 128.16.192.1, it
would erroneously conclude that this is also covered by
128.16.128.0/17. Instead, the RIB computes the largest
enclosing subnet that is not overlayed by a more specific
route (in this case 128.16.128.0/18) and tells BGP that its
answer is valid for this subset of addresses only. Should



the situation change at any later stage, the RIB will send a
“cache invalidated” message for the relevant subnet, and
BGP can re-query the RIB to update the relevant part of
its cache.

Since no largest enclosing subnet ever overlaps any
other in the cached data, RIB clients like BGP can use
balanced trees for fast route lookup, with attendant per-
formance advantages.

5.3 Safe Route Iterators

Each background stage responsible for processing a large
routing table, such as a BGP deletion stage, must remem-
ber its location in the relevant routing table so that it
can make forward progress on each rescheduling. The
XORP library includes route table iterator data struc-
tures that implement this functionality (as well as a Pa-
tricia Tree implementation for the routing tables them-
selves). Unfortunately, a route change may occur while
a background task is paused, resulting in the tree node
pointed to by an iterator being deleted. This would cause
the iterator to hold invalid state. To avoid this problem,
we use some spare bits in each route tree node to hold
a reference count of the number of iterators currently
pointing at this tree node. If the route tree receives a
request to delete a node, the node’s data is invalidated,
but the node itself is not removed immediately unless the
reference count is zero. It is the responsibility of the last
iterator leaving a previously-deleted node to actually per-
form the deletion.

The internals of the implementation of route trees and
iterators are not visible to the programmer using them.
All the programmer needs to know is that the iterator
will never become invalid while the background task is
paused, reducing the feature interaction problem between
background tasks and event handling tasks.

6 INTER-PROCESS COMMUNICATION

Using multiple processes provides a solid basis for re-
source management and fault isolation, but requires the
use of an inter-process communication (IPC) mechanism.
Our IPC requirements were:

• to allow communication both between XORP pro-
cesses and with routing applications not built using
the XORP framework;

• to use multiple transports transparently, including intra-
process calls, host-local IPC, and networked commu-
nication, to allow a range of tradeoffs between flexi-
bility and performance;

• to support component namespaces for extensibility
and component location for flexibility, and to provide
security through per-method access control on com-
ponents;

• to support asynchronous messaging, as this is a natu-
ral fit for an event-driven system; and

• to be portable, unencumbered, and lightweight.

During development we discovered an additional re-
quirement, scriptability, and added it as a feature. Being
able to script IPC calls is an invaluable asset during de-
velopment and for regression testing. Existing messaging
frameworks, such as CORBA [24] and DCOM [7], pro-
vided the concepts of components, component address-
ing and location, and varying degrees of support for al-
ternative transports, but fell short elsewhere.

We therefore developed our own XORP IPC mecha-
nism. The Finder process locates components and their
methods; communication proceeds via a naturally script-
able base called XORP Resource Locators, or XRLs.

6.1 XORP Resource Locators

An XRL is essentially a method supported by a compo-
nent. (Because of code reuse and modularity, most pro-
cesses contain more than one component, and some com-
ponents may be common to more than one process; so the
unit of IPC addressing is the component instance rather
than the process.) Each component implements an XRL
interface, or group of related methods. When one com-
ponent wishes to communicate with another, it composes
an XRL and dispatches it. Initially a component knows
only the generic component name, such as “bgp”, with
which it wishes to communicate. The Finder must re-
solve such generic XRLs into a form that specifies pre-
cisely how communication should occur. The resulting
resolved XRL specifies the transport protocol family to
be used, such as TCP, and any parameters needed for
communication, such as hostname and port.

The canonical form of an XRL is textual and human-
readable, and closely resembles Uniform Resource Lo-
cators (URLs [3]) from the Web. Internally XRLs are
encoded more efficiently, but the textual form permits
XRLs to be called from any scripting language via a sim-
ple call xrl program. This is put to frequent use in all our
scripts for automated testing. In textual form, a generic
XRL might look like:

finder://bgp/bgp/1.0/set local as?as:u32=1777

And after Finder resolution:

stcp://192.1.2.3:16878/bgp/1.0/set local as?as:u32=1777

XRL arguments (such as “as” above, which is an Au-
tonomous System number) are restricted to a set of core
types used throughout XORP, including network addresses,
numbers, strings, booleans, binary arrays, and lists of
these primitives. Perhaps because our application domain
is highly specialized, we have not yet needed support for
more structured arguments.



