Sherlok - Version 1.4

Java Application Monitor
13. September 2005

1 INTRODUCTION
1.1 MONITORING MEMORY
1.2 MONITORING PERFORMANCE
1.3 GENERAL APPLICATION TRACING
1.4 USAGE MODES
1.5 CHANGES FROM VERSION 1.3

2 INSTALLATION AND INITIAL CONFIGURATION

2.1 REQUIREMENTS

2.2 INSTALLATION OF SHERLOK PACKAGE
2.2.1 INSTALL THE SHERLOK DLL
2.2.2 UNPACK THE SHERLOK SUPPORT FILE JAR
2.2.3 ADAPTING SHERLOK CONFIGURATION TO YOUR NAMESPACE
2.2.4 EMBED SHERLOK INTO JVM
2.2.5 CHANGING THE TELNET PORT
2.2.6 TESTING THE CONSOLE

2.3 INSTALL SHERLOK USER INTERFACES (OPTIONAL)
2.3.1 UPLOAD PORTAL IVIEW TO THE ENTERPRISE PORTAL
2.3.2 SERVLET

2.4 SHERLOK DOCUMENTATION

2.5 MEMORY CONSIDERATIONS

3 QUICKSTART: THE IVIEW TESTBENCH
3.1 STARTING THE TESTBENCH
3.2 MEMORY PROFILING
3.2.1 STEP 1: START TESTBENCH
3.2.2 STEP 2: USE THE IVIEWS OF INTEREST
3.2.3 STEP 3: INSPECT THE NUMBERS
3.2.4 STEP 4: CLASSIFY THE RESULTS
3.2.5 STEP 5: SET UP ACTION ITEMS
3.3 PERFORMANCE MONITORING
3.3.1 STEP 1: START IVIEW TESTBENCH IN A SEPARATE WINDOW
3.3.2 STEP 2: USE THE IVIEWS OF INTEREST
3.3.3 STEP 3: INSPECT THE NUMBERS.
3.3.4 STEP 4: CLASSIFIY THE RESULTS
3.3.5 STEP 5: SET UP ACTION ITEMS

4 FUNDAMENTAL SHERLOK CONCEPTS

4.1 MEMORY PROFILING CONCEPTS
4.1.1 BaAsic CONCEPTS
4.1.2 SCOPE AND AGGREGATION

4.2 PERFORMANCE PROFILING CONCEPTS
4.3 TRACING CONCEPTS AND EVENTS

5 MONITORING IVIEW

51 USER INTERFACE
5.1.1 PAGE 1: SETTINGS
5.1.2 PAGE 2: RESULTS

Sherlok Manual 1.4

Coooo~N~N~N~N OO0 010101 01

11
12
13
13
13
14
16
16
17
17
17
18
18

19

19
19
22

25
26

27

27
27
29

Seite 2

5.2 USING MONITOR
5.2.1 MONITOR MEMORY REQUIREMENTS
5.2.2 SHow METHOD TIMING
5.2.3 FIND GROWING CLASSES
5.2.4 DECOMPOSE CLASS MEMORY USAGE

6 JARM INTEGRATION
6.1 UsING JARM INSTRUMENTATION
6.2 USING SHERLOK-CONTEXT API

7 TOOL INTEGRATION

8 MEMORY PROFILING

8.1.1 IDENTIFYING THE “BAD COMPONENT”

8.2 MEMORY LEAK FINDER
8.2.1 ACTIVATING THE MEMORY LEAK FINDER MODE
8.2.2 USAGE VIA CONSOLE
8.2.3 USAGE WITH Ul

8.3 Quick HEAP DumP

8.4 INVESTIGATING MEMORY PROBLEMS
8.4.1 TRAPPING THE OUT-OF-MEMORY SITUATION
8.4.2 HEeAP OVERFLOW
8.4.3 PERMSIzZE OVERFLOW
8.4.4 MAXIMUM NUMBER OF THREADS
8.4.5 MAXIMUM ADDRESS SPACE, DLLS

9 PERFORMANCE PROFILING
9.1 LATENCY
9.1.1 CONTENTION
9.1.2 BROAD QUERIES
9.1.3 BAD SYSTEM CONFIGURATION
9.2 COMPUTATIONAL COMPLEXITY
9.2.1 BuUSYWAITING
9.2.2 INEFFICIENT ALGORITHMS
9.3 MISSING CACHES
9.4 GARBAGE COLLECTION DELAYS

33
33
34
35
36

36
36
37

39

39
39
41
42
42
42
42
43
43
44
48
48
49

50
50
50
50
50
50
50
50
51
51

9.4.1 HIGH MEMORY ALLOCATION AND DEALLOCATION RATE (FULL GARBAGE COLLECTIONS)

51

10 APPLICATION TRACING

10.1 STARTUP
10.1.1 TELNET CONSOLE
10.1.2 LOGGING
10.1.3 ACTIVATE THE TRACER

10.2 TRACE GARBAGE COLLECTOR
10.3 TRACE THREAD CONTENTIONS
10.4 TRACE METHODS

10.5 TRACE PARAMETERS

10.6 TRACE HOTSPOTS
10.6.1 SETUP
10.6.2 OPTIONS

Sherlok Manual 1.4

52

52
52
53
53

54
54
54
55

56
56
57

Seite 3

10.6.3

10.6.5

1111
11.1.2
11.1.3

11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.2.6
11.2.7
11.2.8
11.2.9
11.2.10
11.2.11
11.2.12
11.2.13
11.2.14
11.2.15
11.2.16
11.2.17
11.2.18
11.2.19
11.2.20
11.2.21
11.2.22
11.2.23
11.2.24
11.2.25

OuTPUT OPTION -ASCII

10.6.4 OuTPUT OPTION -TREE
OUTPUT OPTION -XML

10.7 TRACE JAVA EXCEPTIONS
10.8 TRACE THREAD CONTENTIONS
10.9 TRACE STACK

10.10 TRACE THREADS

11 REFERENCE

11.1 CONFIGURATION REFERENCE
GENERAL CONFIG CONCEPTS
HANDLING MULTIPLE CONFIGURATION FILES
DEFINING THE PROFILE SCOPE
11.1.4 CONFIGURATION PARAMETERS
11.2 TELNET CONSOLE REFERENCE
STARTING THE TELNET CLIENT

ACCOUNTS
COMMAND:
COMMAND:
COMMAND:
COMMAND:
COMMAND:
COMMAND:
COMMAND:

MAN | HELP

LSP

START | STOP MONITOR
START | STOP TRACE
START | STOP LOG

LSC

LSD

COMMAND:
COMMAND:
COMMAND:
COMMAND:
COMMAND:
COMMAND:
COMMAND:
COMMAND:
COMMAND:
COMMAND:
COMMAND:
COMMAND:
COMMAND:
COMMAND:
COMMAND:
COMMAND:

Sherlok Manual 1.4

LML
LSM

LSP

LSS

LHD
RESET
REPEAT
DT

DEX
INFO
TRACE
LCF

SET
EXIT
CHPWD
VERSION

57
57
58
59
59
60
60

61

61
61
62
63
63

68
68
68
68
69
69
69
69
69
70
70
70
71
71
71
72
72
72
73
73
73
73
73
73
74
74

Seite 4

1 Introduction

Sherlok is a Java application monitor, that allows to get detailed information about the behavior of java
programs. It implements the foll owing aspects of monitoring:

* Monitor memory allocation and memory leaks
* Monitor performance

» Monitor program execution (application trace)

1.1 Monitoring Memory

Memory is a resource, which is shared by al components of a Java application without any quotas. The
overall application will fal, if only one component does not cooperate (e.g. has a memory leak) or if severd
components with huge demand on memory will compete for this resource when they run at the sametime (in
threads). Once the application reaches the system limits, the infamous ‘out-of-memory' occurs and it is hard
to tell which components are at fault.

Memory consumption aso impacts performance. Each chunk of memory, which is used by a Java
component, will have to go through the garbage collector to make it available again for other components.
The allocation of memory, the initializing of objects and finaly the garbage collector need time for
execution.

In order to help diagnosing memory problems, Sherlok offers these features:

» Show memory usage by component with allocated, ded located, retained memory and a history for
these values,

* A Memory Leak Detector mode that watches for growing classes, and a mode that can trap ‘out-of-
memory' situations.

* Aquick heap dump to analyze the component's memory usage.

1.2 Monitoring Performance

Performance analysis, i.e. monitoring execution times, is aso hard for a complex client-server application.
The request response time might depend more on LDAP, SQL or file system services, than on the executed
Java code. What you need to improve your software is reliable data to compare the current state with prior
ones and make the measurement independent from network and external services.

» Sherlok measures CPU and eapsed time for each Java method in scope and alows you to find the
cause of any delay in a given response Sherlok dso alows you to 'drill down' and focus the
performance measurements.

» Sherlok has a built-in HotSpot analyzer, which dumps the call stack for the most expensive method
execution contexts. This alows to find the 'top slow methods'.

1.3 General Application Tracing

Sherlok offers tracing features as well. Tracing ‘shows what the application is doing' dynamically. All trace
functions dump information to the telnet console (and log file) and they are triggered by program execution
events. Thesetracing trigger eventsinclude:

» Activation of the garbage collector: writes more detailed GC output
* Method enter and exit events: can be traced

* Unhanded exceptions: can write stack trace

Sherlok Manual 1.4 Seite 5

1.4 Usage Modes

Web Ul and Console

Sherlok provides a web interface (1Views and serviet) for simpler use cases and a console / telnet interface
for power users. A special use case, the iView TestBench has a separate very s mple dedi cated web interface.
Not all Sherlok features are available through the web interfaces.

Different Usage Types
Sherlok can be used by different types of usersin different ways:

* iView/ Code Developers can use it during development to identify resource usage and optimize the
code. In generd, the simple iView TestBench user interface will be sufficient to identify resource
problems and pinpoint the causes in the code. For in-depth analysis the console modeis available.

» Advanced Technical Support can use Sherlok to do general analysis of overal system performance
and to identify possibleissues. This generally requires the console mode.

* A content developer combines iViews to pages and roles and can use the iView TestBench to
measure the resource needs of certain iViews and pages / interactions.

Usable for any Java program

Sherlok is described in the application context of the SAP Enterprise Portal, but it can be used on any Java
program and JDK 1.3.1 and 1.4.

1.5 Changes from Version 1.3

» Sherlok now supports multiple configuration files, and to load them dynamically. The configuration
files arelocated under thesher | ok subdirectory by default. The default isdef aul t . skp.

* Some command names were changed to be more consistent and understandabl e

* User interface changes were made to simplify usage.

