

Sherlok - Version 1.4

Java Application Monitor

13. September 2005

Sherlok Manual 1.4 Seite 2

1 INTRODUCTION 5

1.1 MONITORING MEMORY 5
1.2 MONITORING PERFORMANCE 5
1.3 GENERAL APPLICATION TRACING 5
1.4 USAGE MODES 6
1.5 CHANGES FROM VERSION 1.3 6

2 INSTALLATION AND INITIAL CONFIGURATION 7

2.1 REQUIREMENTS 7
2.2 INSTALLATION OF SHERLOK PACKAGE 7

2.2.1 INSTALL THE SHERLOK DLL 7
2.2.2 UNPACK THE SHERLOK SUPPORT FILE JAR 8
2.2.3 ADAPTING SHERLOK CONFIGURATION TO YOUR NAMESPACE 8
2.2.4 EMBED SHERLOK INTO JVM 8
2.2.5 CHANGING THE TELNET PORT 9
2.2.6 TESTING THE CONSOLE 10

2.3 INSTALL SHERLOK USER INTERFACES (OPTIONAL) 10
2.3.1 UPLOAD PORTAL IVIEW TO THE ENTERPRISE PORTAL 10
2.3.2 SERVLET 10

2.4 SHERLOK DOCUMENTATION 10
2.5 MEMORY CONSIDERATIONS 11

3 QUICKSTART: THE IVIEW TESTBENCH 11

3.1 STARTING THE TESTBENCH 11
3.2 MEMORY PROFILING 12

3.2.1 STEP 1: START TESTBENCH 13
3.2.2 STEP 2: USE THE IVIEWS OF INTEREST 13
3.2.3 STEP 3: INSPECT THE NUMBERS 13
3.2.4 STEP 4: CLASSIFY THE RESULTS 14
3.2.5 STEP 5: SET UP ACTION ITEMS 16

3.3 PERFORMANCE MONITORING 16
3.3.1 STEP 1: START IVIEW TESTBENCH IN A SEPARATE WINDOW 17
3.3.2 STEP 2: USE THE IVIEWS OF INTEREST 17
3.3.3 STEP 3: INSPECT THE NUMBERS. 17
3.3.4 STEP 4: CLASSIFIY THE RESULTS 18
3.3.5 STEP 5: SET UP ACTION ITEMS 18

4 FUNDAMENTAL SHERLOK CONCEPTS 19

4.1 MEMORY PROFILING CONCEPTS 19
4.1.1 BASIC CONCEPTS 19
4.1.2 SCOPE AND AGGREGATION 22

4.2 PERFORMANCE PROFILING CONCEPTS 25
4.3 TRACING CONCEPTS AND EVENTS 26

5 MONITORING IVIEW 27

5.1 USER INTERFACE 27
5.1.1 PAGE 1: SETTINGS 27
5.1.2 PAGE 2: RESULTS 29

Sherlok Manual 1.4 Seite 3

5.2 USING MONITOR 33
5.2.1 MONITOR MEMORY REQUIREMENTS 33
5.2.2 SHOW METHOD TIMING 34
5.2.3 FIND GROWING CLASSES 35
5.2.4 DECOMPOSE CLASS MEMORY USAGE 36

6 JARM INTEGRATION 36

6.1 USING JARM INSTRUMENTATION 36
6.2 USING SHERLOK-CONTEXT API 37

7 TOOL INTEGRATION 39

8 MEMORY PROFILING 39
8.1.1 IDENTIFYING THE “BAD COMPONENT” 39

8.2 MEMORY LEAK FINDER 41
8.2.1 ACTIVATING THE MEMORY LEAK FINDER MODE 42
8.2.2 USAGE VIA CONSOLE 42
8.2.3 USAGE WITH UI 42

8.3 QUICK HEAP DUMP 42
8.4 INVESTIGATING MEMORY PROBLEMS 43

8.4.1 TRAPPING THE OUT-OF-MEMORY SITUATION 43
8.4.2 HEAP OVERFLOW 44
8.4.3 PERMSIZE OVERFLOW 48
8.4.4 MAXIMUM NUMBER OF THREADS 48
8.4.5 MAXIMUM ADDRESS SPACE, DLLS 49

9 PERFORMANCE PROFILING 50

9.1 LATENCY 50
9.1.1 CONTENTION 50
9.1.2 BROAD QUERIES 50
9.1.3 BAD SYSTEM CONFIGURATION 50

9.2 COMPUTATIONAL COMPLEXITY 50
9.2.1 BUSY WAITING 50
9.2.2 INEFFICIENT ALGORITHMS 50

9.3 MISSING CACHES 51
9.4 GARBAGE COLLECTION DELAYS 51

9.4.1 HIGH MEMORY ALLOCATION AND DEALLOCATION RATE (FULL GARBAGE COLLECTIONS)
 51

10 APPLICATION TRACING 52

10.1 STARTUP 52
10.1.1 TELNET CONSOLE 52
10.1.2 LOGGING 53
10.1.3 ACTIVATE THE TRACER 53

10.2 TRACE GARBAGE COLLECTOR 54
10.3 TRACE THREAD CONTENTIONS 54
10.4 TRACE METHODS 54
10.5 TRACE PARAMETERS 55
10.6 TRACE HOTSPOTS 56

10.6.1 SETUP 56
10.6.2 OPTIONS 57

Sherlok Manual 1.4 Seite 4

10.6.3 OUTPUT OPTION -ASCII 57
10.6.4 OUTPUT OPTION -TREE 57
10.6.5 OUTPUT OPTION -XML 58

10.7 TRACE JAVA EXCEPTIONS 59
10.8 TRACE THREAD CONTENTIONS 59
10.9 TRACE STACK 60
10.10 TRACE THREADS 60

11 REFERENCE 61

11.1 CONFIGURATION REFERENCE 61
11.1.1 GENERAL CONFIG CONCEPTS 61
11.1.2 HANDLING MULTIPLE CONFIGURATION FILES 62
11.1.3 DEFINING THE PROFILE SCOPE 63
11.1.4 CONFIGURATION PARAMETERS 63

11.2 TELNET CONSOLE REFERENCE 68
11.2.1 STARTING THE TELNET CLIENT 68
11.2.2 ACCOUNTS 68
11.2.3 COMMAND: MAN | HELP 68
11.2.4 COMMAND: LSP 69
11.2.5 COMMAND: START | STOP MONITOR 69
11.2.6 COMMAND: START | STOP TRACE 69
11.2.7 COMMAND: START | STOP LOG 69
11.2.8 COMMAND: LSC 69
11.2.9 COMMAND: LSD 70
11.2.10 COMMAND: LML 70
11.2.11 COMMAND: LSM 70
11.2.12 COMMAND: LSP 71
11.2.13 COMMAND: LSS 71
11.2.14 COMMAND: LHD 71
11.2.15 COMMAND: RESET 72
11.2.16 COMMAND: REPEAT 72
11.2.17 COMMAND: DT 72
11.2.18 COMMAND: DEX 73
11.2.19 COMMAND: INFO 73
11.2.20 COMMAND: TRACE 73
11.2.21 COMMAND: LCF 73
11.2.22 COMMAND: SET 73
11.2.23 COMMAND: EXIT 73
11.2.24 COMMAND: CHPWD 74
11.2.25 COMMAND: VERSION 74

Sherlok Manual 1.4 Seite 5

1 Introduction
Sherlok is a Java application monitor, that allows to get detailed information about the behavior of java
programs. It implements the following aspects of monitoring:

• Monitor memory allocation and memory leaks

• Monitor performance

• Monitor program execution (application trace)

1.1 Monitoring Memory
Memory is a resource, which is shared by all components of a Java application without any quotas. The
overall application will fail, if only one component does not cooperate (e.g. has a memory leak) or if several
components with huge demand on memory will compete for this resource when they run at the same time (in
threads). Once the application reaches the system limits, the infamous 'out-of-memory' occurs and it is hard
to tell which components are at fault.

Memory consumption also impacts performance. Each chunk of memory, which is used by a Java
component, wil l have to go through the garbage collector to make it available again for other components.
The allocation of memory, the initializing of objects and finally the garbage collector need time for
execution.

In order to help diagnosing memory problems, Sherlok offers these features:

• Show memory usage by component with allocated, deallocated, retained memory and a history for
these values,

• A Memory Leak Detector mode that watches for growing classes, and a mode that can trap 'out-of-
memory' situations.

• A quick heap dump to analyze the component's memory usage.

1.2 Monitoring Performance
Performance analysis, i.e. monitoring execution times, is also hard for a complex client-server application.
The request response time might depend more on LDAP, SQL or file system services, than on the executed
Java code. What you need to improve your software is reliable data to compare the current state with prior
ones and make the measurement independent from network and external services.

• Sherlok measures CPU and elapsed time for each Java method in scope and allows you to find the
cause of any delay in a given response. Sherlok also allows you to 'drill down' and focus the
performance measurements.

• Sherlok has a built-in HotSpot analyzer, which dumps the call stack for the most expensive method
execution contexts. This allows to find the 'top slow methods'.

1.3 General Application Tracing
Sherlok offers tracing features as well. Tracing 'shows what the application is doing' dynamically. All trace
functions dump information to the telnet console (and log file) and they are triggered by program execution
events. These tracing trigger events include:

• Activation of the garbage collector: writes more detailed GC output

• Method enter and exit events: can be traced

• Unhanded exceptions: can write stack trace

Sherlok Manual 1.4 Seite 6

1.4 Usage Modes
Web UI and Console

Sherlok provides a web interface (IViews and servlet) for simpler use cases and a console / telnet interface
for power users. A special use case, the iView TestBench has a separate very simple dedicated web interface.
Not all Sherlok features are available through the web interfaces.

Different Usage Types

Sherlok can be used by di fferent types of users in different ways:

• iView / Code Developers can use it during development to identify resource usage and optimize the
code. In general, the simple iView TestBench user interface will be sufficient to identify resource
problems and pinpoint the causes in the code. For in-depth analysis the console mode is available.

• Advanced Technical Support can use Sherlok to do general analysis of overall system performance
and to identify possible issues. This generally requires the console mode.

• A content developer combines iViews to pages and roles and can use the iView TestBench to
measure the resource needs of certain iViews and pages / interactions.

Usable for any Java program

Sherlok is described in the application context of the SAP Enterprise Portal, but it can be used on any Java
program and JDK 1.3.1 and 1.4.

1.5 Changes from Version 1.3
• Sherlok now supports multiple configuration files, and to load them dynamically. The configuration

files are located under the sher l ok subdirectory by default. The default is def aul t . skp.

• Some command names were changed to be more consistent and understandable.

• User interface changes were made to simplify usage.

Sherlok Manual 1.4 Seite 7

2 Installation and Initial Configuration
In this chapter we will show how to install Sherlok on a Enterprise Portal node. To prepare for the
installation, download the most recent version of the Sherlok package archive for your platform from the
Sherlock homepage.

2.1 Requirements
• Operating system Linux, Windows, Solaris, HP-UX or AIX

• Java Runtime Environment (JRE) 1.3 or 1.4

• Telnet executable for command line interface

• SAP J2EEngine 6.20 or 6.30 for sher l ok. ear

• Portal EP 6 for iView interfaces

2.2 Installation of Sherlok Package
The Sherlok Package consists of two parts: (1) The shared library and (2) the Sherlok support fi les, i.e.
configuration fi les, UI components, documentation etc.

From now on we consider the case of SAP Enterprise Portal installed on SAP J2EE. Therefore the directory
is one of the following depending on your portal configuration:

2.2.1 Install The Sherlok DLL
The DLL varies by platform:

Platform Library

MS Windows sher l ok. dl l ,
(Syst em: msvcr 71d. dl l , msvcp71d. dl l)

Solaris l i bsher l ok. so

Linux l i bsher l ok. so

HP-UX (32/64bit) l i bsher l ok. s l

AIX (64bit) l i bsher l ok. so

Install the DLL at the root directory of the server instance, i.e. where the JVM is called. This directory can
differ, e.g.

Configuration Installation directory inside of J2EE Engine to use

Standalone …/ al one

Cluster with one server node …/ cl ust er / ser ver

Cluster with multiple server nodes …/ cl ust er / ser ver <n> (where <n> is node number)

J2EE 6.40 …/ cl ust er / os_l i bs

Sherlok Manual 1.4 Seite 8

Notes

• To run Sherlok 1.4.0.7 on NT make sure, that msvcp71d.dll and msvcr71d.dll are available

• Standalone configuration is used for EP5.0, the cluster versions for EP6.

• The path leading to the DLL location must not contain spaces! (i f you have problems here, see
'Central Installation Option' below)

2.2.2 Unpack the Sherlok Support File JAR
Unpack the Sherlok support files JAR (sher l ok. j ar) in the directory …/ cl ust er / ser ver . This will
create a subdirectory sher l ok that contains all the additional fi les such as the configuration files (* . skp)
documentation etc. The file def aul t . skp is the default configuration fi le, that you can also use as the
template when creating your new configurations.

2.2.3 Adapting Sherlok configuration to your Namespace
Sherlok configuration files in the standard delivery are too generic for most cases. It is strongly
recommended to adapt them, especiall y to restrict the count of classes monitored as much as possible.

For instance, when your portal components (you want to investigate) are implemented as the set of classes in
the Java package com.myfirm.myapplication.* you should modify the ProfilePackage property in the
configuration file sher l ok/ def aul t . skp (and also in any other * . skp fi le you want to use) to the
corresponding value like in the following sample:

Fi l e: def aul t . skp (sampl e)

Pr of i l eMemor y = on
Pr of i l ePackages = com. mycompany. t est .
Ti mer = on
…

For the exact meaning of the parameters and special usage of wildcards in the patterns have a look at the
Parameter reference section.

2.2.4 Embed Sherlok into JVM
As next step, you have to embed Sherlok into the JVM by modifying the start script. Follow the instructions
depending on platform and SAP J2EE version you use.

2.2.4.1 For all Platforms

You should also always run with the -verbose:gc option set that outputs GC information in the console log.
This is always valuable information about the memory behavior of an application and needed to get the
memory usage graphs described in the sherlok.jar.

If exists, put the shared library into the folder os_libs. In any other case put the shared library to the server
directory and set the library path environment variable (on Linux LD_LIBRARY_PATH).

Create a directory …/cluster/server<n>/sherlok and put the configuration fi les into it. The two command line
arguments are synonyms:

• -Xrunsherlok:ConfigPath=sherlok

• -Xrunsherlok:ConfigFile=sherlok/default.skp

Sherlok Manual 1.4 Seite 9

2.2.4.2 Windows with Portal running on J2EE 6.20

Open the start script go. bat (or godebug. bat) in a text editor. Locate the line starting with “set
DEBUG_PARAMS” and add there following parameters (no line break)

set DEBUG_PARAMS=- Dj ava. compi l er =NONE - Xdebug - Xnoagent
- Xr unsher l ok : Conf i gPat h=sher l ok

At the end, save all changes and restart the server node to make the changes effective.

2.2.4.3 Windows with Portal running on J2EE 6.40 / 6.30

Start the ConfigTool from the SAP J2EE Engine and select there the correct server node instance.

Under the tab strip General you will find a Java settings / Java parameter text field, where you have to
add following JVM parameters:

- Xdebug
- Xr unsher l ok : Conf i gPat h=sher l ok

Then switch to the tab-strip Debug and check there the value of the flag Debug / Enable debug mode. This
flag has to be disabled to get the Sherlok running properly.