As with many other IPC mechanisms, we have an in-
terface definition language (IDL) that supports interface
specification, automatic stub code generation, and basic
error checking.

6.2 Components and the Finder

When a component is created within a process, it in-
stantiates a receiving point for the relevant XRL proto-
col families, and then registers this with the Finder. The
registration includes a component class, such as “bgp”;
a unique component instance name; and whether or not
the caller expects to be the sole instance of a particu-
lar component class. Also registered are each interface’s
supported methods and each method’s supported proto-
col families. This allows for specialization; for example,
one protocol family may be particularly optimal for a
particular method.

When a component wants to dispatch an XRL, it con-
sults the Finder for the resolved form of the XRL. In re-
ply, it receives the resolved method name together with
a list of the available protocol families and arguments
to bind the protocol family to the receiver. For a net-
worked protocol family, these would typically include
the hostname, receiving port, and potentially a key. Once
resolved, the dispatcher is able to instantiate a sender for
the XRL and request its dispatch. XRL resolution results
are cached, and these caches are updated by the Finder
when entries become invalidated.

In addition to providing resolution services, the Finder
also provides a component lifetime notification service.
Components can request to be notified when another com-
ponent class or instance starts or stops. This mechanism
is used to detect component failures and component restarts.

6.3 Protocol Families

Protocol families are the mechanisms by which XRLs are
transported from one component to another. Each pro-
tocol family is responsible for providing argument mar-
shaling and unmarshaling facilities as well as the IPC
mechanism itself.

Protocol family programming interfaces are small and
simple to implement. In the present system, there are
three protocol families for communicating between XORP
components: TCP, UDP, and intra-process, which is for
calls between components in the same process. There
is also a special Finder protocol family permitting the
Finder to be addressable through XRLs, just as any other
XORP component. Finally, there exists a kill protocol
family, which is capable of sending just one message
type—a UNIX signal—to components within a host. We
expect to write further specialized protocol families for
communicating with non-XORP components. These will
effectively act as proxies between XORP and unmodified
XORP processes.

7 SECURITY FRAMEWORK

Security is a critical aspect of building a viable extensible
platform. Ideally, an experimental protocol running on a
XORP router could do no damage to that router, whether
through poor coding or malice. We have not yet reached
this ideal; this section describes how close we are.

Memory protection is of course the first step, and
XORP’s multi-process architecture provides this. The next
step is to allow processes to be sandboxed, so they cannot
access important parts of the router filesystem. XORP
centralizes all configuration information in the Router
Manager, so no XORP process needs to access the filesys-
tem to load or save its configuration.

Sandboxing has limited use if a process needs to have
root access to perform privileged network operations. To
avoid this need for root access, the FEA is used as a re-
lay for all network access. For example, rather than send-
ing UDP packets directly, RIP sends and receives pack-
ets using XRL calls to the FEA. This adds a small cost to
networked communication, but as routing protocols are
rarely high-bandwidth, this is not a problem in practice.

This leaves XRLs as the remaining vector for dam-
age. If a process could call any other XRL on any other
process, this would be a serious problem. By default we
don’t accept XRLs remotely. To prevent local circumven-
tion, at component registration time the Finder includes
a 16-byte random key in the registered method name of
all resolved XRLs. This prevents a process bypassing the
use of the Finder for the initial XRL resolution phase,
because the receiving process will reject XRLs that don’t
match the registered method name.