Sherlok Manual 1.4 Seite 6

2 Installation and Initial Configuration

In this chapter we will show how to install Sherlok on a Enterprise Portal node To prepare for the
installation, download the most recent version of the Sherlok package archive for your platform from the
Sherlock homepage.

2.1 Requirements

* Operating system Linux, Windows, Solaris, HP-UX or Al X
* JavaRuntime Environment (JRE) 1.3 or 1.4

» Tenet executable for command line interface

* SAPJ2EEngine6.20 or 6.30 for sher | ok. ear

* Portal EP 6 for iView interfaces

2.2 Installation of Sherlok Package

The Sherlok Package consists of two parts: (1) The shared library and (2) the Sherlok support files, i.e.
configuration files, Ul components, documentation etc.

From now on we consider the case of SAP Enterprise Porta installed on SAP J2EE. Therefore the directory
is one of the following depending on your porta configuration:

2.2.1 Install The Sherlok DLL
TheDLL varies by platform:

Platform Library
MS Windows sherl ok.dl I,
(System msvcr71d.dll, msvcp71d.dll)
Solaris i bsherl ok. so
Linux i bsherl ok. so
HP-UX (32/64bit) |1 i bsherl ok. sl
AlX (64bit) i bsherl ok. so

Install the DLL at the root directory of the server instance, i.e where the VM is cdled. This directory can
differ, eg.

Configuration Ingtallation directory inside of J2EE Engineto use

Standal one .l al one

Cluster with one server node .lcluster/server

Cluster with multiple server nodes .lcluster/server<n> (where<n> isnode number)
J2EE 6.40 .lcluster/os_libs

Sherlok Manual 1.4 Seite 7

Notes

e Torun Sherlok 1.4.0.7 on NT make sure, that msvep71d.dil and msver 71d.dll are available
» Standa one configuration is used for EP5.0, the cluster versions for EP6.

e The path leading to the DLL location must not contain spaces! (if you have problems here, see
‘Central Installation Option' bel ow)

2.2.2 Unpack the Sherlok Support File JAR

Unpack the Sherlok support files JAR (sher | ok. j ar) inthe directory ../ cl ust er/ server. This will
create a subdirectory sher | ok that contains al the additional files such as the configuration files (* . skp)
documentation etc. The file def aul t. skp is the default configuration file, that you can aso use as the
templ ate when creating your new configurations.

2.2.3 Adapting Sherlok configuration to your Namespace

Sherlok configuration files in the standard delivery are too generic for most cases. It is strongly
recommended to adapt them, especially to restrict the count of dasses monitored as much as possible.

For instance, when your portal components (you want to investigate) are implemented as the set of classesin
the Java package com.myfirm.myapplication.* you should modify the ProfilePackage property in the
configuration file sher| ok/ def aul t. skp (and dso in any other *. skp file you want to use) to the
corresponding value like in the following sample:

#
File: default.skp (sanple)

Profil eMenory
Profi | ePackages
Ti mer

on
com nyconpany. t est .
on

For the exact meaning of the parameters and special usage of wildcards in the patterns have a look at the
Parameter reference section.

2.2.4 Embed Sherlok into JVM

As next step, you have to embed Sherlok into the VM by modifying the start script. Follow the instructions
depending on platform and SAP J2EE version you use.

2.2.4.1 For all Platforms

You should aso always run with the -verbose: gc option set that outputs GC information in the console log.
This is aways valuable information about the memory behavior of an application and needed to get the
memory usage graphs described in the sherlok.jar.

If exists, put the shared library into the folder os libs. In any other case put the shared library to the server
directory and set thelibrary path environment varigble (on Linux LD_LIBRARY _PATH).

Createadirectory .../cluster/server<n>/sherlok and put the configuration filesinto it. The two command line
arguments are synonyms:

» -Xrunsherlok: ConfigPath=sherl ok
» -Xrunsherlok: ConfigFile=sherl ok/default.skp

Sherlok Manual 1.4 Seite 8

2.2.4.2 Windows with Portal running on J2EE 6.20

Open the start script go. bat (or godebug. bat) in a text editor. Locate the line starting with “set
DEBUG_PARAMS’ and add there following parameters (no line break)

set DEBUG PARANMS=- [ava. conpi | er =NONE - Xdebug - Xnoagent
- Xrunsher | ok: Confi gPat h=sher | ok

At the end, save al changes and restart the server node to make the changes effective.

2.2.4.3 Windows with Portal running on J2EE 6.40 / 6.30
Start the ConfigTool from the SAP J2EE Engine and select there the correct server node instance.

Under the tab strip General you will find a Java settings / Java parameter text field, where you have to
add following JVM parameters:

- Xdebug
- Xrunsher | ok: Confi gPat h=sher | ok

Then switch to the tab-strip Debug and check there the val ue of the flag Debug / Enable debug mode. This
flag has to be disabled to get the Sherlok running properly.

At the end, save al changes and restart the server node to make the changes effective.

2.2.4.4 Solaris / HP-UX / AIX / Linux with Portal running J2EE 6.20

Open the starting script go. bat (or godebug. bat) in a text editor. Locate the line starting with “set
DEBUG_PARAMS’ and add there following parameters. (no line break!)

You haveto also add the environment variable LD_LI BRARY_PATH=. to the script.

set DEBUG PARAMS=" - Xdebug - Xrunsher| ok: Confi gPat h=sher| ok”
set LD LI BRARY PATH=.

At the end, save al changes and restart the server node to make the changes effective.

2.2.4.5 Solaris / HP-UX / AIX / Linux with Portal running J2EE 6.40/6.30
Start the ConfigTool from the SAP J2EE Engine and select there the correct server node instance.

Under the tab strip General you will find a Java settings / Java parameter text field, where you have to
add following JVM parameters:

- Xdebug
- Xrunsher | ok: Confi gPat h=sher | ok

in the Startup Framework Settings dialog for the Java parameters section. Make sure, that the debug
option on this nodeis disabled.

Copy the shared library into ../ cl ust er/ os- i bs

At the end, save al changes and restart the server node to make the changes effective.

2.2.5 Changing the Telnet Port

With the settings to the VM invocation done in previous section, the Sherlok offers its console interface for
the Telnet host local host at port 2424.

In specia cases (i.e when this port is already occupied for other services), you may have to change this
settings by adding one or more parameters to the JVM invocation as the comma-separated list of key/value
pairs likein following sample.

Sherlok Manual 1.4 Seite 9

- Xrunsher | ok: Conf i gPat h=sher | ok, Tel net Port =2222

2.2.6 Testing the Console

Having previous steps completed, you get eementary output (property dump) from Sherlok on the
corresponding server consol e whenever the Portal server is started.

Sherlok can be then used via a consol e interface (viatelnet) and various web Uls. For the console mode you
access the interface via port 2424 on localhost (or corresponding values when this was changed in the VM
invocation).

tel net | ocal host 2424

You can then use the console interface via telnet, even without waiting until the portal is fully started. You
can just open the console and type 'exit' to close it. See the 'Consol e Reference' section for more details.

2.3 Install Sherlok User Interfaces (optional)

Sherlock provides not only a command based interface but also more comfortable interfaces that can be
installed separately. You wil find the necessary deployable files inside of thesher | ok subdirectory.

2.3.1 Upload Portal iView to the Enterprise Portal

There is a special portal component archive called com sap. port al s. sher | ok. par that can be
easily deployed to the portal and instantiated in the portal pages in a common way.

Being a portal administrator, you can upload this component via Administration console (System
Administration -> Support -> Support Desk -> Area: Portal Runtime -> “ Portal Anywhere” Admin Tools :
Administration Console).

You can get the Archive Uploader also by typing the following URL in your browser (adapted to the true
server name

<portal _server>/irj/servlet/prt/portal/prtroot/Portal Anywhere. Archi velUpl oader

2.3.2 Servlet

For non portal application Sherlok exposes theinterfacesin

* sherl ok. ear for 2EEngine
» sherl ok. war for arbitrary serviet container, contained in the ear file
* com.sap.portas.sherlok.par: portal iView monitor

e com.mycompany.test.par: portal iView test component

Please refer to the documentation of the servlet container how to deploy and modify startup parameters.

2.4 Sherlok documentation
The Sherlok documentation (this fil€) is also located inthesher | ok subdirectory.

Sherlok Manual 1.4 Seite 10

2.5 Memory Considerations

Note that Sherlok itsef needs memory to run. To monitor all classes and aobjects in a Java system you can
expect that Sherlok needs about 10-15% of the Java memory size. This amount of memory requirement will
be added to the VM, i.e. the java process!

Please make sure the java process has enough physicad memory to avoid paging. Also, on Windows, the
address space is limited to 1.3 GB. In case you had the Java heap set to 1.3 GB to fully utilize all memory,
you must reduce the Java heap size by about 200 MB to make room for the Sherlok memory needs.

3 QuicksStart: The iView TestBench

The simplest way to use Sherlok is to use the iView TestBench in the portal. The purpose is to be able to
simply measure how much CPU time and memory a certain interaction (iView, page) needs and offer quick
feedback on possible resource problems.

The following description does not explain al details to the last leve but tries to give you enough to get
started quickly. For full details see the detail ed descriptions after this section.

Note: As memory profiling can degrade portal performance by up to ten times (depending on the
profile mode) it is strongly recommend to use a dedicated system, i.e. a development/test
system.

In order to get valid results it is also necessary to allocate the development system for exclusive
use. It is further assumed that there is no concurrent activity taking place in the system as the
profiling is in progress.

The basic idea of the TestBench is to actively use an iView in one windows and to observe its behavior in a
second window: the windows of the iView TestBench. It will show memory consumption and timing of the
monitored classes as the gpplication is used.

In order to limit the output to the significant classes of the application, it is necessary to configure Sherlok
appropriatdy. Otherwise the results will be scattered among severa classes that are out of scope. Sherlok
uses the default preset file passed in the parameter ConfigFile when the TestBench is used. See 11.1 for
explanation.

3.1 Starting the TestBench

Asthefirst step in testing your i View, the iView TestBench has to be started. This application can be found in
the Sherlok role.

Sherlok Manual 1.4 Seite 11

The TestBench user interfaceis fairly straightforward, offering only two different commands:
* Next Sep will take a snapshot of the current state of execution and display it in the table bel ow.