At the end, save all changes and restart the server node to make the changes effective.

2.2.4.4 Solaris / HP-UX / AIX / Linux with Portal running J2EE 6.20

Open the starting script go. bat (or godebug. bat) in a text editor. Locate the line starting with “set
DEBUG_PARAMS” and add there following parameters. (no line break!)

You have to also add the environment variable LD_LI BRARY_PATH=. to the script.

set DEBUG_PARAMS=” - Xdebug - Xr unsher l ok : Conf i gPat h=sher l ok”
set LD_LI BRARY_PATH=.

At the end, save all changes and restart the server node to make the changes effective.

2.2.4.5 Solaris / HP-UX / AIX / Linux with Portal running J2EE 6.40 / 6.30

Start the ConfigTool from the SAP J2EE Engine and select there the correct server node instance.

Under the tab strip General you will find a Java settings / Java parameter text field, where you have to
add following JVM parameters:

- Xdebug
- Xr unsher l ok : Conf i gPat h=sher l ok

in the Startup Framework Settings dialog for the Java parameters section. Make sure, that the debug
option on this node is disabled.

Copy the shared library into …/ cl ust er / os- l i bs

At the end, save all changes and restart the server node to make the changes effective.

2.2.5 Changing the Telnet Port
With the settings to the JVM invocation done in previous section, the Sherlok offers its console interface for
the Telnet host localhost at port 2424.

In special cases (i.e. when this port is already occupied for other services), you may have to change this
settings by adding one or more parameters to the JVM invocation as the comma-separated list of key/value
pairs like in following sample.

Sherlok Manual 1.4 Seite 10

- Xr unsher l ok : Conf i gPat h=sher l ok, Tel net Por t =2222

2.2.6 Testing the Console
Having previous steps completed, you get elementary output (property dump) from Sherlok on the
corresponding server console whenever the Portal server is started.

Sherlok can be then used via a console interface (via telnet) and various web UIs. For the console mode you
access the interface via port 2424 on localhost (or corresponding values when this was changed in the JVM
invocation).

t el net l ocal host 2424

You can then use the console interface via telnet, even without waiting until the portal is fully started. You
can just open the console and type 'exit' to close it. See the 'Console Reference' section for more details.

2.3 Install Sherlok User Interfaces (optional)
Sherlock provides not only a command based interface but also more comfortable interfaces that can be
installed separately. You wil find the necessary deployable files inside of the sher l ok subdirectory.

2.3.1 Upload Portal iView to the Enterprise Portal
There is a special portal component archive called com. sap. por t al s. sher l ok. par that can be
easily deployed to the portal and instantiated in the portal pages in a common way.

Being a portal administrator, you can upload this component via Administration console (System
Administration -> Support -> Support Desk -> Area: Portal Runtime -> “ Portal Anywhere” Admin Tools :
Administration Console).

You can get the Archive Uploader also by typing the following URL in your browser (adapted to the true
server name

<por t al _ser ver >/ i r j / ser vl et / pr t / por t al / pr t r oot / Por t al Anywher e. Ar chi veUpl oader

2.3.2 Servlet
For non portal application Sherlok exposes the interfaces in

• sher l ok. ear for J2EEngine

• sher l ok. war for arbitrary servlet container, contained in the ear fi le

• com.sap.portals.sherlok.par: portal iView monitor

• com.mycompany.test.par: portal iView test component

Please refer to the documentation of the servlet container how to deploy and modify startup parameters.

2.4 Sherlok documentation
The Sherlok documentation (this file) is also located in the sher l ok subdirectory.

Sherlok Manual 1.4 Seite 11

2.5 Memory Considerations
Note that Sherlok itself needs memory to run. To monitor all classes and objects in a Java system you can
expect that Sherlok needs about 10-15% of the Java memory size. This amount of memory requirement will
be added to the JVM, i.e. the java process!

Please make sure the java process has enough physical memory to avoid paging. Also, on Windows, the
address space is limited to 1.3 GB. In case you had the Java heap set to 1.3 GB to full y uti lize all memory,
you must reduce the Java heap size by about 200 MB to make room for the Sherlok memory needs.

3 QuickStart: The iView TestBench
The simplest way to use Sherlok is to use the iView TestBench in the portal. The purpose is to be able to
simply measure how much CPU time and memory a certain interaction (iView, page) needs and offer quick
feedback on possible resource problems.

The following description does not explain all details to the last level but tries to give you enough to get
started quickly. For full details see the detailed descriptions after this section.

Note: As memory profiling can degrade portal performance by up to ten times (depending on the
profile mode) it is strongly recommend to use a dedicated system, i.e. a development/test
system.

In order to get valid results it is also necessary to allocate the development system for exclusive
use. It is further assumed that there is no concurrent activity taking place in the system as the
profiling is in progress.

The basic idea of the TestBench is to actively use an iView in one windows and to observe its behavior in a
second window: the windows of the iView TestBench. It will show memory consumption and timing of the
monitored classes as the application is used.

In order to limit the output to the significant classes of the application, it is necessary to configure Sherlok
appropriately. Otherwise the results will be scattered among several classes that are out of scope. Sherlok
uses the default preset fi le passed in the parameter ConfigFile when the TestBench is used. See 11.1 for
explanation.

3.1 Starting the TestBench
As the first step in testing your iView, the iView TestBench has to be started. This application can be found in
the Sherlok role.

Sherlok Manual 1.4 Seite 12

The TestBench user interface is fairly straightforward, offering only two di fferent commands:

• Next Step will take a snapshot of the current state of execution and display it in the table below.

• Reset will clear the history and also recognize changes made to the configuration in the mean time.

Picture 1: iView TestBench

This table below the buttons contains a list of classes, ordered by their memory consumption. In the first
column the table shows the total memory requirements of an application part (i.e. a Java class) so far, the
second column contains the full qualified name of the Java class responsible. For every entry, detail
information can be shown by clicking on the corresponding table cell (see 3.2.3 and 3.3.3 for a detailed
explanation).

In order to reduce the number of display items, the list can be filtered using the text field at the top of the
application. Here either a prefix, infix or suffix of the classes of interest can be entered. A “.” dot is used at
the beginning and/or the end of the filter string to define an arbitrary string. An infix string (substring) is
enclosed in dots, a prefix ends with a dot and a suffix starts with a dot.

Examples:

• “.sun.” matches sun.java.util.*, com.sun.java.net.* , com.sun.* , …

• “.Map” matches any class ending with “Map” like java.util.HashMap

• “com.sap.” matches com.sap.util.* , com.sap.por tals.* , com.sapportals.* , …

3.2 Memory Profiling
Excessive memory consumption is a major problem in Java programs. Neither the portal nor the Java base
technology restrict the amount of memory an application can allocate. As a result, a single iView can bring
down the entire portal installation by eating up all the memory available to the Virtual Machine.

It is strongly recommended to measure the memory consumption of all portal content before it is deployed
on a production system. The TestBench will give a deeper insight into the memory requirements of the
iViews. Within a few steps, those parts that claim major amounts of memory can be detected. iViews that
show non-cooperative behavior show up soon, because of their eye-catching numbers.

The iView TestBench is collecting data about allocated and deallocated memory by intercepting both the
creation of new objects (allocations) performed by a class and the reclaiming of memory (deallocations) by

Sherlok Manual 1.4 Seite 13

the garbage collector. Both allocation- and deallocation-values are accumulated for the time between two
runs of the garbage collector (called GC cycles).

The following sections will outline a step-by-step approach to testing iViews for memory consumption.

3.2.1 Step 1: Start TestBench
First, the TestBench has to be opened. If it has been used recently it should be initialized by pressing the
Reset button. See 3.1 on how to start TestBench.

3.2.2 Step 2: Use the iViews of interest
To drive memory-consumption, the iView that is to be inspected must be used actively. This is best
accomplished by starting it from the Content Inspection area using Preview and then going through several
iterations of the measurement procedure that is outlined here:

• Perform some activity in the custom iView.

• Press Next Step in the TestBench

After every step the table is updated with the latest results and Sherlok attempts to induce a garbage
collection in the JVM. This will create some detail information on the memory consumption.

3.2.3 Step 3: Inspect the numbers
From time to time the results should be examined closer. When there are multiple classes on the display,
concentrate on those classes that consume large amounts of memory or have a steadily increasing total
(CurrSize column). The classes can be easily sorted by clicking on the column-labels.

To see detailed information on the memory requirements of a class, click on the size entry that is displayed
left to the class name. Now a table will be show up below containing the garbage collection history of the
class.

Picture 2: Memory History

Sherlok Manual 1.4 Seite 14

The history contains memory allocations and deallocations for the current and privious GC cycles. The size
of the table depends on the configuration of Sherlok and can be adjusted with the property
MemoryL imitHistory (see 11.1.4.3).

Column Description

GCNr Sequence number of the garbage collection.

Note: This number is assigned by the JVM. Sometimes multiple garbage collections
are combined, carrying only the number of the last GC. Therefore there may be gaps
in the numbering.

Total The number of bytes that is actually consumed by the class of the application (in
bytes). This is the total amount of memory that has been allocated, minus the total
of deallocated memory.

Allocated The amount of memory being newly allocated during the GC cycle (in bytes).

This number includes all memory that has been requested, no matter i f it is stil l
referenced or available for reclaiming.

Deallocated The amount of memory being deallocated during the GC cycle (in bytes).

This number includes all memory that has been reclaimed by the garbage collector
since the previous garbage collection, no matter i f it was allocated in this cycle or in
one of the previous ones.

TimeStamp Time stamp value, depending on operating system, with zero meaning current time.

The time stamp is a relative value that be used to compare intervals to each other.

For a single GC cycle, the amount of deallocated memory may well exceed the amount of
allocated memory. This is often confusing to the novice, but comes from the fact the allocated
and deallocated values do not necessarily refer to the same memory space or objects.

3.2.4 Step 4: Classify the results
Looking at the memory history of a class, it can be assigned one of these cases:

Well behaving The memory requirements are constantly low (< 2 MBytes).

High Demand The memory requirements are constantly high.

Peak Demand The allocation reaches critical levels in peak situations, but remains otherwise normal.

Critical Demand The memory requirements are very high and may cause outages under load.

Leak The memory requirements are constantly growing, a memory leak seems likely.

To do this assignment it is very helpful to display the entries of the memory history table as a graph. You can
export the history table for iView TestBench to Microsoft Excel using copy-and-paste from the table. You
may use the xls sample in the subdirectory sher l ok/ gcgr aph.

Every kind of issue has its very own fingerprint or pattern that shows up in the history graph.

High / Critical Demand

The amount of memory is relatively stable for both the allocated and the total value. The iViews following
this patterns usually have no memory leak and their memory demand is predictable. Stil l, high values still
point to possible improvements in the implementation. When the total value reaches critical levels (like >10

Sherlok Manual 1.4 Seite 15

MB), memory requirement have to be reduced in order to keep the portal installation operational. Application
logic that requires that high levels of memory should be moved to a separate application server.

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10

Allocated

Deallocated

Total

Peak Demand

 There are high peak values for the allocated and deallocated values, with the total staying at constant levels
or growing only for a very short period of time (1-2 GC cycles). High peak values point to efficiency
problems in the implementation leading to high amounts of garbage objects. Though the memory is not
claimed for a longer period, this is still a critical issue in a multiuser environment. When several peaks of
different applications and/or users concur, the combined total may exceed the available memory and the
system may be injured by expensive full GCs or even fail with an out-of-memory error.

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10

Allocated

Deallocated

Total

Leakage

The memory footprint of the iView is constantly growing, so independently from the allocated and
deallocated value, the total is growing over time. The reason is the class is collecting data in memory.
Because business applications normall y collect their data in a database or some other external storage
facility, this points to a bug in the software. The application is keeping objects by accident. Sooner or later
the leaking application may have claimed so much memory that the system will fail. This way, even a small
leak may bring down the entire system.

Sherlok Manual 1.4 Seite 16

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10

Allocated

Deallocated

Total

3.2.5 Step 5: Set Up Action Items
Depending on the memory consumption pattern, the following measures can be planned.

High Demand

iView whose memory requirements are staying constantly above acceptable levels should be inspected for
excessive caching. This may happen either in the iView itself or depending on the usage of external
subsystems like JCo or a third-party library.

The iView should be inspected in detail using the iView Monitor (see 5.2.1). Once the problem can be
assigned to a speci fic subsystem, the iView has to be reviewed by the developer to check the usage of the
subsystem’s components and their APIs.

Peak Demand

Peaks in memory consumption point to inefficient usage of the Java programming language, leading to a
multitude of temporary objects. As with the previous case, you should track-down to the source of the
problem to identify the responsible group of developers or the vendor of the subsystem.

Leakage

A memory leakage is caused by the iView itself in most cases. Therefore a deeper inspection of the
subsystems should be left to the developer of the iView, as it is impossible to assign a leak correctly without
looking at the implementation of the iView. Stil l, it might be helpful to apply the Monitor Subsystems preset
anyway. If there is no leakage in the inspected subsystems, this source can be safely ruled out.

3.3 Performance Monitoring
Performance is a key factor in the usability of portal applications. Slow applications lead to dissatisfaction on
behalf of the user and eat up processing time that could better be used otherwise.

Portal content that shows lengthy response times should be inspected to trace the performance leak back to
the source. The test bench will give a deeper insight into the execution times of the various methods an
application is composed of.

Essentially, the iView TestBench takes snapshots of the timing of an application. For every method in every
monitored class the total execution time and the number of calls is recorded. The results are added to a table.

We will explain here the steps to take in order to find bad performing classes.

Sherlok Manual 1.4 Seite 17

3.3.1 Step 1: Start iView TestBench in a separate window
See section 3.1 to learn how TestBench can be started.

A description of the performance data offered by TestBench can be found in section 3.3.3.

3.3.2 Step 2: Use the iViews of interest
To drive CPU-consumption, the iView that is to be inspected has to be actively used. The iView can be
started from any place to obtain valid performance data. Either from the page it is normally embedded or
directly from the Content Inspection role.

After the iView is loaded the usage should focus on the functionality that shows long response times. When
the initial displaying of the iView is the key-issue, the iView should be started over and over using the
Content Inspection role.

3.3.3 Step 3: Inspect the numbers.
After some activity the Next Step button of the TestBench should be pressed in order to get results. The
results wil l be updated each time this button is pressed.

In order to get the total execution time of the iView the class actually implementing the iView has to be
located. A click on the class name will bring up the detail view on performance data. Note, that there is no
history created for performance. So the Next Step button has only the effect of updating the table.

Picture 3: Method Timing Details

The table that shows up at the bottom contains the execution time and the total number of calls for each
method in the selected class. The numbers here grow with every step, there is no history like in the memory
case.

Sherlok Manual 1.4 Seite 18

Column Description

CPU-Time Cumulated CPU time usage

This parameter measures the plain processing time. This is the time the thread was in
running state. This is the time it took the method to complete minus the time other
threads or the operating system owned the CPU. See 4.2 for details.

Elapsed Cumulated time measured between enter and exit of a method. In short: This is the
accumulated execution time of the method.

The di fference between CPU to elapsed time is the time a thread was in ready or
waiting state. A thread is in waiting state, when it is waiting for a signal of the operating
system, like incoming data of an I/O or an object monitor. It is in ready state, when the
scheduler has elected other threads to own the CPU.