We have several plans for extending XORP’s secu-
rity. First, the Router Manager will pass a unique secret
to each process it starts. The process will then use this se-
cret when it resolves an XRL with the Finder. The Finder
is configured with a set of XRLs that each process is al-
lowed to call, and a set of targets that each process is al-
lowed to communicate with. Only these permitted XRLs
will be resolved; the random XRL key prevents bypass-
ing the Finder. Thus, the damage that can be done by an
errant process is limited to what can be done through its
normal XRL calls. We can envisage taking this approach
even further, and restricting the range of arguments that
a process can use for a particular XRL method. This
would require an XRL intermediary, but the flexibility
of our XRL resolution mechanism makes installing such
an XRL proxy rather simple. Finally, we are investigat-
ing the possibility of running different routing processes
in different virtual machines under the Xen [13] virtual
machine monitor, which would provide even better iso-
lation and allow us to control even the CPU utilization of
an errant process.
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8 EVALUATION

As we have discussed, the XORP design is modular, ro-
bust and extensible, but these properties will come at
some cost in performance compared to more tightly cou-
pled designs. The obvious concern is that XORP might
not perform well enough for real-world use. On previous
generations of hardware, this might have been true, but
we will show below that it is no longer the case.

The measurements are performed on a relatively low-
end PC (AMD Athlon 1100MHz) running FreeBSD 4.10.
At this stage of development we have put very little ef-
fort into optimizing the code for performance, but we
have paid close attention to the computation complex-
ity of our algorithms. Nevertheless, as we show below,
even without optimization the results clearly demonstrate
good performance, and the advantage of our event-driven
design.

8.1 XRL Performance Evaluation

One concern is that the XRL IPC mechanism might be-
come a bottleneck in the system. To verify that it is not,
the metric we are interested in is the throughput we can
achieve in terms of number of XRL calls per second.

To measure the XRL rate, we send a transaction of
10000 XRLs using a pipeline size of 100 XRLs. Ini-
tially, the sender sends 100 XRLs back-to-back, and then
for every XRL response received it sends a new request.
The receiver measures the time between the beginning
and the end of a transaction. We evaluate three com-
munication transport mechanisms: TCP, UDP and Intra-
Process direct calling where the XRL library invokes di-
rect method calls between a sender and receiver inside
the same process.1

1To allow direct comparison of Intra-Process against TCP and UDP,
both sender and receiver are running within the same process. When we
run the sender and receiver on two separate processes on the same host,
the performance is very slightly worse.

In Figure 9 we show the average XRL rate and its
standard deviation for TCP, UDP and Intra-Process trans-
port mechanisms when we vary the number of arguments
to the XRL. These results show that our IPC mechanism
can easily sustain several thousands of XRLs per sec-
ond on a relatively low-end PC. Not surprisingly, for a
small number of XRL arguments, the Intra-Process per-
formance is best (almost 12000 XRLs/second), but for a
larger number of arguments the difference between Intra-
Process and TCP disappears. It is clear from these results
that our argument marshalling and unmarshalling is not
terribly optimal, but despite this the results are quite re-
spectable. In practice, most commonly used XRLs have
few arguments. This result is very encouraging, because
it demonstrates that typically the bottleneck in the system
will be elsewhere.

The UDP performance is significantly worse because
UDP was our first prototype XRL implementation, and
does not pipeline requests. For normal usage, XORP cur-
rently uses TCP and does pipeline requests. UDP is in-
cluded here primarily to illustrate the effect of request
pipelining, even when operating locally.

8.2 Event-Driven Design Evaluation

To demonstrate the scaling properties of our event-driven
design, we present some BGP-related measurements. Rout-
ing processes not under test such as PIM-SM and RIP
were also running during the measurements, so the mea-
surements represent a fairly typical real-world configura-
tion.

First, we perform some measurements with an empty
routing table, and then with a routing table containing a
full Internet backbone routing feed consisting of 146515
routes. The key metric we care about is how long it takes
for a route newly received by BGP to be installed into the
forwarding engine.

XORP contains a simple profiling mechanism which
permits the insertion of profiling points anywhere in the
code. Each profiling point is associated with a profiling
variable, and these variables are configured by an exter-
nal program xorp profiler using XRLs. Enabling a profil-
ing point causes a time stamped record to be stored, such
as:

route ribin 1097173928 664085 add 10.0.1.0/24

In this example we have recorded the time in seconds and
microseconds at which the route “10.0.1.0/24” has been
added. When this particular profiling variable is enabled,
all routes that pass this point in the pipeline are logged.