* Reset will clear the history and also recognize changes made to the configuration in the mean time,

| Fiter |. NextStep | | Reset | Help
Table of Memory Usage
CurrSize MName
1.5994 B58 - pagelel sapporalzisp Viewer
310.6684 j=sp. =apportalzisp guickinfo
51 957 ij=p. =apportalsisp loading
J322 232 j=p s=sapportalzizp lavoulTemplate
205.824 j=p sapportalsisp fullvidih
115.144 j=p. sapportalzisp contentstudio welcomepage
1.497 6654 jsp. sapporalsjsp WaandMavPanes!
1.840 jaikxS509 XS0SExiensions
850 alkx509 X505 Certificate
26608 | iakx509 Publickewinfo
===]= Page 1 /6
||_|_| Pages1/1

Picture 1: iView TestBench

This table below the buttons contains a list of classes, ordered by ther memory consumption. In the first
column the table shows the total memory requirements of an application part (i.e. a Java class) so far, the
second column contains the full qualified name of the Java class responsible. For every entry, detail
information can be shown by clicking on the corresponding table cdl (see 3.2.3 and 3.3.3 for a detailed
explanation).

In order to reduce the number of display items, the list can be filtered using the text field at the top of the
application. Here either a prefix, infix or suffix of the classes of interest can be entered. A “.” dot is used at
the beginning and/or the end of the filter string to define an arbitrary string. An infix string (substring) is
enclosed in dots, a prefix ends with a dot and a suffix starts with adot.

Examples:
e “.sun.” matches sun.java.util.*, com.sun.java.net.*, com.sun.*, ...
* “.Map” matches any dass ending with “Map” like java.util.HashM ap

* “com.sap.” matches com.sap.util.*, com.sap.portals.*, com.sapportals.*, ...

3.2 Memory Profiling

Excessive memory consumption is a major problem in Java programs. Neither the portal nor the Java base
technology restrict the amount of memory an application can allocate. As a result, a single iView can bring
down the entire porta installation by eating up al the memory availableto the Virtual Machine.

It is strongly recommended to measure the memory consumption of al portal content before it is deployed
on a production system. The TestBench will give a deeper insight into the memory requirements of the
iViews. Within a few steps, those parts that claim major amounts of memory can be detected. iViews that
show non-cooperative behavior show up soon, because of their eye-catching numbers.

The iView TestBench is collecting data about alocated and deallocated memory by intercepting both the
creation of new abjects (allocations) performed by a class and the reclaiming of memory (deallocetions) by

Sherlok Manual 1.4 Seite 12

the garbage collector. Both alocation- and dedlocation-vaues are accumulated for the time between two
runs of the garbage collector (caled GC cycles).

The following sections will outline a step-by-step approach to testing iViews for memory consumption.

3.2.1 Step 1: Start TestBench

First, the TestBench has to be opened. If it has been used recently it should be initialized by pressing the
Reset button. See 3.1 on how to start TestBench.

3.2.2 Step 2: Use the iViews of interest

To drive memory-consumption, the iView that is to be inspected must be used activdy. This is best
accomplished by starting it from the Content Inspection area using Preview and then going through severa
iterations of the measurement procedure that is outlined here:

» Perform some activity in the custom i View.
* PressNext Step in the TestBench

After every step the table is updated with the latest results and Sherlok attempts to induce a garbage
callection in the VM. Thiswill create some detail information on the memory consumption.

3.2.3 Step 3: Inspect the numbers

From time to time the results should be examined closer. When there are multiple classes on the display,
concentrate on those classes that consume large amounts of memory or have a steadily increasing tota
(CurrSize column). The classes can be easily sorted by clicking on the column-labds.

To see detail ed information on the memory requirements of a class, click on the size entry that is displayed
left to the class name. Now a table will be show up bdow containing the garbage collection history of the
class.

Seitnge T
| Fiter . Refresh Help

Table of Memory Usage

CurrSize MNams

com.mycompany test | cadTestComponent

I

a2

com.mycompany. test SessionMemornyAccessor

I

com.mvcompany test RandomSirinaGenerator

[Z=]l=|I=] Page 1/ 1
Table of Memory History: com.mycompany.test.LoadTestComponent
MNrEC Total Allocated Deallocated TimeStamp
24 16 16 o 8. 317.019
28 11.440.000 21.905.512 10.466.528 12.973.805
30 1.651.056 514272 10.403. 218 15. 705613
31 12.015.540 10.358.584 o 15.705.614
HEEE Page 1/ 1

Picture 2: Memory History

Sherlok Manual 1.4 Seite 13

The history contains memory allocations and deallocations for the current and privious GC cycles. The size
of the table depends on the configuration of Sherlok and can be adjusted with the property
MemoryLimitHistory (see 11.1.4.3).

Column Description

GCNr Sequence number of the garbage collection.

Note: This number is assigned by the JV M. Sometimes multiple garbage coll ections
are combined, carrying only the number of the last GC. Therefore there may be gaps
in the numbering.

Totd The number of bytes that is actualy consumed by the class of the application (in
bytes). This is the total amount of memory that has been allocated, minus the total
of deall ocated memory.

Allocated The amount of memory being newly allocated during the GC cycle (in bytes).

This number includes all memory that has been requested, no matter if it is still
referenced or available for reclaiming.

Dedllocated The amount of memory being deall ocated during the GC cycle (in bytes).

This number includes all memory that has been reclaimed by the garbage collector
since the previous garbage coll ection, no matter if it was dlocated in this cycle or in
one of the previous ones.

TimeStamp Time stamp value, depending on operating system, with zero meaning current time.

Thetime stamp is ardative value that be used to compare intervals to each other.

For a single GC cycle, the amount of deallocated memory may well exceed the amount of
allocated memory. This is often confusing to the novice, but comes from the fact the allocated
and deallocated values do not necessarily refer to the same memory space or objects.

3.2.4 Step 4: Classify the results
Looking at the memory history of a class, it can be assigned one of these cases:
Well behaving The memory requirements are constantly low (< 2 MBytes).
High Demand The memory requirements are constantly high.
Peak Demand Thealocation reaches critical levels in peak situations, but remains otherwise normal.
Critical Demand The memory requirements are very high and may cause outages under |oad.
Leak The memory requirements are constantly growing, a memory leak seems likdy.

To do thisassignment it is very helpful to display the entries of the memory history table as a graph. You can
export the history table for iView TestBench to Microsoft Excd using copy-and-paste from the table. You
may use the xIs samplein the subdirectory sher | ok/ gcgr aph.

Every kind of issue has its very own fingerprint or pattern that shows up in the history graph.

High / Critical Demand

The amount of memory is relatively stable for both the allocated and the total value. The iViews following
this patterns usually have no memory leak and their memory demand is predictable. Still, high values ill
point to possible improvements in the implementation. When the total val ue reaches critica levels (like >10

Sherlok Manual 1.4 Seite 14

MB), memory requirement have to be reduced in order to keep the portal installation operationa . Application
logic tha requires that high leves of memory should be moved to a separate application server.

7000
6000 4
5000 -
4000 -
3000 -
2000 -
1000 -

1 Allocated
[Deallocated
Total

Peak Demand

There are high peak values for the allocated and deallocated values, with the total staying at constant levels
or growing only for a very short period of time (1-2 GC cycles). High peak values point to efficency
problems in the implementation leading to high amounts of garbage objects. Though the memory is not
claimed for a longer period, this is gtill a critical issue in a multiuser environment. When several peaks of
different applications and/or users concur, the combined total may exceed the available memory and the
system may be injured by expensive full GCs or even fail with an out-of-memory error.

30000
25000 A ——

20000 A 1 Allocated
15000 A [Deallocated
Total

10000 A —

5000-|—|
0 I—ﬁl Illlllllll—l . . . quuluul

Leakage

The memory footprint of the iView is constantly growing, so independently from the allocated and
deallocated value, the total is growing over time. The reason is the class is collecting data in memory.
Because business applications normally collect their data in a database or some other externa storage
facility, this points to a bug in the software. The application is keeping objects by accident. Sooner or later
the leaking application may have claimed so much memory that the system will fail. This way, even a small
leak may bring down the entire system.

Sherlok Manual 1.4 Seite 15

6000

5000 4
4000 4 T Allocated
3000 [Deallocated
2000 - - [m—F Total
1000 A
0
1 2 3 4 5 6 7 8 9 10

3.2.5 Step 5: Set Up Action Items

Depending on the memory consumption pattern, the following measures can be planned.

High Demand

iView whose memory requirements are staying constantly above acceptable levels should be inspected for
excessive caching. This may happen dther in the iView itsdf or depending on the usage of externd
subsystems like JCo or athird-party library.

The iView should be inspected in detail using the iView Monitor (see 5.2.1). Once the problem can be
assigned to a specific subsystem, the iView has to be reviewed by the devel oper to check the usage of the
subsystem’s components and their APIs.

Peak Demand

Peaks in memory consumption point to inefficient usage of the Java programming language, leading to a
multitude of temporary objects. As with the previous case, you should track-down to the source of the
problem to identify the responsible group of deve opers or the vendor of the subsystem.

Leakage

A memory leakage is caused by the iView itsdf in most cases. Therefore a deeper inspection of the
subsystems should be I eft to the devel oper of theiView, asit isimpaossible to assign a leak correctly without
looking at the implementation of theiView. Still, it might be hel pful to apply the M onitor Subsystems preset
anyway. If there is no leakage in the inspected subsystems, this source can be safely ruled out.

3.3 Performance Monitoring

Performance is a key factor in the usability of portal applications. Slow applications lead to dissatisfaction on
behalf of the user and eat up processing time that could better be used otherwise.

Portal content that shows lengthy response times should be inspected to trace the performance leak back to
the source. The test bench will give a deeper insight into the execution times of the various methods an
application is composed of.

Essentialy, the iView TestBench takes snapshots of the timing of an application. For every method in every
monitored class the total execution time and the number of callsisrecorded. Theresults are added to atable.

We will explain here the steps to take in order to find bad performing classes.

Sherlok Manual 1.4 Seite 16

3.3.1 Step 1: Start iView TestBench in a separate window
See section 3.1 to learn how TestBench can be started.
A description of the performance data offered by TestBench can be found in section 3.3.3.

3.3.2 Step 2: Use the iViews of interest

To drive CPU-consumption, the iView that is to be inspected has to be actively used. The iView can be
started from any place to obtain valid performance data Either from the page it is normally embedded or
directly from the Content Inspection role

After theiView is loaded the usage should focus on the functionality that shows long response times. When
the initial displaying of the iView is the key-issue, the iView should be started over and over using the
Content Inspection role.

3.3.3 Step 3: Inspect the numbers.

After some activity the Next Step button of the TestBench should be pressed in order to get results. The
results will be updated each time this button is pressed.