NrCalls Number of calls to the method

Name Name of the method

3.3.4 Step 4: Classifiy the results
By looking at the execution time of a method, the problem can be categorized:

Complex computations

The method shows a high amount of CPU time and an almost equal elapsed time. This shows that the method
is really busy doing its work.

High latency

The method shows a high amount of elapsed time and significantly lower value for the actual CPU time.
Therefore it is waiting for another task to be completed most of the time. This may either be a complex
database operation, or another thread that is holding a monitor (contention) or an arbitrary I/O operation.

3.3.5 Step 5: Set up Action Items
After the general problem has been named, it is necessary to look for the reasons.

3.3.5.1 High latency

Most of the problems come from high latencies the application is suffering. These can be spotted by
comparing the elapsed time with the CPU time. When the elapsed time is signi ficantly higher than the CPU
time, the reason for the loss of performance does not lie in the computations performed inside the
application’s thread. Instead the application is waiting for another party to complete.

Common reasons are contention, broad queries and a bad system configuration.

Contention

Sometimes a method requires exclusive access to some object or resource that it does not own. Depending on
the competition, it may spend most of the time in waiting for another thread to release it. This kind of
bottleneck is a performance bug that prevents an application from being scalable. When the object is shared
with the infrastructure or other applications the entire portal installation may suffer. In both cases the iView
sourcecode has to be inspected in detail in order to find and remove the bottleneck.

Broad Queries

When an external database or R/3 repository is queried for information, a lot depends on efficiency of the
query. When the query (like an SQL statement) is too general, the time needed to perform it is very long. As
a result the call ing thread is spending most of the time waiting for the results to come in from the external

Sherlok Manual 1.4 Seite 19

system. The method takes too long to execute and the connected system may be overloaded with queries. The
iView sourcecode has to be inspected for complex queries using JDBC, JCo or other middleware technology.

Bad System Configuration

High latencies during the execution of a method may come from slow connections to an external system or
from an overloading of the system itself. The iView and the environment have to be inspected in order to
find the responsible subsystem. Every stage of the portal request has to be examined for performance leaks.

3.3.5.2 Complex computations

Applications that perform complex computations can be found by comparing the elapsed time with the CPU
time. When the CPU time is close to the elapsed time, the method is spending most of the time being busy.
While this may be normal for scientific applications, expensive computations are a rare exception in portal
applications. So More likely is a defect in the iView.

Examples of such defects are:

• Busy waiting: A status is queried over and over to observe a change. Correct implementations
would register for some event or signal in order to be notified and sleep in the meantime. In broken
implementations the sleeping phase is missing or broken, leading to continuous requeries (polling).

• Inefficient algor ithms: An application that searches for a record using linear lookup algorithms is
wasting CPU time. Intelligent usage of well-known algorithms for data processing are a prerequisite
for responsive applications. The iView should be checked in a performance codereview.

3.3.5.3 Missing caches

Some methods are inherently complex. They require a lot of time to be executed and there is no way to
accelerate them substantially. In this case caching is a helpful strategy to avoid repeated execution of these
expensive methods. When an expensive operation is called several times with the same parameters yielding
the same result, a missing cache is a defect that may seriously degrade the overall performance of the system.

4 Fundamental Sherlok Concepts

4.1 Memory Profiling Concepts

4.1.1 Basic Concepts
Sherlok allows to monitor memory consumption at different levels. By recording the point of memory
allocations and relating it to garbage collection events, memory consumption can be traced back to the
source, i.e. a class. In order to l imit the amount of data, Sherlok allows to l imit profiling to a defined set of
classes (the scope) and aggregates all allocations that happen outside.

This chapter will outline a procedure to isolate the classes responsible for out-of-memory situations. The
following values will be used to monitor memory consumption:

Allocated
memory

The amount of memory newly requested during the time-span between two GC cycles

Deallocated
memory

The amount of memory released during a GC cycle. This memory is called garbage.

Total memory The amount of memory that survived the GC cycles. In general this should be the
contents of caches and pools and the application state itself. In case of a memory leak,
this amount also contains the memory that actually defines the leak, i.e. unused objects.

In Sherlok all memory allocation is associated with classes. To link an allocation with a class, all memory
allocation statements (new …) in a program are intercepted and the calling method is determined. Now the

Sherlok Manual 1.4 Seite 20

class containing the method is charged for the allocated amount of memory. For each subsequent invocation
the values are added up until the next garbage collection cycle occurs.

Example

An application for a l ibrary implements a simple model-view-controller architecture, consisting of the
classes L ibraryView, LibraryModel and LibraryController for the MVC part and a class BookManager
that is used by the model to store data in a database. For some methods the implementation has been omitted
for simplicity reasons. These methods are highlighted in italics. Codelines that have no effect on the
results are greyed-out. Note that the source code has only been provided to show the interconnection between
Java statements and the values measured by Sherlok. Sherlok can be used though without deeper Java
knowledge. It is sufficient to know basic OOP concepts like packages, classes and operations to inspect
software with Sherlok.

The memory requirements used in the examples do not reflect the real values that the example program
would actually produce. We have chosen simple numbers to make calculations easier.

Sherlok Manual 1.4 Seite 21

���������	���
���
��

01 publ i c c l ass Li br ar yVi ew i mpl ement s Li br ar yModel Obser ver {

02 pr i vat e St r i ng _user I d;

03 pr i vat e St r i ng _st at us;

04 pr i vat e St r i ng _or der I d;

05

06 publ i c voi d bookOut (St r i ng i sbn) {

07 _s t at us = _user I d+" al l ocat es " +i sbn; / / 50 f or t he s t r i ng (non- gar bage)

08 updateTable() ;

09 refresh() ;

10 }

11

12 publ i c voi d di spl ayOr der I d(St r i ng or der I d) {

13 _or der I d = or der I d;

14 refresh() ;

15 }

16 }

���������	���
�������

�

01 publ i c i nt er f ace Li br ar yModel Obser ver {

02 voi d bookOut (St r i ng i sbn) ;

03 }

01 publ i c c l ass Li br ar yModel {

02 pr i vat e BookManager _bookman;

03 pr i vat e Li nkedLi st _obser ver s ;

04

05 publ i c voi d al l ocat eBook(St r i ng i sbn) {

06 _bookman. al l ocat e(i sbn) ; / / r esul t i s t hr own away (becomi ng gar bage)

07 I t er at or i = _obser ver s . i t er at or () ; / / 40 byt es f or t he I t er at or obj ect (gar bage)

08 whi l e(i . hasNext ()) {

09 Li br ar yModel Obser ver o = (Li br ar yModel Obser ver) i . next () ;

10 o. bookOut (i sbn) ;

11 }

12 }

13 }

01 c l ass BookManager {

02 pr i vat e s t at i c St r i ng ALLOC_STMT = “ I NSERT I NTO ALLOCS (i sbn, code) VALUES (?, ?) ” ;

03

04 pr i vat e Connect i on _dbConn;

05

06 St r i ng al l ocat e(St r i ng i sbn) {

07 St r i ng code = i sbn+’ #’ +Syst em. cur r ent Ti meMi l l i s () ; / / 54 byt es f or t he s t r i ng

08 s t or eAl l ocat i on(i sbn, code) ;

09 r et ur n code;

10 }

11

12 pr i vat e s t or eAl l ocat i on(St r i ng i sbn, St r i ng code) {

13 Pr epar edSt at ement s t mt = _dbConn. pr epar eSt at ement (ALLOC_STMT) ;

14 s t mt . set St r i ng(1, i sbn) ;

15 s t mt . set St r i ng(2, code) ;

16 s t mt . execut eUpdat e() ;

17 }

18 }

Sherlok Manual 1.4 Seite 22

The corresponding call-graph shows, how Sherlok intercepts the memory allocations happening during the
call to the method L ibraryController.orderBookEvent:

4.1.2 Scope and Aggregation
From the graph we can easily read the number of bytes each class consumes. It is good to have detailed
results, but with applications consisting of hundreds or thousands of classes there is simply too much data to
inspect. A better approach is to pick out the most important classes and summarize all allocations that are out
of scope. For this matter, Sherlok offers the capability of filtering. A wise filter defines which classes are to
be monitored for memory consumption. Classes that are not in scope of the filter (i.e. are bypassed) do not
undergo individual measurement. Their memory allocations are instead propagated up the call-stack until a
method of a monitored class is reached. Therefore any monitored class inherits the memory allocation taking
place during calls to methods of a bypassed class.

For our example we could restrict monitoring to the classes myapp.controller.* and myapp.view.* ,
bypassing the backend (myapp.model.*) and platform classes (java.* , javax.* , com.sun.*, …). The result
looks like this.

 ���������	
����

������	���������
���

����
�

������	���

���	���

���
������	�����

 �����������

������	������
���

 �����������

������������
���

�����
������	�

�
�
��
��������	

����
	�
���
�	���
��	�

�
�����
�����

Sherlok Manual 1.4 Seite 23

For the picture above the following allocation would be charged to each class:

Class Allocated memory (bytes)

LibraryController 130 = 36 + 40 + 54

LibraryView 50 = 50

As can be seen in the picture, all memory that has been allocated by bypassed classes in the package
myapp.model is assigned to the monitored class LibraryController . This is just because those allocations
all occurred during the call to orderBookEvent method of said class. In other words: the monitored class
LibraryController has inherited the memory allocation from their unmonitored delegates LibraryModel
and BookManager.

When we take a closer at the sourcecode we also discover that the same kind of inheritance applied to class
LibraryModel. The 40 bytes we noted for the creation of an java.lang.I terator could also have been
illustrated in detail:

 ��

�����������

������	�����

 ���������	
����

������	����������

���
�

 ����������

������	 ��

��
!�

���
"��

������	���
�����

������	���
���

����#
����$�	

�����
������	�

�
�
��
��������	

 !�

�����������

�����������

��������

����	�
��

Sherlok Manual 1.4 Seite 24

Sherlok accumulates the allocated size for each monitored class until the next garbage collection cycle
occurs. As the allocated memory is linked to its originating class, also the deallocations during the GC can
be clearly assigned. Now the total memory consumption can be calculated by subtracting the deallocated size
from the allocated size for each GC cycle and adding the results up.

For a single GC cycle, the amount of deallocated memory may well exceed the amount of
allocated memory. This is often confusing to the novice, but comes from the fact the allocated
and deallocated amounts do generally not refer to the same memory space or objects.

The following table shows the allocation and deallocation for the monitored classes in our example. We show
the values for two GC cycles and one call to orderBookEvent in each cycle. In our example all objects
except for the status string are temporary and therefore reclaimed at the end of the cycle.

GC # Class Allocated Deallocated Total

LibraryController 130 130 0 1

 LibraryView 50 01 50

LibraryController 130 130 0 2

LibraryView 50 502 50

Example

When we change line 3 and 7 to collect the status messages we would have created a memory leak and the
table would look quit di fferent.

03 pr i vat e St r i ngBuf f er _s t at us = new St r i ngBuf f er () ;
07 _st at us . append(_user I d+" al l ocat es " +i sbn) ;

1 A reference to the status message is kept in _status.
2 The old status value is reclaimed, due to the field _status being overwritten with the new status message.

 �

�����������

�����������

�������
�	�
�	�

 !�

%�����	��

��������!�

 �

%�����	��

��������!��&	�
�	�

���������
'����	
��	�
(

�����
������	�

Sherlok Manual 1.4 Seite 25

The memory leak can be easily detected by looking at the total of allocated memory which is constantl y
rising.

GC # Class Allocated Deallocated Total

LibraryController 130 130 0 1

 LibraryView 1003 504 50

LibraryController 130 130 0 2

LibraryView 150 50 100

… … … … …

LibraryController 130 130 0 n

LibraryView n*50 + 50 50 n*50

Summary

Sherlok Monitors memory allocations (in memory profile mode). Allocations are accumulated to classes and
charged to the next monitored class in the stack trace up from the point of allocation. Released instances
reduce the memory charged to a class.

4.2 Performance Profiling Concepts
Compared to the way Sherlok monitors memory consumption, the way performance is measured is slightl y
different. For each called method, the execution time is calculated by subtracting the time-of-entry from the
time-of-exit for the method. Between the entry and the exit of a method, also the time a thread is in running
state is recorded. This is called CPU-time and reflects the true processing time of a method.

Thread States

Running A thread is in running state when it is actually executing instructions on the CPU.

Waiting A thread is in waiting state when it is waiting for a signal from the operating system.
Signals are used to indicate various events, like incoming data (I/O), the availability
of a semaphore, the releasing of a monitor.

Ready A thread that is in ready state is waiting for the scheduler to gain CPU time. Once
the scheduler assigns the CPU to a ready thread it is changing into running state.

As a consequence each method inherits the execution time from all methods it calls, no matter whether those
are monitored or not. In this case the filtering capability already known from the memory profiling section is
only needed to determine which methods are actually recorded.

Example

Let us assume our methods spend the following time in their body and not in some other method they call:

3 = 50 + 50: 50 for the buffer inside of StringBuffer, 50 for the parameter to append.
4 For the parameter to StringBuffer.append

Sherlok Manual 1.4 Seite 26

Method Local execution time

LibraryController.orderBookEvent 40

LibraryModel.allocateBook 20

BookManager.allocate 500

LibraryView.bookOut 30

The following results would be delivered by Sherlok:

Method Total

LibraryController.orderBookEvent 590 = 40 + 550

LibraryModel.allocateBook 550 = 20 + 500 + 30

BookManager.allocate 500

LibraryView.bookOut 30

4.3 Tracing Concepts and Events
Beyond the profiling functionality of Sherlok which allows to take an overall picture of the software, tracing
allows us to monitor the execution of a program itself, i.e. the dynamic behavior. This is done by intercepting
certain events of the JVM and showing some output in those cases.

Triggers can be defined based on the following events:

• Garbage collections

 !!�

������������)��
�
�*����

�������������

*��������	
����
�)��
�
����	
����

���������"�����
�#��

��������

����	�
��

 �����������)��
�
�+���

����$%��
���

 !��

������������������"�

���������

���������
�,���	���

	���

-

-

���
	��

�,���	���
	���

Sherlok Manual 1.4 Seite 27

• entering or exiting a method

• exceptions

• method execution times exceeding a given limit

• memory allocation exceeds a certain limit

• etc.

Tracing is a very advanced feature of Sherlok, much similar to debugging. For a description of the various
events that Sherlok recognizes, visit section 10.

5 Monitoring iView
In addition to the bare-bones application iView TestBench there is another iView shipping with Sherlok that
offers a convenient user interface to observe performance and memory requirements of portal content.

The display contains of two pages. The first page called Settings is subdivided in four sections to control
different aspects of the Monitor. The second page called Results displays the results of the current operation.
Its contents are controlled by the various configuration settings and depend on the selected view mode of
Monitor.

5.1 User Interface

5.1.1 Page 1: Settings

 Picture 4: Monitor Settings

Sherlok Manual 1.4 Seite 28

5.1.1.1 Configuration

The configuration area is used to select the configuration file used for monitoring. For every file in the
configuration directory5 there is an entry in the dropdown list. For those configurations carrying a specific
description, it is displayed in the text area below. Two buttons control the behavior of Sherlok:

Start Activates the selected configuration and starts profil ing. Afterwards the button label is changed
to Stop.

(Stop) Used to stop profiling again.

Reload Reloads the current configuration from disk and activates it.

5.1.1.2 Action

The second area contains three buttons for general purposes:

Start Tracing Starts general tracing in Sherlok. When tracing is activated here, all output being
delivered to the Monitor display is also recorded in a trace log. After tracing is
started this button changes to Stop Tracing.