If a route received by BGP wins the decision process,
it will be sent to its peers and to the RIB (see Figure 1).
When the route reaches the RIB, if it wins against routes
from other protocols, then it is sent to the FEA. Finally,
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the FEA will unconditionally install the route in the ker-
nel or the forwarding engine.

The following profiling points were used to measure
the flow of routes:

1. Entering BGP

2. Queued for transmission to the RIB

3. Sent to the RIB

4. Arriving at the RIB

5. Queued for transmission to the FEA

6. Sent to the FEA

7. Arriving at the FEA

8. Entering the kernel

One of the goals of this experiment is to demonstrate
that routes introduced into a system with an empty rout-
ing table perform similarly to a system with a full BGP
backbone feed of 146515 routes. In each test we intro-
duce a new route every two seconds, wait a second, and
then remove the route. The BGP protocol requires that

the next hop is resolvable for a route to be used. BGP
discovers if a next hop is resolvable by registering inter-
est with the RIB. To avoid unfairly penalizing the empty
routing table tests, we keep one route installed during the
test to prevent additional interactions with the RIB that
typically would not happen with the full routing table.

The results are shown in Figures 10–12. In the first
experiment (Figure 10) BGP contained no routes other
than the test route being added and deleted. In the second
experiment (Figure 11) BGP contained 146515 routes
and the test routes were introduced on the same peering
from which the other routes were received. In the third
experiment (Figure 12) BGP contained 146515 routes
and the test routes were introduced on a different peering
from which the other routes were received, which exer-
cises different code-paths from the second experiment.

All the graphs have been cropped to show the most
interesting region. At the tables indicate, one or two routes
took as much as 90ms to reach the kernel. This appears
to be due to scheduling artifacts, as FreeBSD is not a re-
altime operating system.

The conclusion to be drawn from these graphs is that



 0

 1

 2

 3

 4

 5

 0  50  100  150  200  250  300

T
im

e 
(m

s)

Route

Introduce 255 routes to a BGP with 146515 routes (different peering)

Queued for RIB

Sent to RIB
Arrived at RIB

Queued for FEA

Sent to FEA

Arrived at FEA

Entering Kernel

Profile Point Avg SD Min Max

Entering BGP - - - -
Queued for transmission
to the RIB 0.508 0.100 0.483 2.039
Sent to RIB 0.563 0.101 0.536 2.094
Arriving at the RIB 1.377 0.182 1.306 2.920
Queued for transmission
to the FEA 1.517 0.193 1.438 3.053
Sent to the FEA 3.149 5.943 2.419 92.391
Arriving at FEA 3.822 5.964 3.037 93.179
Entering kernel 4.417 6.278 3.494 93.662

FIGURE 12—Route propagation latency (in ms), 146515 initial routes and different peering

routing events progress to the kernel very quickly (typi-
cally within 4ms of receipt by BGP). Perhaps as impor-
tantly, the data structures we use have good performance
under heavy load, therefore the latency does not signif-
icantly degrade when the router has a full routing table.
The latency is mostly dominated by the delays inherent
in the context switch that is necessitated by inter-process
communication. We should emphasize that the XRL in-
terface is pipelined, so performance is still good when
many routes change in a short time interval.

We have argued that an event driven route process-
ing model leads to faster convergence than the traditional
route scanning approach. To verify this assertion we per-
formed a simple experiment, shown in Figure 13. We in-
troduced 255 routes from one BGP peer at one second
intervals and recorded the time that the route appeared
at another BGP peer. The experiment was performed on
XORP, Cisco-4500 (IOS Version 12.1), Quagga-0.96.5,
and MRTD-2.2.2a routers. It should be noted that the
granularity of the measurement timer was one second.