In order to get the total execution time of the iView the class actually implementing the iView has to be
located. A click on the class name will bring up the detail view on performance data. Note, that there is no
history created for performance. So the Next Step button has only the effect of updating the table.

| Fiter . NextStep | | Reset Heln

Table of Memory Usage

CurrSize MHame

A7 161 . 056 com.mycompany.test | pcadTesiComponent

i

2 & & [E

com mycompany test MemorvContainer

com.mycompany test. RandomStringGenerator

com. mycompany.test SessionMemorvAccessor

= =]=]1= Page 1£1
Methods: com.mycompany.test.LoadTestComponent
CpuTime [=1 0000007 Elap=ed [=/1 0000007 MrCali= MNams
3.885.209 5.418.000 3 doContent
1.632.347 1. 722000 3 allocateToSession
1822332 1. 752,000 3 allocateToDynamic
180 230 171,000 3 allocateToStatic
30.043 30,000 18 renderParameterline
20.028 20.000 18 renderLoglLine
o o 2] renderTimingline
o o 0 | <inits
o o 18 getProperty
o o o destroyw

=Eli=l=l=] Page 1/2
Picture 3: Method Timing Details

The table that shows up at the bottom contains the execution time and the total number of calls for each
method in the sd ected class. The numbers here grow with every step, thereis no history like in the memory
case.

Sherlok Manual 1.4 Seite 17

Column Description
CPU-Time | Cumulated CPU time usage

This parameter measures the plain processing time. This is the time the thread was in
running state. This is the time it took the method to complete minus the time other
threads or the operating system owned the CPU. See 4.2 for details.

Elapsed Cumulated time measured between enter and exit of a method. In short: This is the
accumul ated execution time of the method.

The difference between CPU to dapsed time is the time a thread was in ready or
waiting state. A thread isin waiting state, when it is waiting for asignal of the operating
system, like incoming data of an I/O or an object monitor. It is in ready state, when the
scheduler has d ected other threads to own the CPU.

NrCdls Number of calls to the method

Name Name of the method

3.3.4 Step 4: Classifiy the results

By looking at the execution time of a method, the problem can be categorized:

Complex computations

The method shows a high amount of CPU time and an almost equal € apsed time. This shows that the method
isreally busy doing its work.

High latency

The method shows a high amount of elapsed time and significantly lower vaue for the actual CPU time.
Therefore it is waiting for another task to be completed most of the time. This may either be a complex
database operation, or another thread that is holding a monitor (contention) or an arbitrary 1/0O operation.

3.3.5 Step 5: Set up Action Items

After the general problem has been named, it is necessary to look for the reasons.

3.3.5.1 High latency

Most of the problems come from high latencies the application is suffering. These can be spotted by
comparing the e apsed time with the CPU time. When the elapsed time is significantly higher than the CPU
time, the reason for the loss of performance does not lie in the computations performed inside the
application’s thread. Instead the application is waiting for another party to complete.

Common reasons are contention, broad queries and a bad system configuration.

Contention

Sometimes a method requires exclusive access to some object or resource that it does not own. Depending on
the competition, it may spend most of the time in waiting for another thread to release it. This kind of
bottleneck is a performance bug that prevents an application from being scalable. When the object is shared
with the infrastructure or other gpplications the entire portal installation may suffer. In both cases the iView
sourcecode has to be inspected in detail in order to find and remove the bottleneck.

Broad Queries

When an external database or R/3 repository is queried for information, alot depends on efficiency of the
guery. When the query (like an SQL statement) is too generd, the time needed to performit isvery long. As
aresult the calling thread is spending most of the time waiting for the results to come in from the externa

Sherlok Manual 1.4 Seite 18

system. The method takes too long to execute and the connected system may be overloaded with queries. The
iView sourcecode has to be inspected for complex queries using JDBC, JCo or other middleware technol ogy.

Bad System Configuration

High latencies during the execution of a method may come from slow connections to an external system or
from an overloading of the system itself. The iView and the environment have to be inspected in order to
find the responsi ble subsystem. Every stage of the portd request has to be examined for performance leaks.

3.3.5.2 Complex computations

Applications that perform complex computations can be found by comparing the € apsed time with the CPU
time. When the CPU time is close to the dgpsed time, the method is spending most of the time being busy.
While this may be normal for scientific applications, expensive computations are a rare exception in portal
applications. So Morelikdy isa defect in theiView.

Exampl es of such defects are:

* Busy waiting: A status is queried over and over to observe a change. Correct implementations
would register for some event or signal in order to be notified and sleep in the meantime. In broken
implementations the sleeping phase is missing or broken, leading to continuous requeries (polling).

» Inefficient algorithms: An application that searches for a record using linear lookup algorithms is
wasting CPU time. Intelligent usage of well-known algorithms for data processing are a prerequisite
for responsive applications. TheiView should be checked in a performance codereview.

3.3.5.3 Missing caches

Some methods are inherently complex. They require a lot of time to be executed and there is no way to
accd erate them substantially. In this case caching is a helpful strategy to avoid repeated execution of these
expensive methods. When an expensive operation is called severa times with the same parameters yielding
the same result, amissing cache is a defect that may seriously degrade the overall performance of the system.

4 Fundamental Sherlok Concepts

4.1 Memory Profiling Concepts

4.1.1 Basic Concepts

Sherlok allows to monitor memory consumption at different levels. By recording the point of memory
alocations and rdating it to garbage collection events, memory consumption can be traced back to the
source, i.e. aclass. In order to limit the amount of data, Sherlok alows to limit profiling to a defined set of
classes (the scope) and aggregates al allocations that happen outside.

This chapter will outline a procedure to isolate the classes responsible for out-of-memory situations. The
following values will be used to monitor memory consumption:

Allocated Theamount of memory newly requested during the time-span between two GC cycles
memory

Dedllocated The amount of memory released during a GC cycle. This memory is called garbage.
memory

Total memory The amount of memory that survived the GC cycles. In general this should be the
contents of caches and pools and the application state itself. In case of a memory leak,
this amount also contains the memory that actudly defines theleak, i.e unused objects.

In Sherlok all memory allocation is associated with classes. To link an alocation with a class, all memory
alocation statements (new ...) in a program are intercepted and the calling method is determined. Now the

Sherlok Manual 1.4 Seite 19

class containing the method is charged for the alocated amount of memory. For each subsequent invocation
the values are added up until the next garbage coll ection cycle occurs.

Example

An application for a library implements a simple model-view-controller architecture, consisting of the
classes LibraryView, LibraryModel and LibraryController for the MV C part and a class BookM anager
that is used by the modd to store datain a database. For some methods the i mplementation has been omitted
for simplicity reasons. These methods are highlighted ini t al i cs. Coddines that have no effect on the
results are greyed-out. Note that the source code has only been provided to show the interconnecti on between
Java statements and the values measured by Sherlok. Sherlok can be used though without deeper Java
knowledge. It is sufficient to know basic OOP concepts like packages, classes and operations to inspect
software with Sherlok.

The memory requirements used in the examples do not reflect the real vaues that the example program
would actually produce. We have chosen simple numbers to make cal culations essier.

Sherlok Manual 1.4 Seite 20

package myapp.view:

01 public class LibraryView inplenments LibraryMdel Cbserver {
02 private String _userld,
03 private String _status;
04 private String _orderld;

05

06 public void bookQut (String isbn) {

07 _status = _userld+" allocates "+isbn; // 50 for the string (non-garbage)
08 updat eTabl e() ;

09 refresh();

10 }

11

12 public void displayOrderld(String orderld) {
13 _orderld = orderld;

14 refresh();

15 }

16 }

package myapp.model:

01 public interface LibraryMdel Gbserver {
02 voi d bookQut(String isbn);
03 }

01 public class LibraryMdel {
02 pri vate BookManager _booknan;
03 private LinkedLi st _observers;

04

05 public void allocateBook(String isbn) {

06 _bookman. al | ocate(isbn); // result is thrown away (becom ng garbage)

07 Iterator i = _observers.iterator(); // 40 bytes for the Iterator object (garbage)
08 whi | e(i.hasNext()) {

09 Li braryMdel Gbserver o = (LibraryMdel Observer) i.next();

10 0. bookQut (i sbn);

11 }

12}

13 }

01 cl ass BookManager {

02 private static String ALLOC STMI = “INSERT | NTO ALLCCS (isbn, code) VALUES (?, ?)”;
03

04 private Connection _dbConn;

05

06 String allocate(String isbn) {

07 String code = isbn+ # +SystemcurrentTineMIlis(); // 54 bytes for the string
08 storeAl | ocation(isbn, code);

09 return code;

10 }

11

12 private storeAllocation(String isbn, String code) {

13 PreparedStat ement stnt = _dbConn. prepar eSt at enent (ALLOC_STMI) ;

14 stnmt.setString(l, isbn);

15 stnmt.setString(2, code);

16 st nt . execut eUpdat e();

17 }

18 }

Sherlok Manual 1.4 Seite 21

The corresponding call-graph shows, how Sherlok intercepts the memory allocations happening during the

call to the method LibraryController.order Book Event:

l 1 orderBookEvent

myapp.controller 36 <«|
LibraryControlle '

1.1 allocateBook

myapp.model 40 <
LibraryModel

memory
allocation

R (bytes)

D -

Call to operation with myapp.model
ordinal number BookManager

54}

4.1.2 Scope and Aggregation

From the graph we can easily read the number of bytes each dass consumes. It is good to have detailed
results, but with applications consisting of hundreds or thousands of dasses thereis simply too much data to
inspect. A better approach is to pick out the most important classes and summarize all alocations that are out
of scope. For this matter, Sherlok offers the capability of filtering. A wise filter defines which classes are to
be monitored for memory consumption. Classes that are not in scope of the filter (i.e. are bypassed) do not
undergo individual measurement. Their memory allocations are instead propagated up the call-stack until a
method of a monitored class is reached. Therefore any monitored class inherits the memory allocation taking

place during calls to methods of a bypassed class.

For our example we could restrict monitoring to the dasses myapp.controller.* and myapp.view.*,
bypassing the backend (myapp.modd.*) and platform classes (java.*, javax.*, com.sun.*, ...). The result

looks likethis.

Sherlok Manual 1.4

Seite 22

l 1 orderBookEvent

myapp.controller
LibraryController

charg(_ed
1.1 ~" allocation allocation
s < ;
myapp.model 40
LibraryModel
bypassed<
1.1.1 allocate
myapp.model e
\ BookManager
1.1.2 bookok :
[:\i/:)p:::-evw\[iew 50 50 ’} monitored

For the picture above the following alocation would be charged to each class:

Class Allocated memory (bytes)
LibraryController 130=36+40+ 54
LibraryView 50=50

As can be seen in the picture, all memory that has been allocated by bypassed classes in the package
myapp.model is assigned to the monitored class LibraryController. Thisisjust because those allocations
all occurred during the call to orderBookEvent method of said class. In other words: the monitored class
LibraryController has inherited the memory alocation from their unmonitored delegates LibraryM odel
and BookM anager.