(Stop Tracing) Stops tracing again.

Create Sherlog.log Creates a snapshot of the current trace log and keeps it in temporary storage to be
saved later. Then the current trace log is cleared and the button label changes to
Store Sher log.log.

(Store Sherlok.log) Stores the snapshot created before in the file sher l ok. l og.

5.1.1.3 Result View

The Monitor offers four different views on the first page:

Memory Usage Displays the memory usage of individual classes.

Method Timing Displays the execution times and number of calls of methods.

Growing Classes Displays only classes are growing.

References Displays detailed statistics on which objects are allocated by a class.

5.1.1.4 Result Filter

This section is used to fi lter the results of the chosen view. Not all filters apply to every view, e.g. a fi lter on
the number of calls will have no effect on the contents of a Memory Usage view. The following filters are
available:

Min. CurrSize Limits the output of the Memory Usage and the References view to only those
classes that claim at least the amount of memory entered here.

Min. CpuTime Limits the output of the Method Timing view to only those methods (resp. their
classes) that took at least the CPU-time (see 4.2) entered here.

Min. ElapsedTime Limits the output of the Method Timing view to only those methods (resp. their
classes) that took at least the elapsed time (see 4.2) entered here.

Min. NrCalls Limits the output of the output of the Method Timing view to only those methods
(resp. their classes) that were called at least the times entered here. E.g. enter “2”
to l ist only classes with a least one method being called more than once.

5 see section 11.1.2 for details

Sherlok Manual 1.4 Seite 29

5.1.2 Page 2: Results
This page contains the results for the selected view. It is divided in a filtering section and the results table
itself. The results in the table are fi ltered by entering a class pattern expression (see 11.1.1) into the textbox
and pressing the Refresh button.

Picture 5: Filtering results

The following sections describe the view types offered in the Results pane.

5.1.2.1 Memory Usage Results

The results for the memory usage view contain a list of classes together with the amount of memory that is
currently claimed by the class. By clicking on the display value for an entry, detailed information is shown,
containing the history of memory activity for the class.

Sherlok Manual 1.4 Seite 30

Picture 6: Memory History view

The history contains memory allocations and deallocations for the current and privious GC cycles. The size
of the table depends on the configuration of Sherlok and can be adjusted with the property
MemoryL imitHistory (see 11.1.4).

Column Description

GCNr Sequence number of the garbage collection.

Note: This number is assigned by the JVM. Sometimes multiple garbage collections
are combined, carrying only the number of the last GC. Therefore there may be gaps
in the numbering.

Total The number of bytes that is actually consumed by the class of the application (in
bytes). This is the total amount of memory that has been allocated, minus the total
of deallocated memory.

Allocated The amount of memory being newly allocated during the GC cycle (in bytes).

This number includes all memory that has been requested, no matter i f it is stil l
referenced or available for reclaiming.

Deallocated The amount of memory being deallocated during the GC cycle (in bytes).

This number includes all memory that has been reclaimed by the garbage collector
since the previous garbage collection, no matter i f it was allocated in this cycle or in
one of the previous ones.

TimeStamp Time stamp value, depending on operating system, with zero meaning current time.

The time stamp is a relative value that be used to compare intervals to each other.

Sherlok Manual 1.4 Seite 31

5.1.2.2 Memory Timing Results

The memory timing results contain a list of those methods that have been called at least once. Further
restrictions may apply according to the filters for CPU-time, elapsed time and number of calls (Settings
pane).

Picture 7: Method Timing view

Each of the displayed columns can also be used for sorting by clicking on the column name.

Column Description

CpuTime Cumulated CPU time usage

This parameter measures the plain processing time. This is the time the thread was in
running state. This is the time it took the method to complete minus the time other
threads or the operating system owned the CPU. See 4.2 for details.

Elapsed Cumulated time measured between enter and exit of a method. In short: This is the
accumulated execution time of the method.

The di fference between CPU to elapsed time is the time a thread was in ready or
waiting state. A thread is in waiting state, when it is waiting for a signal of the operating
system, like incoming data of an I/O or an object monitor. It is in ready state, when the
scheduler has elected other threads to own the CPU.

NrCalls Number of calls to the method

ClassName Name of the class

Name Name of the method

5.1.2.3 Growing Classes

The Growing Classes view contains a list of classes that keep on growing from invocation to invocation.
These classes are l ikely candidates for memory leaks.

Sherlok Manual 1.4 Seite 32

Note: Though the displayed table looks similar to that of the Memory Usage view (see 5.1.2.1), no details
are offered on the classes displayed.

Picture 8: Growing Classes view

5.1.2.4 References

This view shows the interdependencies between monitored classes regarding memory allocation. The table
contains the list of monitored classes together with the amount of memory they currently claim. After
clicking on an entry, the memory consumption is subdivided into individual classes, displayed in a second
table below. For every class that was once instantiated by the selected class, the number of created instances
plus the total memory is displayed.

Sherlok Manual 1.4 Seite 33

Picture 9: References view

Column Description

HeapCount Number of active instances6 that have been created by the selected class.

This entry shows how many objects of the given class have been allocated and not been
deallocated yet.

HeapSize Number of bytes consumed by the active instances referred by HeapCount

Name Full qualified class name

5.2 Using Monitor

5.2.1 Monitor Memory Requirements

5.2.1.1 Prerequisites

To show the memory consumption of classes, a configuration has to be created that has memory profi ling
enabled for the classes of interest (see 11.1). Memory profiling is active when

6 of the class denoted by column Name

Sherlok Manual 1.4 Seite 34

• the configuration property ProfileMemory is set to on or all

• and the profile scope is not empty (see 11.1.3).

To obtain a history of memory allocations and deallocations also the type of memory statistics Sherlok
generates has to be adjusted. This requires the following settings:

• the configuration property MemoryStatistic must be set to info,

• the property MemoryL imitHistory must be set to the number of GC that Sherlok should remember
in the history.

When the history is not enabled then all allocations and deallocations are summarized in a single entry.

5.2.1.2 Procedure

Follow these steps to monitor the memory consumption of classes:

1. Go to the page Settings

2. Select a configuration from the dropdown-list Configuration supporting memory profil ing.

3. Make sure that profiling is active (Stop command is displayed in button)

4. Perform some activity to create data to measure (on a page, in an iView, …).

5. Select the Result View Memory Usage.

6. Adjust the fi lter Min. CurrSize to prevent small classes from being displayed.

7. Switch to the page Results to show the results

8. Filter the results by entering a class pattern (see 11.1.1.1) in the text-box an performing Refresh.

Use the action Execute GC to trigger garbage collections and thus gain additional entries in the history. Go
back to 5.1.2.1 for a description of the table.

The Memory Usage view will not work when memory profiling is turned off in the chosen
configuration. Then the results will be empty.

5.2.2 Show Method Timing

5.2.2.1 Prerequisites

To show the performance statistics for monitored methods, a configuration has to be created that has the
timer facil ity enabled for the classes of interest (see 11.1). The timer is active when

• the configuration property Timer is set to on,

• or the property TimerMethods contains at least one method that is also part of the profile scope (see
11.1.3).

For Windows you can choose to set Timer to hpc (high precision count). This mode implements the RDTC
timer and allows you to evaluate times more accurately.

For AIX the timer will not work properly, because the JVM does not implement this feature.

5.2.2.2 Procedure

Follow these steps to measure the performance of methods:

1. Go to the page Settings

2. Select a configuration from the dropdown-list Configuration that has the timer enabled.

3. Make sure that profiling is active (Stop command is displayed in button)

4. Perform the action you want to measure (on a page, in an iView, …).

Sherlok Manual 1.4 Seite 35

5. Select the Result View Method Timing.

6. Adjust the fi lters (except for Min. CurrSize) to select methods according to your preference.

7. Switch to the page Results to show the results

8. Filter the results by entering a class pattern (see 11.1.1.1) in the text-box an performing Refresh.

See 5.1.2.2 for a description of the result table.

Note: Performance monitoring will not work when the timer is not activated in the chosen
configuration. Then the results will be empty.

5.2.3 Find Growing Classes
Classes with steadily growing memory consumption are l ikely candidates for memory leaks. The Monitor
offers a special view that shows only those classes that are supposed to create a memory leak.

5.2.3.1 Prerequisites

To see ever-growing classes of classes, a configuration has to be created that has memory alerting enabled
for the classes of interest (see 11.1). This is true when

• the configuration property ProfileMemory is set to on or all,

• the profile scope is not empty

• and the property MemoryStatistic is set to alert

5.2.3.2 Procedure

Follow these steps to monitor the memory consumption of classes:

1. Go to the page Settings

2. Select a configuration from the dropdown-list Configuration supporting memory alerting (see
5.2.3.1)

3. Make sure that profiling is active (Stop command is displayed in button).

4. Repeat the following steps at least ten times:

a. Use the iView

b. Press Execute GC

5. Select the Result View Growing Classes.

6. Switch to the page Results to show the results

7. When the result list is empty go back to step 4.

8. Filter the results by entering a class pattern (see 11.1.1.1) in the text-box an performing Refresh.

See 5.1.2.3 for a description of the table.

Note: The Growing Classes view will not work when memory profiling is turned off in the chosen
configuration or the memory statistic is not set to alert mode. Then the results will be empty.

Sherlok Manual 1.4 Seite 36

5.2.4 Decompose Class Memory Usage
The total memory usage of a class can be decomposed into smaller units. For each new instance of a class,
Sherlok remembers the creator (see 4.1).

5.2.4.1 Prerequisites

To show, where the memory a class actually consumes, goes, a configuration has to be created that has
memory profiling enabled for the classes of interest (see 11.1.3). Memory profiling is active when

• the configuration property ProfileMemory is set to on or all

• and the profile scope is not empty.

5.2.4.2 Procedure

Follow these steps to monitor the memory consumption of classes:

1. Go to the page Settings

2. Select a configuration from the dropdown-list Configuration supporting memory profil ing.

3. Make sure that profiling is active (Stop command is displayed in button)

4. Perform some activity to create input data to measure (on a page, in an iView, …).

5. Select the Result View References.

6. Adjust the fi lter Min. CurrSize to prevent small classes from being displayed.

7. Switch to the page Results to show the results

8. Filter the results by entering a class pattern (see 11.1.1.1) in the text-box an performing Refresh.

Go back to 5.1.2.4 for a description of the table.

Note: The References view will not work when memory profiling is turned off in the chosen
configuration. Then the results will be empty.

6 JARM Integration
Since version 1.4.0.10 there is a JARM (Java Application Response-time Measurement) integration. You can
choose JARM profiling by the new button on the “Action” pane (see Monitor Settings) or set profile mode in
telnet command line. Now memory is accumulated to request level and performance measurement is done on
component level. Refer to JARM documentation, how to prepare your sources.

6.1 Using JARM Instrumentation
All profile setting will now effective on the nomenclature of JARM replacing “Package” by “Request” and
“Method” by “Component”. The following property is valid with JARM:

> set Pr of i l eMode=j ar m
> set Pr of i l eMet hod=. Moni t or . EP: PRT_r ender : .
> r eset –s

This will fi lter the following request-component pair

Request : EP: PRT: com. sappor t al s. sher l ok. Moni t or
Component : EP: PRT_r ender : com. sap. por t al s. sher l ok. Moni t or

Sherlok Manual 1.4 Seite 37

All trace functionality and filter will be applicable to requests and components. Now its possible to run the
memory leak detector for JARM instrumented code.

Picture 10: Monitor Settings

The button to change modes toggles Enable/Disable JARM. The profi le has to be adapted to the naming
syntax in the current mode. The following settings where used for the example above:

Pr of i l eScope = .
Pr of i l ePackages = EP: PRT.

6.2 Using Sherlok-Context API
It’s also possible to use the context API of Sherlok, which is used by JARM, explicit in you program, to get
the CPU time for a specific task. To use this interface, you have to collect some JAR files, which are hidden
in several distribution packages:

• com.sap.portals.sherlokcore.jar from parts/servlet/iViewEP6/com.sap.portals.sherlok.par

The following context API of class SherlokAts allows you to define requests and subsequent context calls.
The interface returns the CPU time in nanoseconds between enter and exit calls of a given component.

Sherlok Manual 1.4 Seite 38

package com. sap. por t al s. r unt i me. pr of i l er ;

publ i c Sher l okAt s
{
 publ i c st at i c nat i ve voi d ent er Cont ex t (St r i ng r equest , St r i ng component) ;
 publ i c st at i c nat i ve l ong exi t Cont ext (St r i ng r equest , St r i ng component) ;
 publ i c st at i c nat i ve Bool ean j ni Command(St r i ng command) ;
}

The following example shows how this interface is used in a user program:

i mpor t com. sap. por t al s . r unt i me. pr of i l er . * ;
……
Test () {
 st at i c voi d mai n(St r i ng[] ar gs) {
 Syst em. l oadLi br ar y(“ sher l ok”) ;
 Test t = new Test () ;
 t . doTest () ;
 }
}
voi d doTest () {
 l ong cpuTi me = 0;
 t r y {
 Sher l okAt s. ent er Cont ex t (“ myRequest ” , nul l) ;
 Sher l okAt s. ent er Cont ex t (“ myRequest ” , “ ct x1”) ;
 doSomet hi ng() ;
 f i nal l y {
 cpuTi me = Sher l okAt s . exi t Cont ext (“ myRequest ” , “ ct x1”) ;
 Sher l okAt s. exi t Cont ext (“ myRequest ” , nul l) ;
 }
 Sys t em. out . pr i nt l n(cpuTi me) ;
}
……

A context is given by its unique request- and component name. The request name can be used to sort and
filter the results. It’s possible to nest context calls, but you have to take care, that the order of exit statements
are kept in reverse order of the enter statements.

To call your program with Sherlok as profiler enter the following command line:

j ava –Xdebug –Xr unsher l ok: Pr of i l eMode=j ar m, Pr of i l ePackages=. ↵
 –cl asspat h com. sap. por t al s. sher l okcor e. j ar ; . Test

The setting of ProfileMode to jarm implies the following parameter as default

• Timer = hpc

• ProfileMemory = off

• ProfileStart = yes

You can save the result statistics in a log file using the SherlokAts class. The jniCommand interface allows
you to use the whole set of commands, which are documented for the telnet console.

If you trigger the calls for enterContext and exitContext in different threads, you need to set the ProfileMode
to ats. In this mode Sherlok uses only one global stack to register context information and not thread local
contexts. This mode supports client-server test architectures.

Sherlok Manual 1.4 Seite 39

7 Tool Integration
Its possible to submit commands to Sherlok with the query part of the URL. This enables the integration into
test tools and load generators. For the servlet the following query will write a list of classes to the log file:

ht t p: / / l ocal host : 5100/ sher l ok/ ser v l et / Moni t or ?l sc%20- m100

8 Memory Profiling
Sherlok allows you to see where memory is allocated, specifically which classes are responsible for
allocating the memory. You can see the number of objects, total memory space used, and also use a leak
detection to find potential memory leaks. For basic memory profiling concepts see section 4.1 above. In this
section we will now describe how to use the memory monitoring features of Sherlok.

We will first describe what the Sherlok Monitor iView can show you and how to use it, then describe some
commands that are available through the console mode only. Finally section 8.4 shows how to use all
features to track down memory problems.