This experiment clearly shows the consistent behav-
ior achieved by XORP, where the delay never exceeds
one second. MRTD’s behavior is very similar, which is
important because it illustrates that the multi-process ar-
chitecture used by XORP delivers similar performance to
a closely-coupled single-process architecture. The Cisco
and Quagga routers exhibit the obvious symptoms of a
30-second route scanner, where all the routes received in
the previous 30 seconds are processed in one batch. Fast
convergence is simply not possible with such a scanner-
based approach.

Teixeira et al demonstrate [29] that even route changes
within an AS can be adversely affected by the delay in-
troduced by BGP route scanners. In real ISP networks,
the found delays of one to two minutes were common
between an IGP route to a domain border router chang-
ing, and the inter-domain traffic flowing out of a domain
changing its exit router. During this delay, they show that
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transient forwarding loops can exist, or traffic may be
blackholed, both of which may have significant impact
on customers. Thus fast convergence is clearly of high
importance to providers, and can only become more so
with the increase in prominence of real-time traffic.

8.3 Extensibility Evaluation

The hardest part of our design to properly evaluate is
its extensibility. Only time will tell if we really have the
right modularity, flexibility, and APIs. However, we can
offer a number of examples to date where extensibility
has been tested.

Adding Policy to BGP

We implemented the core BGP and RIB functionality
first, and only then thought about how to configure pol-
icy, which is a large part of any router functionality. Our
policy framework consists of three new BGP stages and
two new RIB stages, each of which supports a common
simple stack language for operating on routes. The de-
tails are too lengthy for this paper, but we believe this



framework allows us to implement almost the full range
of policies available on commercial routers.

The only change required to pre-existing code was
the addition of a tag list to routes passed from BGP to
the RIB and vice versa. Thus, our staged architecture ap-
pears to have greatly eased the addition of code that is
notoriously complex in commercial vendors’ products.

What we got wrong was the syntax of the command
line interface (CLI) template files, described in [15], used
to dynamically extend the CLI configuration language.
Our original syntax was not flexible enough to allow user-
friendly specification of the range of policies that we
need to support. This is currently being extended.

Adding Route Flap Damping to BGP

Route flap damping was also not a part of our original
BGP design. We are currently adding this functionality
(ISPs demand it, even though it’s a flawed mechanism),
and can do so efficiently and simply by adding another
stage to the BGP pipeline. The code does not impact
other stages, which need not be aware that damping is
occurring.

Adding a New Routing Protocol

XORP has now been used as the basis for routing re-
search in a number of labs. One university unrelated to
our group used XORP to implement an ad-hoc wireless
routing protocol. In practice XORP probably did not help
this team greatly, as they didn’t need any of our existing
routing protocols, but they did successfully implement
their protocol. Their implementation required a single
change to our internal APIs to allow a route to be spec-
ified by interface rather than by nexthop router, as there
is no IP subnetting in an ad-hoc network.

9 CONCLUSIONS

We believe that innovation in the core protocols support-
ing the Internet is being seriously inhibited by the na-
ture of the router software market. Furthermore, little
long term research is being done, in part because re-
searchers perceive insurmountable obstacles to experi-
mentation and deployment of their ideas.

In an attempt to change the router software landscape,
we have built an extensible open router software plat-
form. We have a stable core base running, consisting of
around 500,000 lines of C++ code. XORP is event-driven,
giving fast routing convergence, and incorporates a multi-
process design and novel inter-process communication
mechanisms that aid extensibility, and allow experimen-
tal software to run alongside production software.

In this paper we have presented a range of innovative
features, including a novel staged design for core pro-
tocols, and a strong internal security architecture geared

around the sandboxing of untrusted components. We also
presented preliminary evaluation results that confirm that
our design scales well to large routing tables while main-
taining low routing latency.

In the next phase we need to involve the academic
community, both as early adopters, and to flesh out the
long list of desirable functionality that we do not yet
support. If we are successful, XORP will become a true
production-quality platform. The road ahead will not be
easy, but unless this or some other approach to enable In-
ternet innovation is successful, the long-run consequences
of ossification will be serious indeed.
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NOTES
1We have some confirmation of this: a group implementing an ad-

hoc routing protocol found that XORP’s RIB supported their applica-
tion with just one trivial interface change [19].
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