When we take a closer a the sourcecode we also discover that the same kind of inheritance applied to class
LibraryModel. The 40 bytes we noted for the creation of an java.lang.lterator could also have been
illustrated in detail:

Sherlok Manual 1.4 Seite 23

. 1.1.1 allocate
4

myapp.model 0
BookManager
\1. 1.1.1 iterator

java.util
[LinkedList >4 }

\1.1.1.1.1 <constructor>

java. util 0
LinkedList.Iterator

Sherlok accumulates the alocated size for each monitored class until the next garbage collection cycle
occurs. As the alocated memory is linked to its originating class, aso the deallocations during the GC can
be dearly assigned. Now the total memory consumption can be cal culaed by subtracting the deallocated size
from the alocated size for each GC cycle and adding the results up.

For a single GC cycle, the amount of deallocated memory may well exceed the amount of
allocated memory. This is often confusing to the novice, but comes from the fact the allocated
and deallocated amounts do generally not refer to the same memory space or objects.

The following table shows the allocation and deallocation for the monitored dasses in our example. We show
the values for two GC cycles and one call to orderBookEvent in each cycle. In our example al objects
except for the status string are temporary and therefore reclaimed at the end of the cycle.

GC# | Class Allocated Deallocated Total
1 LibraryController 130 130 0
LibraryView 50 01 50
2 LibraryController 130 130 0
LibraryView 50 502 50
Example

When we change line 3 and 7 to collect the status messages we would have crested a memory leak and the
table would look quit different.

03 private StringBuffer _status = new StringBuffer();
07 _status.append(_userld+" allocates "+ishn);

! A reference to the status messageis kept in _status.
2 Theold status valueis reclaimed, dueto thefidd _status being overwritten with the new status message.

Sherlok Manual 1.4 Seite 24

The memory leak can be easily detected by looking at the total of alocated memory which is constantly
rising.

GC# Class Allocated Deallocated Total
1 LibraryController | 130 130 0
LibraryView 100° 50 50
2 LibraryController | 130 130 0
LibraryView 150 50 100
n LibraryController | 130 130 0
LibraryView n*50 + 50 50 n*50
Summary

Sherlok Monitors memory allocations (in memory profile mode). Allocations are accumul ated to classes and
charged to the next monitored dass in the stack trace up from the point of alocation. Re eased instances
reduce the memory charged to a class.

4.2 Performance Profiling Concepts

Compared to the way Sherlok monitors memory consumption, the way performance is measured is slightly
different. For each called method, the execution timeis calculated by subtracting the time-of-entry from the
time-of-exit for the method. Between the entry and the exit of a method, also the time athread is in running
state isrecorded. Thisis called CPU-time and reflects the true processing time of a method.

Thread States

Running A thread is in running state when it is actually executing instructions on the CPU.

Waiting A thread is in waiting state when it is waiting for a signal from the operating system.
Signals are used to indicate various events, like incoming data (I/0O), the availability
of a semaphore, the releasing of a monitor.

Ready A thread that is in ready state is waiting for the scheduler to gain CPU time. Once
the scheduler assigns the CPU to a ready thread it is changing into running state.

As a conseguence each method inherits the executi on time from all methods it calls, no matter whether those
are monitored or not. In this case the filtering capability aready known from the memory profiling sectionis
only needed to determine which methods are actually recorded.

Example

Let us assume our methods spend the following timein their body and not in some other method they call:

% = 50 + 50: 50 for the buffer inside of SringBuffer, 50 for the parameter to append.
* For the parameter to SringBuffer.append

Sherlok Manual 1.4 Seite 25

M ethod Local execution time
LibraryController.orderBookEvent 40

LibraryModel.all ocateBook 20
BookManager.allocate 500
LibraryView.bookOut 30

The following results would be delivered by Sherl ok:

M ethod Total
LibraryController.orderBookEvent | 590 = 40 + 550
LibraryModel .all ocateBook 550=20+500+ 30
BookManager.allocate 500
LibraryView.bookOut 30
reported
l T execution time
Myapp.controller.LibraryController
itored
[orderBookEvent 590 } e
+
(myapp.model.LibraryModel
. .Librar
yapp. y 550)
allocateBook «
. invisible execution
bypassed < ime
>
M .model.Bookl
yapp.model.BookManager 500 |-
L allocate
myapp.view.LibraryView
[bookOut 30 }

4.3 Tracing Concepts and Events

Beyond the profiling functionality of Sherlok which alows to take an overall picture of the software, tracing
allows us to monitor the execution of a program itsdf, i.e. the dynamic behavior. This is done by intercepting
certain events of the VM and showing some output in those cases.

Triggers can be defined based on the following events:
» Garbage collections

Sherlok Manual 1.4 Seite 26

e entering or exiting a method

e exceptions

* method execution times exceeding a given limit
» memory alocation exceeds a certain limit

* €cC.

Tracing is a very advanced feature of Sherlok, much similar to debugging. For a description of the various
events that Sherlok recognizes, visit section 10.

5 Monitoring 1View
In addition to the bare-bones application iView TestBench there is another iView shipping with Sherlok that
offers a convenient user interface to observe performance and memory requirements of portal content.

The display contains of two pages. The first page caled Settings is subdivided in four sections to control
different aspects of the Monitor. The second page called Results displays the results of the current operation.
Its contents are controlled by the various configuration settings and depend on the sdected view mode of
Monitor.

5.1 User Interface

5.1.1 Page 1: Settings

e

Configuration Help
leaks.scp W

Stop || Reload

Action
Start Tracing | Save sherloklog | | Execute GC

Result View

% Memory Usage
" Method Timing

" Growing Classes

" References

Result Filter

| Win.currsize [bytes]

| Win.CpuTime [=100000]
| in.Elapeed [=/100000]
| Win.nrcals

PPN)

Picture 4: Monitor Settings

Sherlok Manual 1.4 Seite 27

5.1.1.1 Configuration

The configuration area is used to select the configuration file used for monitoring. For every file in the
configuration directory® there is an entry in the dropdown list. For those configurations carrying a spegific
description, it isdisplayed in the text area bel ow. Two buttons control the behavior of Sherlok:

Start Activates the selected configuration and starts profiling. Afterwards the button label is changed
to Stop.

(Stop) Used to stop profiling again.
Reload Reoads the current configuration from disk and activatesit.

5.1.1.2 Action
The second area contai ns three buttons for genera purposes:

Start Tracing Starts general tracing in Sherlok. When tracing is activated here, al output being
ddivered to the Monitor display is adso recorded in a trace log. After tracing is
started this button changes to Stop Tracing.

(Stop Tracing) Stops tracing again.

Creete Sherlog.log Creates a snapshot of the current trace log and keeps it in temporary storage to be
saved later. Then the current trace log is deared and the button label changes to
Store Sherlog.log.

(Store Sherlok.log) Stores the snapshot created beforeinthefile sher | ok. | og.

5.1.1.3 Result View
The Monitor offers four different views on the first page:
Memory Usage Displays the memory usage of individua classes.
Method Timing Displays the execution times and number of cals of methods.
Growing Classes Displays only classes are growing.
References Displays detail ed statistics on which objects are all ocated by a class.

5.1.1.4 Result Filter

This section is used to filter the results of the chosen view. Not all filters apply to every view, e.g. afilter on
the number of calls will have no effect on the contents of a M emory Usage view. The following filters are
available

Min. CurrSize Limits the output of the Memory Usage and the References view to only those
classes that claim at least the amount of memory entered here.

Min. CpuTime Limits the output of the Method Timing view to only those methods (resp. their
classes) that took at least the CPU-time (see 4.2) entered here.

Min. ElapsedTime Limits the output of the Method Timing view to only those methods (resp. their
classes) that took at least the elapsed time (see 4.2) entered here.

Min. NrCdls Limits the output of the output of the Method Timing view to only those methods
(resp. their classes) that were called at least the times entered here. E.g. enter “2”
to list only classes with aleast one method being called more than once.

5 see section 11.1.2 for details

Sherlok Manual 1.4 Seite 28

5.1.2 Page 2: Results

This page contains the results for the selected view. It is divided in a filtering section and the results table
itsdf. The results in the table are filtered by entering a class pattern expression (see 11.1.1) into the textbox
and pressing the Refresh button.

Settings ‘E I
| Fiter | Memory. Refresh Helo

Table of Memory Usage

CurrSize Hame

(=]
[

com.mycompany:test SessionMemorvAcocessor

Z]=]l=]=] Page 1/1

=[=l=|=] Page 1 /1

Picture 5: Filtering results

The following sections describe the view types offered in the Results pane.

5.1.2.1 Memory Usage Results

The results for the memory usage view contain alist of classes together with the amount of memory that is
currently claimed by the class. By clicking on the display value for an entry, detailed information is shown,
contai ning the history of memory activity for the class.

Sherlok Manual 1.4 Seite 29

Settings ‘@I
| Fiter |. Refresh St

Table of Memory Usage

CurrSize MNams=

com.mycompany.test |l cadTestiComponent

144 com. mycompany. test SessionMemoryvAccessor

i

2 som.mvcompany. test BandomSiringGenerator

.__| _I _I _I Page 1 /1
Table of Memory Historny: com.mycompany.test.LoadTestComponent

NrGC Total Allocated Deallocated TimeStamp

zZ4 16 16 o 8317 019
28 11.440.000 21.8906.512 10.486.528 12.8973.805
30 1851 058 5148 272 10.403 216 15 705 613
31 12.015.840 10.3858.584 o 15.705.614
—I—I—I—I Page 111

Picture 6: Memory History view

The history contains memory allocations and deallocations for the current and privious GC cycles. The size
of the table depends on the configuration of Sherlok and can be adjusted with the property
MemoryLimitHistory (see 11.1.4).

Column Description

GCNr Sequence number of the garbage collection.

Note: This number is assigned by the VM. Sometimes multiple garbage coll ections
are combined, carrying only the number of the last GC. Therefore there may be gaps
in the numbering.

Tota The number of bytes that is actudly consumed by the class of the application (in
bytes). This is the total amount of memory that has been allocated, minus the total
of deall ocated memory.

Allocated The amount of memory being newly allocated during the GC cycle (in bytes).

This number includes all memory that has been requested, no matter if it is still
referenced or available for reclaiming.

Deallocated The amount of memory being deall ocated during the GC cycle (in bytes).

This number includes all memory that has been reclaimed by the garbage collector
since the previous garbage coll ection, no matter if it was dlocated in this cycle or in
one of the previous ones.