You may have of several memory related problems in your system:

• Components/classes use far too much memory for temporary objects, i.e. generate too much garbage
and thereby trigger too many GCs. Also, since they use very much memory during servicing a
request, parallel threads increase the likelyhood for an out-of-memory. The focus here must be to
find the 'top memory users' and change the code to improve them.

• Components / classes may also hold too much memory, i.e. maybe not even generate much garbage,
but keep too much memory alive (with strong references), i.e. by letting caches grow without l imits,
or by having a memory leak. This results in only few components to be able to run in the same JVM
(address space). Again we need to identify these and trigger the code changes to improve them.

• Finally you can have an out-of-memory situation that is caused by a combination of 'bad components'
as described above and several (too many?) threads needing memory at the same time. Here the
focus of Sherlok is to find out who exactly caused the OOM by holding too much memory. (note that
the class asking for the few bytes that triggered the OOM is generally not the culprit).

For the first two cases, we recommend to measure and optimize memory consumption (static and dynamic)
during development and testing – one iView at a time.

In case you have to 'find the bad iView' in a running installation, you may try 'identifying the bad component'
as described in section 8.1.1 below. The out-of-memory situation and how to deal with it is described in
detail in section …

Classes Responsible for Memory

Remember that Sherlok always associates the memory with the monitored class that allocated
this memory, not the one that may be holding it. This is important to keep in mind when
interpreting measurements.

8.1.1 Identifying the “ Bad Component”
Normally the best way to measure an iView is to activate memory profil ing and then just test this iView (see
Testbench above). Sometimes one gets to a situation however, where a system is running 100+ iViews, you
have memory problems, and you have to find out in a running system which iView is 'the bad one'.

The normal profile mode (=profile, i.e. by events) is too slow to activate in a running productive system
since Sherlok intercepts all methods (entry&exit) to record memory usage. If you can focus the measurement
effort on just a few iView classes, you can use the interrupt mode. Here Sherlok inserts an interrupt into the

Sherlok Manual 1.4 Seite 40

bytecode so that only at a few places methods are intercepted and define the memory aggregation points
(monitored classes).

To activate this mode, you should perform the following settings in the config file (that you are using):

• set ProfileMode to interrupt

• define a as narrow as possible package scope, i.e. list all class/package names that uniquely identify
the iViews to be measured

• if you use simple iViews (not HTMLB), the doContent method is the perfect entry point to observe

• take the standard excludes as a precaution – it shouldn't be necessary i f ProfilePackages is defined
narrowly enough

Pr of i l eMode = i nt er r upt
Pr of i l ePackages = com. mycompany. i Vi ews.
Pr of i l eMet hods = . doCont ent
Pr of i l eExcl udes = com. sap. , com. sappor t al s . , com. i nqmy. , j ava. , j avax. , sun. , or g. xml .

Then 'reset' to reload the new config fi le, and activate monitoring. Now you should see memory summaries
being shown for exactly the iViews in focus.

Sherlok Manual 1.4 Seite 41

8.2 Memory Leak Finder
Also in Java it is possible to create memory leaks. A transient component might store data into a static global
section like the user sessions and just forget to remove them after terminating. Inefficient cache
implementations show the same behavior as memory leaks and should also be in your considerations. In both
cases you will lose your most precious resource: memory. And in both cases you want to know who created
the memory and put it into the static context, which is shown by Sherlok.

We assume that you already know how to use the memory monitoring and how to get history information on
memory usage of classes. The history shows how much memory (allocated, deallocated, retained) a class is
responsible for (allocated it) by checking these values after each GC.

A potential memory leaking class will keep more and more memory, i.e. on average deallocate less than it
allocates (note again that Sherlok always observes the 'responsible' class that allocated the memory, not
another class that may be holding it). Sherlok can automatically observe all monitored classes and report
those that are 'growing'.

To just immediately report a growing class is not useful however. For one, a class can allocate some amounts
of memory, and only after a few GCs (maybe even a full GC) come back to the initial / stable memory level.
Also, depending on how many active threads are just using a class, the 'current memory usage' at a GC event
can vary quite a bit. Thus we must only report classes that 'on average' show a growing memory usage.

The intervals (number of GCs) where a class exhibits an equil ibrium memory usage can be quite large.
Therefore, Sherlok also employs the following heuristic to compress the GC history and only focus on the
relevant points: Consider the following memory levels after GCs for a class A of 10, 11, 12, 15, 12, 14, 17,
13 MB (i.e. the class is responsible for that much memory). Then Sherlok only keeps the values 10, 11, 13 in
the compressed history, since these are the only 'leak relevant' points. The following diagram shows a typical
memory behavior like this.

For leak analysis Sherlok evaluates the gradient of memory size after GC for every profiled class in scope.
After a transient oscillation the gradient should be zero for all classes. In any other case the memory will be
exhausted at a certain point.

Interpretation of the results

Note that not all classes reported really have a memory leak. In some cases you simply have a cache that gets
filled very slowly and the behavior also depends on the program load (user requests). You must look at each
case carefully. In general however, a reported leak that is consistent over a longer running time is most likely
a real leak. (Note again that Sherlok reports the class that allocated the memory, i.e. is responsible, not the
class that is holding it.)

Sherlok Manual 1.4 Seite 42

8.2.1 Activating the Memory Leak Finder Mode
To activate the memory leak detector, you have to set config property MemoryStatistic to aler t. It is
recommended to leave the MemoryL imitHistory at 10 (the default). This is enough to hold the data for the
compressed history.

Memor yHi st or y = al er t
Memor yLi mi t Hi s t or y = 10

The memory leak detector will only work properly with a sufficient number of garbage collection events. It
will store only values in the memory history table, which are relevant for gradient calculation. This is far
less, than the number of GC (see details on algorithm above). Therefore also the GCNr field values in the
output are not consecutive.

8.2.2 Usage via Console
When you have the console open, the Memory Leak Finder writes output for each growing class where it
assumes a memory leak according to the algorithm described above. You should always have a log active so
you can observe long-running tests.

8.2.3 Usage with UI
In the iView Monitor press the buttons Star tMonitor, Star tTrace (it is quite unclear why you have to press
these buttons to get a memory leak report when you select GrowingClasses below – but for now we can live
with that) and Create sherlok.log (creates a new log file, i.e. overwrites the current one; where is this
documented elsewhere?). Now you can select radio button GrowingClasses and the Result pane will show
all growing classes detected so far.

Update with new UI and screen shot

Picture 11: iView Monitor Memory Leak Analysis

8.3 Quick Heap Dump
Once you have found a growing class, you might want to find out, which kind of objects are involved.
'Involved' means which objects were allocated by the class that is 'responsible'.

Sherlok Manual 1.4 Seite 43

When you use the Monitornig iView you can select the class you want to see the 'allocated by this class
objects' and then get the result shown in the table below.

The detail view shows the following entries:

8.3.1.1 Column 8.3.1.2 Description

HeapCount The number of objects of a kind in all memory heap, for which the component is
responsible

HeapSize Cumulated size of all objects of a kind

Name Class name

Picture 12: iView Monitor Heap Dump

Note: This view obviously doesn’t show which reference exactly holds a certain object that is a 'leaked
object'. To see this you must use another Profil ing tool l ike e.g. JProbe, OptimizeIt or 'Yourkit'.

Console Mode

When you use the console mode, there is currently no way to select the class to focus on, thus the console
shows all objects of all classes, regardless of who allocated them.

Note: Sherlok uses internal data for heap analysis that is already maintained for monitoring, and is therefore
many times faster than the heap dump of typical other tools.

8.4 Investigating Memory Problems
This section describes how to analyze an out-of-memory (OOM) situation. This assumes that you are in a
support situation where the preventive measurements have not helped to find a 'bad component'.

8.4.1 Trapping the Out-of-Memory Situation
Often OOMs happen in a productive system under heavy load. In these situations it is generally not possible
to run Sherlok in full memory monitoring mode (that would show memory consumption for all monitored
classes) due to the performance impact.

Sherlok Manual 1.4 Seite 44

The first task is to find which components were active when the OOM happened, to get an idea of what
components were using memory at that time. The problem is that the default behavior of the Java VM for an
OOM is as follows: When an OOM first happens, the JVM by itself first does a FullGC to recover memory
so that it can continue. If not enough memory can be reclaimed, the JVM throws the 'real OOM' exception.
At this point Sherlok requests a full heap dump from the JVM and dumps some more memory statistics to
the log file.

Sherlok offers a “OOM trap mode” where it basically incurs no runtime overhead and simply dumps relevant
information when an OOM happens. Sherlok does this before the default JVM handling of the OOM
happens, i.e. when most relevant information is still available. Moreover, you should also let Sherlok trace
garbage collection events and collect the information about them.

To enter this mode, open the console and add these commands:

> st ar t t r ace
> t r ace add except i on
> t r ace add gc

Note: The exception handling is independent from the monitor, so you have virtually no impact on
performance .

When the application raises an OutOfMemoryEr ror exception

• Sherlok requests a full JVM thread dump (like dt -a command). This shows you what requests were
active at the time of the OOM.

• Sherlok dumps the location and the thread, which caused the exception.

• Sherlok dumps the monitored thread and methods to console (like dt –c command)

This information gives you an idea what was happening just before the OOM. The thread (class in the
causing thread) causing the OOM is often not the 'bad component' but just the one that hit the wall in the end.
The job is to find the classes that are responsible for an extraordinary amount of memory needed.

There are different situations causing OutOfMemoryError . To define actions in this situation, you have to
figure out, which is the one:

• Heap overflow

• PermSize overflow

• Maximum number of threads reached

• Exceeded addressable application memory (JVM + shared libraries)

8.4.2 Heap Overflow
Heap Overflow is the most frequent memory problem occurring within Java applications. There are several
reasons why the heap can be exhausted by an application:

• Memory leaks: Classes allocate memory / objects and do not release them (the references to them),
so that these objects cannot be collected.

• High peak memory demand: Memory-intensive applications can exhaust available memory in peak-
situations without having a substantial need for it.

8.4.2.1 High peak memory demand

Applications with excessive peak memory demand create an overly high number of objects during their
processing work without actually requiring them in the long run. Due to the high number of temporary
objects (called garbage), the memory requirements can rise above acceptable levels, especially when those
memory intensive tasks are executed concurrently. The memory is bound by the concurrent threads that do
the processing work. The memory footprint could be reduced by (1) reducing the need of dynamic memory

Sherlok Manual 1.4 Seite 45

(discarded right after use) per request, and (2) by serializing the memory intensive tasks, i.e. reduce the
number of parallel tasks that need a lot of memory during processing.

Note: The number of parallel application threads can be set in the SAP J2EE visual admin. The value should
not exceed 40 for most application cases.

Excessive memory demand can be spotted by looking at the amount of garbage that is created on each GC
cycle:

• Memory intensive applications show high values for both allocated and deallocated memory during
each GC cycle.

• The allocation rate of those applications is over-average.

8.4.2.2 Memory leaks

Memory leaks are created when references to unused objects are kept in some place like a class or another
object instance. Another way to create memory - or general resource leaks is by not freeing resources with
manual lifecycle management like connections or pool entries. As all these resources need some memory and
when the execution of such an application goes forward the free memory is eaten up until it is exhausted. The
memory is bound by the data that is held in the application.

In all cases, not freeing a resource means in the end not removing a certain reference that holds the objects.
Since these references must be kept somewhere, the prime candidates for memory leaks are collections (sets,
hashmaps, …) of objects or references.

Memory leaks can be identified by looking for steadily increasing memory consumption, i.e. the gap
between newly allocated memory and memory being deallocated during garbage collections.

This is shown per monitored class, i.e. the class that is responsible for the allocation. If a class A allocates
objects and then hands them over to another class B, which keeps them in some state / collections, class A is
still responsible for the memory leak and therefore the right 'first clue'.

To check your application for eventually memory leaks, choose your packages for profiling and start the
analysis.

> set Pr of i l ePackages=com. sap. , com. mycompany.
> set Memor ySt at i st i c=al er t
> set Tr aceMet hods=. LoadTest Component . doCont ent { r equest . get Ser v l et Request . get Quer ySt r i ng}
> r eset –s
> st ar t t r ace
> t r ace add par amet er
> st ar t moni t or

You need at least ten steps in the following schema:

1. Choose an action on your interface

2. Execute gc command in Sherlok.

Sherlok Manual 1.4 Seite 46

This is the load test component. Increasing the “staticMemory” for each step will result into the following
output:

Sherlok Manual 1.4 Seite 47

After ten steps Sherlok finds the memory leak and gives this output, which tells the user that
LoadTestComponent created 310.000 objects of type MemoryContainer. The short heap dump shows all
scalar objects created in the context of the growing class.

Now the next step is to find the context, where objects of type “MemoryContainer” where created. We search
for the method “<init>” , which is normally called by the JVM for all scalar objects. We can choose the
context, if these elements where created in different sections of the application.

> set Tr aceMet hods=/ . Di spat cher . / . Memor yCont ai ner . <i ni t >
> set Tr aceTr i gger =. . Di spat cher . ser vi ce
> r eset –s
> st ar t t r ace
> t r ace r em par amet er
> t r ace add st ack –t r ee - p
> st ar t moni t or

The result shows, that doContent calls the method “allocateToStatic” which allocates “MemoryContainer” . A
look to the source “LoadTestComponent.java” shows the reason: All memory is stored in a list which has a
static root.

Sherlok Manual 1.4 Seite 48

…
pr i vat e st at i c Memor yCont ai ner m_st at i cMemor y;
…
publ i c voi d doCont ent (
 I Por t al Component Request r equest ,
 I Por t al Component Response r esponse)
{
 …

 m_st at i cMemor y = al l ocat eToSt ai c(s t at i cMemor yVal , m_st at i cMemor y) ;
 …
 }

Check the number of elements and the number of calls to this method with the lsm command:

> l sm - f . Memor yCont ai ner . <i ni t >
> l sm –f . al l ocat eToSt at i c
> l sm –f . doCont ent

8.4.3 PermSize Overflow
The PermSize is the space for permanent static class attributes. The PermSize is allocated as extra
application memory space, which is not correlated or interfered with the Java memory heap. Its size is set by
the JVM parms PermSize as shown below, typically between 64 and 256 MB.

- XX: Per mSi ze=192M –XX: MaxPer mSi ze=192M

The space needed is proportional to the number of classes loaded, i.e. the number and size of the applications
running on that server node. You can use Sherlok to watch the number of classes with the following
command:

> l ss

Some applications allow hot deployment (like iViews, …). In this case the class loader is set to zero when a
new version of the application is loaded and thus makes the old code (in Perm space) victim for the garbage
collector. A new class loader will reload all its classes.

Sherlok allows to watch the state of unloaded classes to keep track of the memory, they are stil l responsible
for:

> l sd –m<mi ni mum number of byt es t o di spl ay>

8.4.4 Maximum number of Threads
On different operating systems there are different restrictions on the number of threads, which can be
handled by one application. Each thread will need by default 500K on memory, so this resource should be
used very carefully.

Use the following command to list the actual number of threads. Make sure, that the number does not
increase to values bigger than 300, because this will cause also major impact on performance.

> l ss

Note: iView programmers should generally not create threads, definitely not simply create threads with new
Thr ead() but always use thread pools.

Sherlok Manual 1.4 Seite 49

8.4.5 Maximum address Space, DLLs
On different operating systems there are di fferent restrictions on the addressable application memory. On
Windows this address space is less than 2GB including all DLLs, PermSize, threads and Java heap.
Increasing for example the PermSize will reduce the maximum possible Java heap size.