TimeStamp Time stamp value, depending on operating system, with zero meaning current time.
Thetime stamp is ardative value that be used to compare intervals to each other.

Sherlok Manual 1.4 Seite 30

5.1.2.2 Memory Timing Results

The memory timing results contain a list of those methods that have been caled at least once Further
restrictions may apply according to the filters for CPU-time, eapsed time and number of calls (Settings

pane).
Settings z@ I

| Fiter |. Refresh Helo
Methods
I[:.:'IlJ;II:rEE.I.:IGD- F:'I;IEEEE;S o8] NrCalls ClassName Name
3875572 33895020000 3 com.mycompany.test LoadTestComponent doContent
1.782.563 382.699.000 3 com,mycompany.test. LoadTestComponent allocatsToDynamic
1.662.350 ITFF7.000 315000 com.mycompany.test.MemoryContainer <init=
1.822.332 1.&83.000 2 com.mycompany.test.LoadTestComponent allecateToSe==ion
200.222 210.000 2 com.mycompany.tezt. LoadTestComponent allecatsToStatic
180 255 180,000 3 com.mycompany test RandomStringGenerator appendRandomSiring
30042 20.000 18 com.mycompany.test. LoadTestComponent renderLogline
20022 1.313.000 12 com.mycompany.tezt.LoadTeztComponent renderParameterLine
10074 20.000 18 com.mycompany.test. LoadTestComponent getProperty
10014 20.000 18 com,mycompany.test. LoadTe=ztComponent getPropertyfsint
=]=]i=]=] Page1/2

Picture 7: Method Timing view

Each of the displayed columns can also be used for sorting by clicking on the column name.

Column Description

CpuTime Cumulated CPU time usage

This parameter measures the plain processing time. This is the time the thread was in
running state. This is the time it took the method to complete minus the time other
threads or the operating system owned the CPU. See 4.2 for details.

Elapsed Cumulated time measured between enter and exit of a method. In short: This is the
accumul ated execution time of the method.

The difference between CPU to dapsed time is the time a thread was in ready or
waiting state. A thread isin waiting state, when it is waiting for asignal of the operating
system, like incoming data of an I/O or an object monitor. It is in ready state, when the
scheduler has d ected other threads to own the CPU.

NrCals Number of calsto the method
ClassName | Name of the class

Name Name of the method

5.1.2.3 Growing Classes

The Growing Classes view contains a list of classes that keep on growing from invocation to invocation.
These dasses are likdy candidates for memory leaks.

Sherlok Manual 1.4 Seite 31

Note: Though the displayed table looks similar to that of the Memory Usage view (see 5.1.2.1), no details
are offered on the classes displayed.

Settings ZEI

| Fiter |

CurrSize

114 457. 320

Refresh

Table of Growing Classes

Hame

com.mycempany:test.| cadTestComponent

Eli=l=l=]

Eli=l=l=]

»comumycompany.test.LoadTestComponent

s
0
=]

Page 1/

Page 1/

5.1.2.4 References

Picture 8: Growing Classes view

This view shows the interdependencies between monitored dasses regarding memory alocation. The table
contains the list of monitored classes together with the amount of memory they currently claim. After
clicking on an entry, the memory consumption is subdivided into individual classes, displayed in a second
table below. For every class that was once instantiated by the sdected class, the number of created instances
plus the total memory is displayed.

Sherlok Manual 1.4

Seite 32

Setting= ZEI
| Fiter |. Refresh Heln

CurrsSize MName

104.061!2?2 com.mycompany . test | cadTestComponent

24 | com.mycompany.test SessionkMemonviccessor

BEEE Page 11
Heap References: com.mycompany.iest.LoadTestComponent
HeapCount HeapSize Name
1.000.000 104.000.000 com.mycompany.test. MemoryContainer
5 288 jawva.lang.ref.SoftReference
L] 144 java.uti.ResourceBundleSResourceCachekey
(] 144 java.uti.HashMapSEntry
5] 182 sun.misc. SoftCachesvalueCell
4 98 jawa.lang.Siring
=|=]I=]=] Page 1/ 1
Picture 9: References view
Column Description

HeapCount | Number of active instances® that have been created by the sd ected class.

This entry shows how many objects of the given class have been alocated and not been
dedlocated yet.

HeapSize Number of bytes consumed by the active instances referred by HeapCount

Name Full qualified dass name

5.2 Using Monitor

5.2.1 Monitor Memory Requirements

5.2.1.1 Prerequisites

To show the memory consumption of classes, a configuration has to be created that has memory profiling
enabled for the classes of interest (see 11.1). Memory profiling is active when

® of the class denoted by column Name

Sherlok Manual 1.4 Seite 33

» the configuration property ProfileM emory is set to on or all
» and the profile scope is not empty (see 11.1.3).

To obtain a history of memory alocations and deallocations aso the type of memory statistics Sherlok
generates has to be adjusted. This requires the following settings:

» the configuration property M emoryStatistic must be set to info,

* the property MemoryLimitHistory must be set to the number of GC that Sherlok should remember
in the history.

When the history is not enabled then all all ocations and deallocations are summarized in asingle entry.

5.2.1.2 Procedure
Follow these steps to monitor the memory consumption of classes:
1. Go to the page Settings
Sdect a configuration from the dropdown-list Configuration supporting memory profiling.
Make surethat profiling is active (Stop command is displayed in button)
Perform some activity to create datato measure (on apage, inaniView, ...).
Select the Result View M emory Usage.
Adjust thefilter Min. CurrSizeto prevent small classes from being displayed.

N o o &~ w DN

Switch to the page Results to show the results

8. Filter theresults by entering a class pattern (see 11.1.1.1) in the text-box an performing Refresh.
Use the action Execute GC to trigger garbage collections and thus gain additional entries in the history. Go
back to 5.1.2.1 for a description of the table.

The Memory Usage view will not work when memory profiling is turned off in the chosen
configuration. Then the results will be empty.

5.2.2 Show Method Timing

5.2.2.1 Prerequisites

To show the performance statistics for monitored methods, a configuration has to be created that has the
timer facility enabled for the classes of interest (see 11.1). Thetimer is active when

e theconfiguration property Timer isset toon,

» ortheproperty Timer M ethods contains at |east one method that is aso part of the profile scope (see
11.1.3).

For Windows you can choose to set Timer to hpc (high precision count). This mode implements the RDTC
timer and allows you to evd uate times more accuratdly.

For A1X thetimer will not work properly, because the VM does not implement this feature.

5.2.2.2 Procedure
Follow these steps to measure the performance of methods:
1. Go to the page Settings
2. Select a configuration from the dropdown-list Configuration that has the timer enabled.
3. Make surethat profiling is active (Stop command is displayed in button)
4, Perform the action you want to measure (on apage, inaniView, ...).

Sherlok Manual 1.4 Seite 34

5. Select the Result View M ethod Timing.

6. Adjust the filters (except for Min. Curr Size) to select methods according to your preference.

7. Switch to the page Results to show the results

8. Filter theresults by entering a class pattern (see 11.1.1.1) in the text-box an performing Refresh.

See 5.1.2.2 for adescription of the result table.

Note: Performance monitoring will not work when the timer is not activated in the chosen
configuration. Then the results will be empty.

5.2.3 Find Growing Classes

Classes with steadily growing memory consumption are likdy candidates for memory leaks. The Monitor
offers aspecial view that shows only those classes that are supposed to create a memory leak.

5.2.3.1 Prerequisites

To see ever-growing classes of classes, a configuration has to be created that has memory aerting enabled
for the classes of interest (see 11.1). Thisis true when

» the configuration property ProfileMemory is set to on or all,
» theprofile scopeisnot empty

» andthe property MemorySatistic is set to alert

5.2.3.2 Procedure
Follow these steps to monitor the memory consumption of classes:
1. Go to the page Settings

2. Sdect a configuration from the dropdown-list Configuration supporting memory aerting (see
5.2.31)

Make sure that profiling is active (Stop command is displayed in button).
Repeet the following steps at |east ten times:
UsetheiView
Press Execute GC
Select the Result View Growing Classes.
Switch to the page Results to show the results

N o oo v M w

When theresult list is empty go back to step 4.
8. Filter theresults by entering a class pattern (see 11.1.1.1) in the text-box an performing Refresh.
See 5.1.2.3 for a description of thetable.

Note: The Growing Classes view will not work when memory profiling is turned off in the chosen
configuration or the memory statistic is not set to alert mode. Then the results will be empty.

Sherlok Manual 1.4 Seite 35

5.2.4 Decompose Class Memory Usage

The total memory usage of a dass can be decomposed into smaller units. For each new instance of a class,
Sherlok remembers the creator (see 4.1).

5.2.4.1 Prerequisites

To show, where the memory a class actually consumes, goes, a configuration has to be created that has
memory profiling enabled for the dasses of interest (see 11.1.3). Memory profiling is active when

» the configuration property ProfileMemory is set to on or all

* and the profile scope is not empty.

5.2.4.2 Procedure
Follow these steps to monitor the memory consumption of classes:
1. Go to the page Settings
Sdlect a configuration from the dropdown-list Configuration supporting memory profiling.
Make sure that profiling is active (Stop command is displayed in button)
Perform some activity to createinput data to measure (on apage, inaniView, ...).
Select the Result View References.
Adjust thefilter Min. CurrSizeto prevent small classes from being displayed.

N o o &~ w DN

Switch to the page Results to show the results
8. Filter the results by entering a class pattern (see 11.1.1.1) in the text-box an performing Refresh.
Go back to 5.1.2.4 for a description of thetable.

Note: The References view will not work when memory profiling is turned off in the chosen
configuration. Then the results will be empty.

6 JARM Integration

Since version 1.4.0.10 thereis a JARM (Java Application Response-time Measurement) integration. You can
choose JARM profiling by the new button on the “ Action” pane (see Monitor Settings) or set profile modein
telnet command line. Now memory is accumulated to request level and performance measurement is done on
component levd. Refer to JARM documentation, how to prepare your sources.

6.1 Using JARM Instrumentation

All profile setting will now effective on the nomend ature of JARM replacing “Package’ by “Request” and
“Method” by “Component”. The following property is valid with JARM:

> set Profil eMbde=jarm
> set Profil eMet hod=. Moni t or. EP: PRT_render : .
> reset -s

Thiswill filter the following request-component pair

Request : EP: PRT: com sapport al s. sher| ok. Moni t or
Conponent : EP: PRT_r ender : com sap. portal s. sher| ok. Moni t or

Sherlok Manual 1.4 Seite 36

All trace functionality and filter will be applicable
memory leak detector for JARM instrumented code.

to requests and components. Now its passible to run the

y -

B

1

Configuration
| default customer skp

Help

|
Default configuration: Prafiler far perfarmance and

memary for package "com.zap.”
and "com.zappotals”

Stop | | Reload

Action
Start Tracing | Create sherlok log

Execute GO

Result View

~|

|

Dizable JARM

i Memory Uzage
" hethod Timing
[Growing Clazses

" References

Result Filter

| in Currsize [bytes]

| Min. CpuTime [=M00000]
| hin Elap=zed [=100000]
| i NrCals

1
1

|F\|tev .
Table of Memory Usage

Refresh

Currsize
04470
1197272
i
198504
131744
E]
boklis
137
8744

288

Hlame

ERPRT.ASYNCY

HEEH

oot nortal cantert every User general defauDesktop framevworkPaies frameworkpage.com.sap portal innerpacg com sap partsl.

Methods: EP:PRT:com.sap.portals.sherlok.Monitor

CpuTime
[/1000000]

40087
730232
an1s
CIRNEY
10014
8078740

Elagzed
[541000000)

40,000
4254000
120000
80,000
10,000
5034000

hrCalls Mame

EP:UME:getlUser

<t

EP:PRT _init.com.zap portals.sherlok Maritar

EP:PRT _actiors com.sep partale sherlok MaritarHmlkEvert
EP-UNE:getlser Account

EP:PRT _render:com sap.portals. sherlok Monitor

Sefe 1 /1

Picture 10: Monitor Settings

The button to change modes toggles Enabl e/Disabl

e JARM. The profile has to be adapted to the naming

syntax in the current mode. The following settings where used for the exampl e above:

Profi |l eScope
Profi | ePackages

EP: PRT.

6.2 Using Sherlok-Context API

It's dso possible to use the context API of Sherlok, which is used by JARM, explicit in you program, to get
the CPU time for a specific task. To use this interface, you have to collect some JAR files, which are hidden

in severa distribution packages:

com.sap.portd s.sherl okcorejar

from parts/servlet/i ViewEP6/ com.sap.portal s.sherl ok.par

The following context API of class SherlokAts alows you to define requests and subsequent context calls.
Theinterface returns the CPU time in nanoseconds between enter and exit calls of a given component.

Sherlok Manual 1.4

Seite 37

package com sap.portal s.runtime.profiler;
public Sherl okAts

public static native void enterContext(String request, String conponent);
public static native long exitContext(String request, String conponent);
public static native Bool ean jni Command(String comrand);

The following example shows how this interfaceis used in a user program:

import com sap.portals.runtime.profiler.*;

Test () {
static void main(String[] args) {
System | oadLi brary(“sherl ok™);
Test t = new Test();
t.doTest ();

}
voi d doTest () {
I ong cpuTime = O;

try {
Sher| okAt s. ent er Cont ext (“myRequest”, null);
Sher| okAt s. ent er Cont ext (“myRequest”, “ctx1”);
doSonet hi ng() ;
final ly {
cpuTi me = Sher | okAts. exit Cont ext (“nyRequest”, “ctx1");

Sher| okAt s. exi t Cont ext (“nmyRequest”, null);
System out. printl n(cpuTime);

A context is given by its unique request- and component name. The request name can be used to sort and
filter the results. It's possible to nest context calls, but you have to take care, that the order of exit statements
arekept in reverse order of the enter statements.

To call your program with Sherlok as profiler enter the following command line:

j ava —Xdebug —Xrunsher| ok: Profi| eMbde=j arm Prof il ePackages=. 0O
—cl asspat h com sap. portal s. sherl okcore.jar;. Test

The setting of ProfileModeto jarm implies the following parameter as default
o Timer = hpc
* ProfileMemory = off
o ProfileStart =yes

You can save the result statistics in alog fil e using the SherlokAts class. The jniCommand interface alows
you to use the whole set of commands, which are documented for the telnet console.

If you trigger the calls for enterContext and exitContext in different threads, you need to set the ProfileMode
to ats. In this mode Sherlok uses only one global stack to register context information and not thread local
contexts. This mode supports client-server test architectures.

Sherlok Manual 1.4 Seite 38

7 Tool Integration

Its possible to submit commands to Sherlok with the query part of the URL. This enablesthe integration into
test tools and load generators. For the servlet the following query will writealist of classes to thelog file:

http://1 ocal host: 5100/ sher| ok/ servl et/ Moni t or ?| sc%20- mL.00

8 Memory Profiling

Sherlok allows you to see where memory is allocated, specifically which dasses are responsible for
alocating the memory. You can see the number of objects, totad memory space used, and also use a leak
detection to find potential memory leaks. For basic memory profiling concepts see section 4.1 above. In this
section we will now describe how to use the memory monitoring features of Sherlok.

We will first describe what the Sherlok M onitor iView can show you and how to use it, then describe some
commands that are available through the console mode only. Finally section 8.4 shows how to use all
featuresto track down memory problems.

You may have of severa memory related problems in your system:

» Components/classes use far too much memory for temporary objects, i.e. generate too much garbage
and thereby trigger too many GCs. Also, since they use very much memory during servicng a
request, paralle threads increase the likdyhood for an out-of-memory. The focus here must be to
find the 'top memory users' and change the code to i mprove them.

e Components/ dasses may aso hold too much memory, i.e. maybe not even generate much garbage,
but keep too much memory aive (with strong references), i.e. by letting caches grow without limits,
or by having a memory leak. This results in only few components to be able to run in the same JVM
(address space). Again we need to identify these and trigger the code changes to improve them.

* Finally you can have an out-of-memory situation that is caused by a combination of 'bad components
as described above and several (too many?) threads needing memory at the same time. Here the
focus of Sherlok isto find out who exactly caused the OOM by holding too much memory. (note that
the class asking for the few bytes that triggered the OOM is generdly not the culprit).

For the first two cases, we recommend to measure and optimize memory consumption (static and dynamic)
during development and testing — oneiView at atime.

In case you haveto 'find the bad iView' in arunning installation, you may try 'identifying the bad component’
as described in section 8.1.1 below. The out-of-memory situation and how to deal with it is described in
detail in section ...

Classes Responsible for Memory

Remember that Sherlok always associates the memory with the monitored class that allocated
this memory, not the one that may be holding it. This is important to keep in mind when
interpreting measurements.

8.1.1 Identifying the “Bad Component”

Normally the best way to measure an iView is to activate memory profiling and then just test thisiView (see
Testbench above). Sometimes one gets to a situation however, where a system is running 100+ iViews, you
have memory prablems, and you haveto find out in arunning system which iView is 'the bad on€.

The normal profile mode (=profile, i.e. by events) is too slow to activate in a running productive system
since Sherlok intercepts all methods (entry& exit) to record memory usage. If you can focus the measurement
effort on just a few iView classes, you can use theinterrupt mode. Here Sherlok inserts an interrupt into the

Sherlok Manual 1.4 Seite 39

bytecode so that only at a few places methods are intercepted and define the memory aggregation paints
(monitored classes).

To activate this mode, you should perform the following settings in the config file (that you are using):
» se ProfileM odeto interrupt

* define a as narrow as possible package scope, i.e. list dl class/package names that uniqudy identify
theiViews to be measured

» if you usesimpleiViews (not HTMLB), the doContent method is the perfect entry point to observe

» take the standard excludes as a precaution — it shouldn't be necessary if ProfilePackages is defined
narrowly enough

Prof i | eMbde = interrupt

Profil ePackages = com nyconpany. i Vi ews.

Profil eMet hods = .doContent

Profil eExcl udes = com sap., com sapportals., comingny., java., javax., sun., org.xn.

Then 'reset’ to reload the new config file, and activate monitoring. Now you should see memory summaries
being shown for exactly theiViewsinfocus.

Sherlok Manual 1.4 Seite 40

8.2 Memory Leak Finder

Alsoin Javait is possible to create memory leaks. A transient component might store data into a static global
section like the user sessons and just forget to remove them after terminating. Inefficient cache
impl ementati ons show the same behavior as memory leaks and should aso be in your considerations. In both
cases you will lose your maost precious resource: memory. And in both cases you want to know who created
the memory and put it into the static context, which is shown by Sherlok.

We assume that you already know how to use the memory monitoring and how to get history information on
memory usage of dasses. The history shows how much memory (alocated, dedlocated, retained) aclassis
responsiblefor (allocated it) by checking these val ues after each GC.

A potential memory leaking class will kegp more and more memory, i.e. on average deallocate less than it
alocates (note again that Sherlok always observes the 'responsible class that allocated the memory, not
another dass that may be holding it). Sherlok can automaticaly observe all monitored classes and report
those that are 'growing'.

To just immediatdy report a growing classis not useful however. For one, a class can adlocate some amounts
of memory, and only after afew GCs (maybe even afull GC) come back to the initia / stable memory levd.
Also, depending on how many active threads arejust using a class, the 'current memory usege at a GC event
can vary quite abit. Thus we must only report classes that 'on average’ show a growing memory usage.

The intervals (number of GCs) where a class exhibits an equilibrium memory usage can be quite large.
Therefore, Sherlok also employs the following heuristic to compress the GC history and only focus on the
relevant points. Consider the following memory levels after GCs for a class A of 10, 11, 12, 15, 12, 14, 17,
13 MB (i.e. the dlassis responsible for that much memory). Then Sherlok only keeps the vaues 10, 11, 13in
the compressed history, since these are the only 'leak relevant' points. The foll owing diagram shows a typi cal
memory behavior likethis.

Class Memory Gradient

-— -

For leak analysis Sherlok evaluates the gradient of memory size after GC for every profiled dass in scope.
After atransient oscillation the gradient should be zero for all classes. In any other case the memory will be
exhausted at a certain point.

Interpretation of the results

Notethat not al classes reported really have a memory leak. In some cases you simply have a cache that gets
filled very slowly and the behavior also depends on the program load (user requests). You must look at each
case carefully. In general however, areported leak that is consistent over alonger running timeis maost likdy
ared leak. (Note again that Sherlok reports the class that alocated the memory, i.e. is responsible, not the
casstha isholding it.)

Sherlok Manual 1.4 Seite 41

8.2.1 Activating the Memory Leak Finder Mode

To activate the memory leak detector, you have to set config property MemorySatistic to alert. It is
recommended to leave the MemoryL imitHistory at 10 (the default). Thisis enough to hald the data for the
compressed history.

al ert
10

MenoryH story
MenoryLi mtHistory

The memory leak detector will only work properly with a sufficient number of garbage collection events. It
will store only values in the memory history table, which are relevant for gradient caculation. This is far
less, than the number of GC (see details on agorithm above). Therefore also the GCNr fidd values in the
output are not consecutive.