DLLs also live in the same memory space as the Java process and thus take memory away from the Java
heap. This can become a problem when the address space is l imited as is the case on Windows (heap size
max 1.3 GB). In that case the address space used by DLLs must be taken away from the java heap size.

Sherlok itself is a DLL and also needs memory to run, typically 10-15% of the monitored application if full
memory monitoring is used.

It can happen that an OOM occurs when the Java heap is stil l not 'full' but when a DLL tries to allocate too
much memory and thus eats away at the allotted space for the Java heap.

Note: It is very important to make sure the Java process never runs out of physical memory. Make sure that
the JVM with heap size + perm size + DLLs all together fits into physical memory. This should be carefull y
monitored on the operating system level.

Sherlok Manual 1.4 Seite 50

9 Performance Profiling
For basic performance profiling concepts see section … above.

9.1 Latency
Most of the problems come from high latencies the application is suffering. These can be spotted by
comparing the elapsed time with the CPU time. When the elapsed time is signi ficantly higher than the CPU
time, the reason for the loss of performance does not lie in the computations performed inside the
application’s thread. Instead the application is waiting for another party to complete.

9.1.1 Contention
Sometimes a method requires exclusive access to some object or resource that it does not own. Depending on
the competition, it may spend most of the time in waiting for another thread to release it. This kind of
bottleneck is a performance bug that prevents an application from being scalable. When the object is shared
with the infrastructure or other applications the entire portal installation may suffer. In both cases the iView
sourcecode has to be inspected in detail in order to find and remove the bottleneck.

9.1.2 Broad Queries
When an external database or R/3 repository is queried for information, a lot depends on efficiency of the
query. When the query (like an SQL statement) is too general, the time needed to perform it is very long. As
a result the call ing thread is spending most of the time waiting for the results to come in from the external
system. The method takes too long to execute and the connected system may be overloaded with queries. The
iView sourcecode has to be inspected for complex queries using JDBC, JCo or other middleware technology.

9.1.3 Bad System Configuration
High latencies during the execution of a method may come from slow connections to an external system or
from an overloading of the system itself. The iView and the environment have to be inspected in order to
find the responsible subsystem. Every stage of the portal request has to be examined for performance leaks.

9.2 Computational Complexity
Applications that perform complex computations can be found by comparing the elapsed time with the CPU
time. When the CPU time is close to the elapsed time, the method is spending most of the time being busy.
While this may be normal for scientific applications, expensive computations are a rare exception in portal
applications. So More likely is a defect in the iView. Examples of such defects are:

9.2.1 Busy Waiting
A status is queried over and over to observe a change. Correct implementations would register for some
event or signal in order to be notified and sleep in the meantime. In broken implementations the sleeping
phase is missing or broken, leading to continuous requeries (polling).

9.2.2 Inefficient algorithms
There are many ways to waste time in a program. Inefficient algorithms waste time because they fail to use
the fastest path to the solution of a problem. There are many ways to sort a list, but there are only a few ways
that offer superior performance.

Sherlok can be used to detect slow methods, but it cannot tell if there is a better solution available. To find
inefficient algorithms, two parameters for a method are important:

Sherlok Manual 1.4 Seite 51

• CPU time: It tells the overall costs of the method.

• No. of calls: It can be used to see if some operation is performed more often than expected.

Common cases of inefficient algoriths are:

• Inappropr iate choice of data structures (e.g. Java Collection Classes): Often these can be
discovered by looking at the number of calls to the equals method. High numbers indicate inefficient
algorithms.

• Repeated evaluation of invar iant expressions in a loop: A high number of calls may point to this
problem, too.

• Back and for th transformations: These can sometimes be observed by looking at the number of
calls to the constructor.

9.3 Missing caches
Some methods are inherently complex. They require a lot of time to be executed and there is no way of
accelerating them substantially. In this case caching is a helpful strategy to avoid repeated execution of these
expensive methods. When an expensive operation is called several times with the same parameters yielding
the same result, a missing cache is a defect that may seriously degrade the overall performance of the system.

9.4 Garbage Collection Delays

9.4.1 High memory allocation and deallocation rate (Full garbage
collections)

In Java all objects (complex types) are created on the heap using dynamic memory management, and
released automatically some time after the last reference is dropped. This allows for a very simple memory
model that avoids the risk of dangling references. On the downside, the simplicity is paid with high costs for
memory management. Dynamic allocation of memory is a complex operation, much slower than the creation
of variables on the stack. As all objects are created on the heap, operations that create a lot of temporary data
suffer a high penalty for dynamic memory management and put high load on the garbage collector.

On a system with high load, the garbage collector may fail to catch up on releasing unused objects, because
its thread runs with a lower priority. At some point, the available memory is exhausted and the garbage
collector is forced to do a full garbage collection7, a lengthy operation that may interrupt normal program
execution for several seconds.

See http://developers.sun.com/techtopics/mobility/midp/articles/garbage/ for complete coverage.

7 as opposed to a partial garbage collection that uses heuristics to improve performance

Sherlok Manual 1.4 Seite 52

10 Application Tracing
Beyond the profiling functionality of Sherlok which allows to take an overall picture of the software, tracing
allows us to monitor the execution of a program itself, i.e. the dynamic behavior. You can observer certain
events and then have certain actions performed at these events. All output goes to the sher l ok. l og and/or
web UI.

The most important are these:

• Trace Methods: You can trace methods to see when they are called and even print parameters.

• Trace contentions: You can trace a thread contention, if the thread has to wait on a monitor.

• Stack Traces: When a method is entered / reached you can get a stack trace for that call to see who
calls the method

• You can trace exceptions. All unhandled exceptions are traced with additional information. For out-
of-memory there are additional actions performed to collect relevant data.

• Trace Trigger: You also have the option to show all calls (program execution) 'underneith' a certain
method. This can be triggered by a threshold of 'uses more time than …' and 'more memory than ..'

The trace functions can generate more data than you can possibly analyze ont-the-fly. So its important to
have direct control and user input, which makes it unavoidable to use the telnet console interface.

Tracing can be started and stopped in the console with the short command “s” .

10.1 Startup

10.1.1 Telnet Console
Operation of the Sherlok console and all its commands, as well as configuration files is described in detail
below. In this section we only show what is needed for the trace examples.

Launch a command line terminal in your operating system and enter the following command line:

$ t el net l ocal host 2424

If you didn’t keep the defaults, modi fy the line and insert the current values of TelnetHost and TelnetPor t.

Now you can login with user “Administrator” and password “sherlok” (default login or other user you have
set up). The Sherlok telnet console shows up with a table of commands and a short description. The help
command can generate this l ist of commands as well and with hel p <cmd> you get detailed help on
<cmd>.

Sherlok Manual 1.4 Seite 53

Picture 13: Telnet Console

10.1.2 Logging
First of all you should consider to log your session. Everything you see on the console can be logged into the
file sher l ok. l og, including the commands you launch an their timestamp of execution. Check i f you
have an old sher l ok. l og you want to keep and rename it. Then enter:

> st ar t l og

Each start log command will delete sher l ok. l og for rewrite. Later enter st op l og to close the log file.

10.1.3 Activate the Tracer
Some trace functions will only work if the monitor is running:

• t r ace add t r i gger

• t r ace add t hr ead

• t r ace add met hod

If you stop the monitor all data will be frozen. You can re-read a changed configuration file and restart the
monitoring session with the reset command.

> st ar t moni t or
> st op moni t or

(edit configuration file; now re-read:)

> r eset

You have to start the tracer to have any output

> st ar t t r ace
> t r ace add gc

You can stop the tracer, if you don’t want any output anymore. Some of the traces might result in a mass
output. These traces can be stopped by just pressing the return key:

• t r ace add t r i gger

• t r ace add cont ent i on

• t r ace add t hr ead

The output for all these traces is handled special to prohibit spoil ing the log fi le:

Sherlok Manual 1.4 Seite 54

• No output parameter: Output only on console

• - f <f i l e>: Output to a fi le located in ConfigPath

• - p: Output to Sherlok.log

The tracer has different output volume for different settings and shows different behavior:

• small volume as “trace add gc” or “trace add classes” will write output into the sherlok.log file

• huge volume as “trace add stack” need additional parameter to define output file. Option –p to write
output into the sherlok.log and –f<name> to write the output into the specified file (no output to
console for good performance).

10.2 Trace Garbage Collector
Use to GC Trace see more details about GCs in the sherlok log. The GC trace is triggered by the GC
activation and is activated by the following command:

> st ar t t r ace
> t r ace add gc

The GC trace is independent from monitor. The trace writes following information to the console and log file

10.2.1.1 Column 10.2.1.2 Description

Trigger Trigger is GC

GCNr The count of garbage collections since start of the application

TimeStamp Relative operating system dependent time

Objects Number of objects in JVM

Space Space allocated by all objects

Total Available heap space (why not call it 'Available' or 'free' instead of 'total')

10.3 Trace Thread Contentions
The thread contention tracer is a fast and lightweight function to check the performance of a multithreaded
application. It shows you the bottlenecks of the application, where threads have to wait for each other. This
function is l ightweight with minimal impact to the performance.

In the properties fi le specify the following entries

Ti mer = on
Pr of i l eMemor y = of f

On the telnet console enter the following commands

> st ar t l og
> st ar t t r ace
> t r ace add cont ent i on –e30 –a - p

10.4 Trace Methods
Method tracing is useful to show if certain methods are called and with what parameters. Signi ficant methods
can e.g. be a login method (parm: what user), a http request (parm: user and URL), etc. All methods speci fied
in TraceMethods property will be activated.

Sherlok Manual 1.4 Seite 55

Tr aceMet hods = . Di spat cher . ser vi ce; . doCont ent

The method trace is triggered by method enter and exit events, both are recorded. This feature replaces the
typical print statement in your code. The trace writes following information to the console and log fi le

Column Description

Trigger Trigger is Trace

Event Name of the event is Enter or Exit

Time Timestamp of this event

Class Class and package of the method

Method Method name

Thread Name of the executing thread. Useful i f you want to check i f there are any pending
requests.

Info (for Exit events only) CPU time in nano seconds by this method call

10.5 Trace Parameters
Sometimes you want to not only see a method being called but also the parameters passed with the call.
Sherlok can show you parameters for basic types and trace them together with the method output. In contrast
to the method trace, this event is only activated an method entry and is independent from the state of the
monitor.

The parameter trace is triggered by the method enter event. It is independent from monitor. To use this trace,
you have to set the TraceMethods property in the active configuration file which defines the methods to be
traced. Please note: The list of methods are semicolon separated. Example:

Tr aceMet hods = . Di spat cher . ser vi ce { r equest . get Request URI } ; . doCont ent

In curly brackets you can access methods of the call parameter object, which have void parameter and
returns an object.

For output the method toString is called. If you do not specify any curly brackets, the output is done for all
call parameters. Its possible to specify the method getClass to retrieve the class information. You can get the
method signature with the command “ lsm –a –m0 –n0 –e0 –f.Dispatcher.service” .

Column Description

Name Call parameter name

Method Requested method

Value Result for execution method toStr ing on the dereferenced object

Sherlok Manual 1.4 Seite 56

Picture 14: Trace Parameter

10.6 Trace HotSpots
Sometimes you wonder “what takes the system so long” . This can be because a certain low level activity is
slow and affects all programs. More often, there are few certain functions that take very long and slow down
the execution of a request. Sherlok can show all methods that take longer than a certain time or use more
memory than a certain limit.

To find these slow functions you should use the “hotspot method”, i.e. look for the slowest first, then the next
and so forth.

10.6.1 Setup
The HotSpot trace is triggered by an method exit event and a the elapsed response time or the allocated
memory.

Example: Write trace for all methods in scope and fi lter that take more than 100 msecs.

> st ar t moni t or
> st ar t t r ace
> t r ace add t r i gger –e100 - p

To use HotSpot, you have to set the TraceTr igger property in the config file (* .skp) and start the tracer. For
a portal application the following entry would be possible:

Tr aceTr i gger = . Di spat cher . ser vi ce

This trace point is an example that is relevant in the portal. You can find many possible trigger points in the
file EP_t r ace. skp. For other applications, you should create another file that contains the proper
'important methods' for tracing.

The tracer is active during the execution of method specified with TraceTr igger, i.e. underneath the
TraceTrigger call, methods are traced.

It may happen, that there are two methods with the same name. In this case you can specify the signature
separated with a colon. If there are methods with the same name and signature, you can specify the row
number in the output of the reset command.

Tr aceTr i gger = . doTest , (Lj ava/ l ang/ St r i ng;) V, 2

Sherlok Manual 1.4 Seite 57

10.6.2 Options

Option Description

-ascii
-tree
-xml

Output formats. The xml format can be used in any browser, but will be finished
only by the command stop trace. The tree format will write indent spaces to
represent the call hierarchy. Default is ascii.

-e<time> Elapsed time to trigger event. Any method, that takes more time will trigger a
callstack dump. unit = msecs

-m<memory> Allocated memory to trigger event. Any time the application allocates this amount
of memory it will trigger a callstack dump. In the output only the monitored
classes are listed.

-f<file name> Redirect output to the given file

-p Redirect trace output to sherlok.log

10.6.3 Output Option -ascii
The ascii output writes the result into an unformatted text line, separated by vertical slashes. This kind of
output is useful if you have post processors, which can extract the data you need like awk or Excel. Each line
contains the following information:

10.6.3.1 Column 10.6.3.2 Description

Trigger Trigger name is constant: Trace

Level Level in call stack counting from the entry point Tr iggerMethod

Class Class and package of the method

Method Method name

Event Name of the event is Call or Time

Info For Call event: CPU time in nanoseconds by this method call
For Time event: Elapsed time in milliseconds

10.6.4 Output Option -tree
The tree output indents the lines to represent the call hierarchy. This allows pattern recognition at a glance.
The most right method in a jigsaw pattern is the method, which triggered the event. The caller is the leftmost
method.

Sherlok Manual 1.4 Seite 58

Picture 15: Trace HotSpot Tree

In the upper example you can see, that the method

 getResourceBundle calls

 getResourceAsStream twice and getResourceBundleProvider afterwards.

10.6.4.1 Column 10.6.4.2 Description

Method Method name

Class Class and package of the method

Event Name of the event is Trigger

Level Level in call stack counting from the entry point Tr iggerMethod

Info Timestamp of the entry of the method

Thread Name of the thread

All entries are separated by the ProfileOutputSeparator character.

10.6.5 Output Option -xml
The xml output is generated in two paths. The finalize process, which closes all open tags is only called with
the command stop trace. The limit for browsers to process this kind of input is about 2MB of data. The
caller is the root (left most / top)node.

Sherlok Manual 1.4 Seite 59

Picture 16: Trace HotSpot xml

10.7 Trace Java Exceptions
The exception trace is triggered by unhandled Java exceptions and writes some information to the log for
each unhandled exception. It is independent from the monitor.

OutOfMemoryEr ror exceptions are handled in a special way:

• Sherlok requests a full JVM thread dump (like dt -a command). This shows you what requests were
active at the time of the OOM.

• Sherlok dumps the location and the thread, which caused the exception.

• Sherlok dumps the monitored thread and methods to console (use dt –c)

> st ar t t r ace
> t r ace add except i on

10.8 Trace Thread Contentions
A thread contention event is raised whenever a thread has to wait on a monitor. Sherlok gives you the time
the thread waited and the callstack for detailed analysis.

> st ar t t r ace
> t r ace add cont ent i on [- a]

If you specify option –a, you get also contention information in packages, which are not in your
ProfileScope.

Later on you can view the accumulated results for contentions in your scope:

> l sm –m0 –n0 –e0 –c1

Sherlok Manual 1.4 Seite 60

10.9 Trace Stack
The stack trace shows the full callstack for a given method call. All methods given in property TraceTrigger
will be activated for tracing.

> st ar t t r ace
> t r ace add st ack [- a] [- t r ee] [- p] [- f <f i l e>]

With stack trace its possible to find allocation points for specific objects tracing its <init> method. The
following statement will trace all string allocations in a given context:

> set Tr aceTr i gger = / …/ . myPackage. / …/ j ava. l ang. St r i ng. <i ni t >
> r eset - s
> st ar t t r ace
> t r ace add st ack

With the option –a the trace shows the source code line of each statement.

10.10 Trace Threads
Sherlok can trace activities of a specific thread. This is useful if you want to evaluate an activity on waiting
or sleeping threads. Sometimes you see some hundred thread sleeping if you request a full thread dump, but
a huge activity in your system performance viewer. The thread tracer can show how often a thread is
activated in a certain time span and what load results. This is especially useful, if you want to monitor
communication on an idle node, or if you don’t know the entry points of a foreign application.

Use the command “dt” for a list of threads and “dt –c” to list Sherlok callstacks.

> st ar t t r ace
> t r ace add t r ace [- n<name of t he t hr ead] [- t r ee | –xml | –asc i i] [- f <f i l e>]

if you don’t speci fy a name, Sherlok will start to dump activities of all threads. The trace result is in the given
format and can be redirected into a file.

Sherlok Manual 1.4 Seite 61

11 Reference

11.1 Configuration Reference

11.1.1 General Config Concepts

11.1.1.1 Class Patterns

During the operation of Sherlok there is often the need to restrict some facil ity to a limited set of classes to
control monitoring or tracing. To define a subset of classes we use strings we call class-pattern. A class-
pattern is a fully qualified name of a class. To denote a set of classes the dot “.” is supported as a wildcard
character. When used as the first or the last character of a class-pattern it is interpreted as an arbitrary
sequence of characters. In all other cases (infix) it is treated like an ordinary dot-character.

Examples:

• The pattern “java.util.Tree.” is matched by java.util.TreeSet, java.util.TreeMap any other class
whose full qualified name starts with “java.util.Tree“ .

• “.List” matches any class “*List” in any package, like java.uti l.LinkedList, java.uti l.ArrayL ist or
org.w3c.dom.NodeList .

• “.” matches any class.

• “ java.util.TreeSet” matches only j ava.util.TreeSet, but it does not match
java.util.TreeSet.I terator .

11.1.1.2 Method Patterns

In addition to specifying entire classes for monitoring, i t is also possible to limit data to a certain method call.
This is done by specifying a pattern for method names in the same manner as it was done for classes before,
simply by adding the method name.

Examples

• The pattern “.get” matches any method that is called “get” in any class, for example
java.util.HashMap.get.

• The pattern “.Entry.get.” matches any method whose name starts with “get” and whose class is called
“Entry”, like java.util.HashMap.Entry.getKey.

11.1.1.3 Call Stack Patterns

In order to speci fy the targeting method of some Sherlok function more precisely, it is possible to define not
only a pattern for methods but even for method-calls in conjunction with a certain state of the call-stack. The
call-stack pattern specifies a matching rule for the call-stack contents at some point in time. It consists of
sequence of nested method-calls, separated with a slash.

Call-stack matching is enabled by starting the method expression with a slash “/” . The slash at the beginning
denotes the top of the call-stack, like the main method or the run method of a thread. For example the call-
stack resulting from method f call ing g and g calling h (f � g � h) would be expressed as “/f/g/h“. Each
component in such an expression is interpreted as a simple method pattern, as explained above.

Sherlok Manual 1.4 Seite 62

Example

• “/…/.set./.get.” is matched by any setter-method that directly calls a getter8.

• “/MyApp.main/.save” is matched by calls to any method named save as long as this call happens
directly in the static method main of executable class MyApp.

The call-stack patterns support another wildcard: “…”. The ell ipse “…” stands for an arbitrary number of
subsequent calls9. A speci fic method call can be described with a substring of the full qualified method name.

Example

• “ /…/.doContent/.../.createRepository” denotes the call to some method createRepository, as long as
it is executed as part of a call to another method doContent. This would be the case for the call-stack
 … � doContent � myDispatcher � DataAccess � createRepository

11.1.2 Handling Multiple Configuration Files
Sherlok has a lot of settings that determine its behavior. These are specified in configuration files. One
configuration is active at a time and the user can select a configuration to be activated in the web UI and
console mode.

This allows to define multiple profiles, each one with a specific purpose, e.g. one for catching out-of-
memory issues, one for portal operation tracing, one for catching time or memory hotspots etc. Also, one
development group can write one or more config files that are geared towards their set of classes and
situation. Sherlok comes with a set of predefined config files for typical situations. These can be adjusted to a
application area e.g. by defining the classes that are relevant.

Configuration files have the suffix “.scp” and reside by default in a subdirectory sher l ok of where the
Sherlok DLL is. This config directory is specified at startup time with a JVM parameter ConfigPath (see
section 2.2.4).

11.1.2.1 Loading configuration files

You can load a configuration fi le in the UI by selecting the Configuration combobox In the console you can
specify which configuration is to be loaded with the command set conf i gf i l e = … and then load it
with reset.

11.1.2.2 List of predefined config files

Sherlok comes with a set of predefined config files. The most important ones are:

File Description

default.skp Default properties for portal namespace

default.customer.skp Default properties for customer namespace

default.drilldown,skp Drill down for memory problems

monitor.leak.skp Configuration for memory leak detection

trace.skp Configuration for performance analysis

8 Getters and setters are a pattern used to set public attributes of an object in Java. A getter method starts with
“get” , a setter method starts with “set” : getName, setName, getCity, …
9 Roughly speaking: “.” and “…” are for call-stacks like ”?“ and “*” for characters sequences.

Sherlok Manual 1.4 Seite 63

11.1.3 Defining the Profile Scope
Several config parameters work together to define exactly which classes and methods are considered for
profi ling. It is important to understand the exact effect of these parameters so that you on one hand can limit
the scope of Sherlok (and overhead) and also define it wide enough to catch possible trouble sources. The
relevant parameters are defined as class / method patterns.

Fundamentally one always selects methods to be monitored – or excluded. Specifying 'by class', as it is done
in Packages and Excludes, selects or deselects all methods of the matching classes.

Class patterns are generally defined by prefix, e.g. “com.sap.km.” denotes all classes underneith
com.sap.km. Method patterns are generally specified as suffix, e.g. “.doContent” selects all doContent
methods in all packages/classes.

11.1.3.1 Definition

Profile Scope = Packages + Methods - Excludes

Packages

matches on classes and selects all methods from all classes matching patterns

Methods

matches on methods and selects all methods matching the method patterns

Excludes

matches on classes and removes all classes matching the patterns, and thereby also all
methods in those classes

11.1.4 Configuration Parameters
A configuration file is a simple text file with name-value pairs, where “#” is used as comment prefix. Each
row consists of one assignment, i.e. name = val ue.

All configuration items listed here can be changed dynamically, i.e. when Sherlok runs. In the console mode
you can use the 'set' command to change a value, in the UI there are special UI elements for certain settings,
but not for all.

Some of the configuration settings done in the console mode / UI take effect immediately. For the other
items, you must reset Sherlok. The reset command reloads the specified configuration files, and clears
internal tables, history etc.

11.1.4.1 Global Settings

Property Name Description Default

ProfileInfo Textual description of this profile. (empty)

ProfileStart Possible values are yes or no. Activates the monitor at the very
start of Sherlok, i.e. at the startup of the JVM and when
reloading a configuration.

When you have a problem during the initialization / startup
phase of a JVM / application, i.e. before you can do any user
input, you should set this value to yes".

no

Sherlok Manual 1.4 Seite 64

ProfileMode Possible values are profile or interrupt.

profile In profi le mode every method invocation is
intercepted by Sherlok and all involved
methods and classes are recorded according to
the other Profile scope settings (see below).
This mode is appropriate when you have no
predefined few classes to start you
investigation from. This mode is slower than
interrupt mode but looks at all classes.

Profile mode is required for tracing.

interrupt The interrupt mode is appropriate when you
have a set of predefined components (classes)
to be considered for monitoring (e.g. memory).
It works by Sherlok inserting interrupts into
the bytecode code and is much faster than
profile mode. However, the JVM can only
handle up to 1000 interrupts gracefully, so this
mode can only be used for a few defined
classes as entry points e.g. for all iViews.

jarm The jarm mode allows to attach Sherlok to
JARM instrumented java code. Sherlok will
generate the memory information for JARM
contexts

ats In ATS mode Sherlok uses only one global
stack for context information. This allows to
create client-server test suits.

profi le

ProfileLimitOutput Limit the length output for one command (in console an UI
lists). This is useful to limit the output of commands that can
create very long lists such as lsm.

2000

ProfileLimitHash Internal Sherlok parameter: Limits the amount of memory
Sherlok needs internally. It is the number of entities (objects,
classes, ...) that Sherlok can monitor, where each entity needs
20 bytes.

When this internal space allocated to Sherlok is exceeded,
Sherlok issues an error message and stops monitoring. You
must increase this parameter and restart the JVM.

4000000

ProfileOutputType Format of output used for the output socket. The console mode
is attached to the output socket as well.

Possible values are ascii or xml. The XML output could be
used to link the telnet port to other applications, e.g. a custom
Sherlok UI.

ascii

Tracer Enables trace functions from the start of the program. You can
specify any trace option and its parameters (preceding with two
minus signs):

Tr acer =t r i gger - - e100- - t r ee, gc, met hods

Sherlok Manual 1.4 Seite 65

11.1.4.2 Selecting Profiling/Monitoring Scope

Property Name Description Default

ProfilePackages Defines the set of classes considered for profil ing. It is a
comma-separated list of class patterns. Each class that
matches one of the patterns is monitored – unless it also
matches ProfileExcludes. (see below).

Example
Pr of i l ePackages = com. mycompany. , . myconsul t . ,
de. mei nef i r ma. por t al . MyI Vi ew

(no classes)

ProfileMethods Comma-separated list of Method Patterns. The matching
method calls will be profiled for performance and memory
(memory aggregated on class level),.

Example:

Activate all doContent methods in all classes.

Pr of i l eMet hods = . doCont ent

(no methods)

ProfileExcludes Comma-separated list of class-patterns. All methods from the
matching packages/classes are not monitored even if they
match ProfilePackages or ProfileMethods. This is important
to exclude system components.

Example:

Pr of i l eExcl udes = com. sap. , com. sappor t al s . ,
com. i nqmy. , j ava. , j avax. , sun. , or g. xml .

(no classes)

Sherlok Manual 1.4 Seite 66

11.1.4.3 Memory Monitoring

Property Name Description Default

ProfileMemory Controls whether Sherlok monitors memory allocations and
releases. There are three settings:

off No profiling of memory

on Profile all memory activities within the defined scope

all Same as 'on' but in addition also all memory activities
outside of the scope are collected into one unknown
entry. Useful to see i f a problem occurs outside of the
defined scope (e.g. a memory leak).

off

MemoryLimitHistory Number of GC cycles Sherloks remembers for memory
profiling. For each remembered cycle Sherlok stores the total,
allocated and deallocated size together with a timestamp per
class. This way you can see how the memory needs of a class
developed over time.

Note: The history uses 'smart compression'. See section xxx!

10

MemoryStatistic Controls how Sherlok processes memory allocation and release
information for each monitored class. Possible values:

(empty) For each monitored class just the
accumulated allocated and released
memory is kept.

info For each monitored class a history is kept
(default: last 10 entries) that shows how the
memory values behaved over time.

alert Selects the 'leak detector mode' which
keeps a compressed history and watches
for increases. For details see section 8.2

(empty)

11.1.4.4 Performance / Timing Measurements

Property Name Description Default

Timer Activates all methods in profile scope for time
measurement. Possible values are on or off.

off

TimerMethods Comma separated list of methods in profile scope, which
are activated for time measurement (as opposed to 'Timer'
which activates all methods).

(no methods)

11.1.4.5 Trace Parameters

Property Name Description Default

TraceMethods Semicolon separated list of methods, which will be
activated for method trace. These methods can be used to
monitor enter / exit events, observe parameter values etc.

The method tracer wil l output the matching methods when
they are called. When the timer is activated for these
methods then also their execution times will be reported.

(no methods)

TraceGC Activates tracing of garbage collections when turned on.
Will output detailed info about each GC into the
sher l ok. l og. Possible values are on and off.

off

Sherlok Manual 1.4 Seite 67

TraceTrigger Method as activation point for trace events. For details on
usage see section 10

(no trigger)

TraceVerbose This option will write additional field header information to
the trace output for each line. Possible values are on or off.

on

Sherlok Manual 1.4 Seite 68

11.2 Telnet Console Reference
This section describes the commands and output for the Sherlok console interface. All Sherlok features are
accessible via the console. This is mostly used by 'power users'.

11.2.1 Starting the Telnet Client
Launch a command line terminal in your operating system and enter the following command line:

$ t el net l ocal host 2424

If you didn’ t keep the defaults, modify the line and insert the current values of TelnetHost and TelnetPor t.
(specified as command line args on the JVM call).

Now you can login with username “Administrator” and password “sherlok” (unless you changed the
password).

11.2.2 Accounts
With the first startup Sherlok will create a telnet account in the text file sher lok.pwd with the following
entry:

Admi ni st r at or =<encrypted_password_sherlok>

You can add new accounts by copying an entire l ine and renaming the user. The password is encrypted and
can be changed using the telnet console command chpwd.

Note: User name and password are case sensitive!

Note: Adding a user wil l not become effective until a restart of the java process (not just 'reset').

11.2.3 Command: man | help
Sherlok offers the following commands on the console. You get the list from the 'help' or 'man' command.
You can speci fy a command as argument to get detail help for this command.

> man
 Commands
 -
 | Command | Descr i pt i on
 -
 | man| hel p [<command>] | l i st commands
 | st ar t <f unct i on> | st ar t moni t or / t r ace/ l og
 | st op <f unct i on> | st op moni t or / t r ace/ l og
 | l sc [- m| - s | - h] | l i st cl asses
 | l sd [- m| - s | - h] | l i st del et ed c l asses
 | l ml [- m| - s | - h] | l i st gr owi ng c l asses / memor y l eaks
 | l sm [- m| - n| - e| - s] | l i st met hods
 | l ss | l i st moni t or s t at i s t i cs
 | l sp | l i st pr oper t y keys and val ues
 | l co [- vm| - vt] | l i st cont ext s
 | l hd | l i st heap dump
 | r eset | r ead t he pr oper t y f i l e and r est ar t moni t or
 | r epeat [<seconds>] | r epeat t he l as t command
 | gc | st ar t gar bage col l ect i on
 | dt | dump t hr eads
 | i nf o | wr i t es i nf o st r i ng t o a l og f i l e wi t h a t i mest amp
 | t r ace <opt i ons> | t r ace dynami c r unt i me behav i our
 | l c f | l i st avai l abl e conf i gur at i on f i l es
 | set name = val | set opt i ons
 | ex i t | l eave t he t el net sessi on
 | chpwd | change passwor d f or t he cur r ent user
 | ver s i on | di spl ay t he cur r ent ver si on

Sherlok Manual 1.4 Seite 69

11.2.4 Command: lsp
The lsp command shows you all the config parameters and their current values. See section 11.1 for a
detailed description on parameter semantics.

> l sp
 Pr oper t i es
 -
 | Pr oper t y | Val ue | Descr i pt i on
 -
 | Pr of i l eSt ar t | no | I ni t al s t ar t up: [yes | no]
 | Pr of i l eMode | pr of i l e | Pr of i l i ng mode: i nt er r upt or pr of i l e(event)
 | Pr of i l ePackages | | Li s t of cl asses added t o pr of i l e
 | Pr of i l eExc l udes | | Li s t of cl asses r emoved f r om pr of i l e
 | Pr of i l eMet hods | . doCont ent | Li s t of met hods added t o pr of i l e
 | Pr of i l eLi mi t Out put | 500 | Max i mum number of out put l i nes f or any cmd
 | Pr of i l eLi mi t Hash | 131. 071 | Max i mum number of obj ect s f or pr of i l er
 | Pr of i l eOut put Type | asc i i | Set s t he out put t ype [xml | asci i]
 | Pr of i l eOut put Separ at or | | | Out put separ at or f or t r aces
 | Pr of i l eMemor y | on | Swi t ch memor y pr of i l i ng [on| of f | al l]
 | Memor yLi mi t Hi st or y | 10 | Number of ent r i es f or memor y hi s t or y
 | Memor ySt at i s t i c | al er t | Memor y l eak det ect i on f or al er t [al er t | i nf o]
 | Ti mer | on | Act i vat es t he t i mer f or al l met hods [on| of f]
 | Ti mer Met hods | | Met hods t o act i vat e f or t i me measur ement
 | Tr aceMet hods | . Di spat cher . ser v i ce| Met hods t o act i vat e f or t r ac i ng
 | Tr aceTr i gger | . Di spat cher . ser v i ce| Tr i gger met hod f or t r ace
 | Tr aceVer bose | on | t r ace out put f or GC
 | Tr aceGC | of f | Tr ace GC i nf or mat i on [on| of f]
 | Tel net Por t | 2. 222 | Por t t o connect
 | Tel net Host | l ocal host | Host name f or r emot e access
 | Conf i gFi l e | sher l ok \ def aul t . scp| Act i ve conf i g f i l e
 | Tr acer | | St ar t up conf i gur at i on f or t r ace

11.2.5 Command: start | stop monitor
Activates or deactivates the Java profile interface, which inserts or remove hooks to

• Method enter and exit events

• Memory allocation, deallocation and move events

Memory tracking and methods performance measurement is possible only if the monitor is running.

> st ar t moni t or

11.2.6 Command: start | stop trace
The Tracer allows output triggered by the application execution. You can add or remove trigger conditions
after you started the tracer (see command trace). The tracer can be used in combination with the monitor. The
result is an application execution trace. The trace can be started and stopped with the short command “s” .

> st ar t t r ace
> t r ace add met hods

11.2.7 Command: start | stop log
Starting the logger will create a new sher l ok. l og fi le and will pipe all console output also into this fi le.

Note: If you want to save your old log fi le, rename it before you do a 'start log'.

> st ar t l og

11.2.8 Command: lsc
The command lsc lists monitored classes. The possible command options are as follows:

Sherlok Manual 1.4 Seite 70

> man l sc
 l sc [- m<number >] [- s<col umn name>] [- f <pat t er n>] [- h] : l i s t moni t or ed cl asses
 -
 | At t r i but e | Descr i pt i on
 -
 | - h | out put wi t h GC hi st or y
 | - m<number > | sel ec t cl asses wi t h al l ocat ed by t es > <number >
 | - f <pat t er n> | f i l t er cl asses
 | - s<col umn name>| sor t by col umn name

The default is to show all registered classes, even if they currently don't hold memory (equivalent to l sc –
m0). Use l sc –m10000 to list all classes that are responsible for at least 10 KB.

11.2.9 Command: lsd
The command lsd lists deleted classes. These are classes that have been expired by the VM, i.e. cannot be
used anymore, but that are still responsible for memory being kept and therefore stil l shown in Sherlok. This
allows to trap classes that allocate some memory, pass i t on / store it in another class (e.g. global session) and
then get removed.

Classes will be reloaded for hot deployment or for the JSP compiler results.

When a class appears multiple times in lsd, it means that an expired copy of the class is still in the
permanent space (in the code part of the JVM memory) and not unloaded by the GC yet. For JDK 1.3.1.
these classes are only removed from the JVM by a full garbage collection.

You can also monitor / trace the behavior of classes, i.e. loading and unloading, by using t r ace add
cl ass command. See the trace command.

> man l sd
 l sd [- m<number >] [- s<col umn name>] [- h] : l i s t del et ed c l asses
 -
 | At t r i but e | Descr i pt i on
 -
 | - h | out put wi t h GC hi st or y
 | - m<number > | sel ec t cl asses wi t h al l ocat ed by t es > <number >
 | - s<col umn name>| sor t by col umn name

11.2.10 Command: lml
The command lml lists potential memory leaks, i.e. 'growing classes'.

> man l ml
 l ml [- m<number >] [- s<col umn name>] [- h] : l i s t gr owi ng c l asses
 -
 | At t r i but e | Descr i pt i on
 -
 | - h | out put wi t h GC hi st or y
 | - m<number > | sel ec t cl asses wi t h al l ocat ed by t es > <number >
 | - s<col umn name>| sor t by col umn name

11.2.11 Command: lsm
The command lsm l ists all monitored methods with CPU time, elapsed time, and number of calls, ordered by
CPU time (default).

Sherlok Manual 1.4 Seite 71

> man l sm
 l sm [- m<number >] [- n<number >] [- e<number >] [- s<col umn name>] : l i st moni t or ed met hods
 -
 | At t r i but e | Descr i pt i on
 -
 | - m<number > | sel ec t met hods wi t h CpuTi me > <number >
 | - n<number > | sel ec t met hods wi t h Nr Cal l s > <number >
 | - e<number > | sel ec t met hods wi t h El apsed > <number >
 | - s<col umn name>| sor t by col umn name

11.2.12 Command: lsp
The command lsp l ists the current values of the Sherlok properties. These can be set in the config file or
partly by the set command.

 -
 | Pr oper t y | Val ue | Descr i pt i on
 - _- - - - - - - - - - - - - - - -
 | Pr of i l eScope | . | Li s t of c l asses
 | Pr of i l eMode | pr of i l e | Pr of i l e Mode: [pr of i l e| i nt er r upt]
 | Pr of i l ePackages | com. sap. . | Li s t of c l asses added t o pr of i l er
 | Pr of i l eExc l udes | | Li s t of c l asses r emoved f r om pr of i l er
 | Pr of i l eMet hods | | Li s t of met hods added t o pr of i l er
 | Pr of i l eSt ar t | no | I ni t i al s t ar t up: [yes| no]
 | Pr of i l eLi mi t Out put | 500 | Max i mum number of out put l i nes f or any command
 | Pr of i l eLi mi t Hash | 131. 071 | Max i mum number of obj ect s f or pr of i l er
 | Pr of i l eOut put Type | asc i i | [xml | asc i i] Set s t he out put t ype
 | Tr aceMet hods | . Di spat cher . ser v i ce| Met hods t o act i vat e f or t r ac i ng
 | Tr aceVer bose | on | t r ace out put f or GC
 | Pr of i l eMemor y | on | Swi t ch memor y pr of i l i ng [on| of f | al l]
 | Tr aceGC | of f | Tr ace GC i nf or mat i on [on| of f]
 | Memor yLi mi t Hi s t or y | 10 | Number of ent r i es f or memor y hi s t or y buf f er
 | Memor ySt at i s t i c | al er t | [al er t | i nf o] Memor y l eak det ect i on f or al er t
 | Ti mer | on | Act i v t es t he t i mer f or al l met hods [on| of f]
 | Ti mer Met hods | | Met hods t o act i vat e f or t i me measur ement
 | Pr of i l eOut put Separ at or | | | Out put separ at or f or t r aces
 | Tr aceTr i gger | . Di spat cher . ser v i ce| Tr i gger met hod f or t r ace
 | Tel net Por t | 2. 222 | Por t t o connect
 | Tel net Host | l ocal host | Host name f or r emot e access
 | Conf i gFi l e | sher l ok\ def aul t . scp| Act i ve conf i g f i l e

11.2.13 Command: lss
The command lss lists overall statistics, i.e. number of classes, threads, function calls, and a few other
values.

> l ss
 Moni t or St at i st i c
 -
 | Name | Val ue
 -
 | NewFkt Cal l s | 0
 | NewObj ect s | 0
 | NewAl l ocat i on| 0
 | Nr Thr eads | 180
 | Nr Cl asses | 5. 409
 | Moni t or | i dl e
 | Tr ace | s t opped
 | Loggi ng | t r ue

11.2.14 Command: lhd
The command lhd means “l ist heap dump”. It lists all instances maintained by Sherlok grouped by class
name. The command will only list scalar object instances, no arrays and no basic types. You can sort the
output with the -s option and filter out classes (e.g. java.lang) with the -f option.

> man l hd
 l hd [- s<col umn name>] [- f <pat t er n>] : l i st heap dump [sor t ed by col umn]

Sherlok Manual 1.4 Seite 72

Use the command lhd together with the command lsc. The command lsc lists the number of bytes a class is
responsible for and lhd shows what kind of objects these are and how many of them where allocated.

> l hd - sHeapSi ze
 Cl asses
 -
 | HeapCount | HeapSi ze | Name
 -
 | 64. 113| 1. 538. 712| j ava. l ang. St r i ng
 | 15. 236| 365. 664| j ava. ut i l . HashMap$Ent r y
 | 10. 978| 263. 472| j ava. l ang. St r i ngBuf f er
 | 3. 925| 188. 400| j ava. ut i l . HashMap
 | 11. 048| 176. 768| j ava. ut i l . j ar . At t r i but es$Name
 | 2. 541| 142. 296| sun. i o. Char ToByt eCp1252
 | 2. 436| 97. 440| j ava. ut i l . Hasht abl e
 | 909| 72. 720| com. sap. por t al s. j dbc. sql ser ver . t ds. TDSRPCPar amet er
 | 824| 72. 512| j ava. ut i l . j ar . Jar Fi l e$Jar Fi l eEnt r y
 | 824| 59. 328| j ava. ut i l . zi p. Zi pEnt r y
 | 524| 58. 688| com. sap. por t al s. j dbc. base. BaseCol umn
 | 2. 194| 52. 656| j ava. l ang. Cl assNot FoundExcept i on
…

11.2.15 Command: reset
The command reset reloads the config file with the currently set config file name (set by the set
conf i gf i l e=… command). It also resets the internal Sherlok state and all statistics.

> man r eset
 r eset Rel ead t he conf i gur at i on f i l e and cl ear al l Sher l ok s t at i st i cs

11.2.16 Command: repeat
The command repeat repeats the last command every n seconds, with n being the parameter (default ist 1
second). This is very useful for automatic traces or dt commands etc.

> man r epeat
 r epeat [<seconds>] : r epeat t he l ast command
 -
 | At t r i but e| Descr i pt i on
 -
 | <seconds>| r epeat er t i me i nt er val l i n seconds (def aul t i s 1 sec)
 Any command wi l l s t op t he r epeat er

11.2.17 Command: dt
The command dt (=dump threads) shows the threads known by Sherlok. It shows the threads with their
names. (Sherlok doesn’t 'see' all threads of the JVM like the finalizer or startup thread)

The command dt –c shows all threads that have currently have a monitored class active in them. For all
these, the current call stack is shown, showing only the methods that are in the monitoring scope.

The Sherlok-internal thread list is reset by the reset command. 'Threads know to Sherlok' wil l them again be
accumulated from scratch (according to activity of monitored classes).

The command dt -a creates a full thread dump.

The command dt –vm sends a “kill –3” to the process group and dt –j l a “kill –3” to the process. The full
thread dump is written to the stdout console (not the sherlok.log!). This shows all threads that are defined in
the system, even if they are inactive. Most will be having the status “waiting on monitor” which means that
they wait for a request and currently do nothing.

This command dt –vm should not be used if you started within a startup framework, since this may cause the
JVM to terminate and then restart (by the startup framework).

Sherlok Manual 1.4 Seite 73

> man dt
 dt [- c] [- s<col umn>] [- a| - vm| - j l] dump t hr eads
 -
 | At t r i but e | Descr i pt i on
 -
 | - c | dump cal l s t ack (i f not empt y)
 | - s<col umn>| sor t out put
 | - a | f ul l heap dump
 | - j l | f ul l heap dump (ki l l - 3 t o pr ocess)
 | - vm | ki l l - 3 CAUTI ON: THI S MI GHT TERMI NATE APPLI CATI ON

11.2.18 Command: dex
The command dex lists the statistic for all exceptions and prints the name and the number of events, which
causes the exception..

11.2.19 Command: info
The command info allows to write a comment into the sherlok log fi le. A timestamp is attached.

11.2.20 Command: trace
The command trace adds new triggers to the tracer. For details on how to use the options, see section 10.

> man t r ace
 t r ace [- ver bose] [add| r emove <t r ace- opt i on>]
 -
 | At t r i but e | Descr i pt i on
 -
 | - ver bose | add addi t i onal i nf or mat i on t o t he consol e out put
 | gc | t r ace gar bage col l ect i on
 | par amet er | t r ace cal l par amet er s f or Tr aceMet hods
 | except i on | t r ace except i ons: s t op on Out Of Memor yEr r or
 | cont ent i on - e<el apsed- t i me>
 | - a - asc i i | - t r ee| - xml | t r ace t hr ead cont ent i ons
 | s t ack | t r ace cal l s t ack f or Tr aceTr i gger met hod
 | met hod | t r ace ent er and ex i t event s f or Tr aceMet hods
 | c l ass | t r ace c l ass l oad and unl oad event s
 | t hr ead - n<t hr ead- name> | t r ace met hod ent er event s f or <t hr ead- name>
 | t r i gger <opt i ons> | t r ace t r i gger ed by Tr aceTr i gger
 | t r i gger - asc i i | - xml | - t r ee | set out put t o asc i i , xml or t r ee v i ew
 | t r i gger - e<el apsed- t i me> | t r ace al l met hods, whi ch ecceed gi ven el apsed- t i me
 | t r i gger - a | t r ace al l met hod ent er event s
 | t r i gger - c | count up met hod ent er event s
 | t r i gger - f <f i l e- name> | r edi r ect out put t o <f i l e- name>

11.2.21 Command: lcf
The command lcf lists all available config files. They can then be loaded by set …. and activated by reset.

11.2.22 Command: set
The command set allows to set config parameters directly for the running Sherlok session. Changes are not
propagated to the config fi le. Currently the only supported value is 'ConfigFile' (case sensitive!). The use
case is to switch to another config file and the load it with reset.

> set Conf i gFi l e = def aul t . skp

11.2.23 Command: exit
The command exit closes the Sherlok console. Sherlok itself will continue to run in the mode it had set last.
You can always reconnect with the telnet call.

Sherlok Manual 1.4 Seite 74

11.2.24 Command: chpwd
The command chpwd lets you change the password for your current user. The encrypted password is (over)
written into the file sherlok.pwd.

11.2.25 Command: version
The command 'version' shows the version of Sherlok.