8.2.2 Usage via Console

When you have the consol e open, the Memory Leak Finder writes output for each growing class where it
assumes a memory leak according to the algorithm described above. You should aways have a log active so
you can observe | ong-running tests.

8.2.3 Usage with Ul

In the iView Monitor press the buttons StartM onitor, StartTrace (it is quite unclear why you have to press
these buttons to get a memory leak report when you select GrowingClasses below — but for now we can live
with that) and Create sherlok.log (creates a new log file, i.e. overwrites the current one where is this
documented dsewhere?). Now you can select radio button GrowingClasses and the Result pane will show
all growing dasses detected so far.

Update with new Ul and screen shot

B 5AF Erterprise Portal Bl - Microsoft Internet Explorer pravided by SA# T 1ok =t

|| B Ede Wew Favorites '[_uds heb -
[| mes v o - () Ty | (et [Ggreveim (B | k- S
address] tioet oot o prieveniname (it vert priroot foom sap.portak_sheidok Morstor ¥ G| | Links ™)
[e
G)
liste sk g [

Select Sherdok View
7 Menory Usage
" Method Ten

% Rederences

1] e £ Locad ritraree

Picture 11: iView Monitor Memory Leak Analysis

8.3 Quick Heap Dump

Once you have found a growing class, you might want to find out, which kind of objects are involved.
'Involved' means whi ch objects were allocated by the class that is 'responsibl €.

Sherlok Manual 1.4 Seite 42

When you use the Monitornig iView you can select the class you want to see the 'dlocated by this class
objects' and then get the result shown in the table bel ow.

The detail view shows the foll owing entries:

8.3.1.1 Column | 8.3.1.2 Description

HeapCount The number of abjects of a kind in all memory heap, for which the component is
responsible

HeapSize Cumulated size of all objects of akind

Name Class name

Fsan bnterprise Portal b4l - MicrosoRt Internet Enplores pravided by SRR P [/ 1| I 5§ s Erterprise Portal 6.1) - Mkrosoft Intarnet Explores providi iy SARI ot
|| B B gew Froges ok beb Bl || o v roese ek g
BN W B ::aiaxh [Cafresries Mty _—é;—g. R v o - O P Geens ey | [BE- S E
| |Beess [B] tortiportalfprtevertname Mt Evertfprinooticam sap portate bk Montor =] tGa | [Lids 1| | [addess L8] i flocnibest 000 dserietlirtportallpebeventrome b verk rtrontico 7] @250 | [Lnks 2
Rssull
L
Contrgl Sherok Help Hep
St Tracn | Create shenickog |

e gage FodeCondarting]

Select Sherok View
7 Wanory Lsega

i Settings

- Grosming Casses

Selection Paramaeter
[Mo CasrSins ey
| i CpuTime [2A100000] +

o, A e Ser e

o R esult

At Sernalt bl aoner

| e Bsgsza psi0a0n] ¢ =izl Ea
| v rirc s 1 Hizap References: pageded._sipportalejep_Monitar
Hosptonr HeapSiz N
1457 4858 frvalorg Sring
1053 BT DS
13 36 vt Aol
120 2080 v dl MsssianEriry
73 3501 jati Hasthian
& T3 sm secunty Acion BetPropertraction Detail
% 1840 fvado Pritiiber
a0 BAD comtspeoals hnin vakdaton Tieger abstor
540 com.sappornis MK sabdon LengtfiVskistc
2 938 i Abstrack st s
HIS Ei £ Sede 1 10
[#)0oee [Locel rironet | BB | o o

Picture 12: iView Monitor Heap Dump

Note: This view obvioudy doesn't show which reference exactly holds a certain object tha is a 'leaked
object'. To see this you must use another Profiling tool like eg. JProbe, Optimizelt or "Yourkit'.

Console Mode

When you use the console mode, there is currently no way to select the class to focus on, thus the console
shows all objects of all classes, regardless of who alocated them.

Note: Sherlok uses internal datafor hegp analysis that is aready maintained for monitoring, and is therefore
many times faster than the heap dump of typical other tools.

8.4 Investigating Memory Problems

This section describes how to anayze an out-of-memory (OOM) situation. This assumes that you are in a
support situation where the preventive measurements have not helped to find a 'bad component'.

8.4.1 Trapping the Out-of-Memory Situation

Often OOMs happen in a productive system under heavy load. In these situations it is generaly not possible
to run Sherlok in full memory monitoring mode (that would show memory consumption for al monitored
classes) dueto the performance impact.

Sherlok Manual 1.4 Seite 43

The first task is to find which components were active when the OOM happened, to get an idea of what
components were using memory at that time. The problemis tha the default behavior of the Java VM for an
OOM is as follows: When an OOM first happens, the VM by itsdf first does a FullGC to recover memory
so that it can continue. If not enough memory can be reclaimed, the VM throws the 'real OOM' exception.
At this point Sherlok requests a full heap dump from the VM and dumps some more memory statistics to
thelog file.

Sherlok offers a“OOM trap mode” whereit basically incurs no runtime overhead and s mply dumps rel evant
information when an OOM happens. Sherlok does this before the default VM handling of the OOM
happens, i.e. when most relevant information is still available. Moreover, you should aso let Sherlok trace
garbage collection events and collect the information about them.

To enter this mode, open the console and add these commands:

> start trace
> trace add exception
> trace add gc

Note: The exception handling is independent from the monitor, so you have virtualy no impact on
performance.

When the gpplication raises an OutOfMemoryError exception

» Sherlok requests a full VM thread dump (like dt -a command). This shows you what requests were
active a the time of the OOM.

» Sherlok dumps the location and the thread, which caused the exception.
* Sherlok dumps the monitored thread and methods to console (like dt —c command)

This information gives you an idea what was happening just before the OOM. The thread (dass in the
causing thread) caus ng the OOM is often not the 'bad component' but just the one that hit the wall in the end.
Thejob isto find the classes that are responsible for an extraordinary amount of memory needed.

There are different situations causing OutOfMemoryError. To define actions in this situation, you have to
figure out, which is the one:

* Heap overflow

* PermSize overflow

* Maximum number of threads reached

» Exceeded addressable application memory (VM + shared libraries)

8.4.2 Heap Overflow

Hegp Overflow is the maost frequent memory problem occurring within Java applications. There are several
reasons why the heap can be exhausted by an application:

* Memory leaks: Classes alocate memory / abjects and do not rel ease them (the references to them),
so that these objects cannot be call ected.

* High peak memory demand: Memory-intensive applications can exhaust available memory in peak-
situations without having a substantial need for it.

8.4.2.1 High peak memory demand

Applications with excessive peak memory demand create an overly high number of objects during their
processing work without actually requiring them in the long run. Due to the high number of temporary
objects (called garbage), the memory requirements can rise above acceptable leveds, especially when those
memory intensive tasks are executed concurrently. The memory is bound by the concurrent threads that do
the processing work. The memory footprint could be reduced by (1) reducing the need of dynamic memory

Sherlok Manual 1.4 Seite 44

(discarded right after use) per request, and (2) by serializing the memory intensive tasks, i.e. reduce the
number of paralld tasks that need alot of memory during processing.

Note: The number of paralle application threads can be set in the SAP J2EE visual admin. The val ue should
not exceed 40 for most application cases.

Excessive memory demand can be spotted by looking at the amount of garbage that is created on each GC
cyde

* Memory intensive applications show high values for both alocated and deall ocated memory during
each GC cycle.

» Theadllocation rate of those applications is over-average.

8.4.2.2 Memory leaks

Memory leaks are created when references to unused objects are kept in some place like a class or another
object instance. Another way to create memory - or general resource leaks is by not freeing resources with
manual lifecycle management like connections or poal entries. As al these resources need some memory and
when the execution of such an application goes forward the free memory is eaten up until it is exhausted. The
memory is bound by the data that is held in the gpplication.

In al cases, not freeing a resource means in the end not removing a certain reference tha holds the objects.
Since these references must be kept somewhere, the prime candidates for memory leaks are coll ections (sets,
hashmaps, ...) of objects or references.

Memory leaks can be identified by looking for steadily increasing memory consumption, i.e. the gap
between newly dlocated memory and memory being deallocated during garbage collections.

This is shown per monitored dass, i.e. the class that is responsible for the alocation. If a class A alocates
objects and then hands them over to another class B, which keegps them in some state/ collections, classAis
still responsible for the memory leak and therefore theright 'first clue.

To check your application for eventually memory leaks, choose your packages for profiling and start the
analysis.

set Profil ePackages=com sap., com nyconpany.

set MenoryStatistic=alert

set TraceMet hods=. LoadTest Conponent . doCont ent { r equest . get Ser vl et Request . get Quer yStri ng}
reset -s

start trace

trace add paraneter

start nonitor

VVVVYVVYV

You need at least ten steps in the foll owing schema:
1. Choose an action on your interface
2. Execute gc command in Sherlok.

Sherlok Manual 1.4 Seite 45

A SAP Enterprise Portal 6.0 - Microsoft Internet Explorer pry o =] o

Eile Edit Yiew Fawvorites Tools Help . n
deBack ~ = -) (4] o} | Qoearch [gfFavortes @hmedia 9| By S 2

Address |§;!_] httpif flocalhost: 8100/ servlet/prt/portalprirootcom. mycompany test Load Test ?staticMemary=31000 LJ ©Go | Links ?|

Load Test Component

Parameters taken from QueryString / Profile

dynamichemary 0 kB Corponent Dynamic Memaory to allocate every roundtrip
statichMermory 31000 kB Component Static Mermaory to allocate and keep
sessioniemary 0 kB Session Memory to allocate and keep

size 5000 Bytes Size of random string in response

sleepTime 0 ms Time in Thread.sleep() in roundtrip, without CPU load
elapsedTime 0 ms Minirnal elapsed time in this roundtrip, on CPU load

Process Log
Static Memory 31000 kb allocated
Randaom String of 5000 bytes included to response

TimeStamps

Start 1102935007113 ms taon Dec 13 11:50:07 CET 2004
Stop 1102935013753 ms ton Dec 13 11:50:13 CET 2004
Elapsed time BB40 ms (Stop-Start)
&] Dane il @ Local intranet

execute gc

GC INPGC=212 iTimeStamp=580.485 .88% i0bjects=1.643.488iSpace=98.505.784 Total=418.643 .968

GCINFGC=228iTimeStamp=508_.487.913 i0Objects=1.641_.721 Space=27.891 656 iTotal=418.643 .768
test . LoadTest ponent doContent

i getServietRequest.getQueryString! staticMemory=280080

gc
GC INPGC=221 iTimeStamp=588.50A_.812 {0bjects=1.653.864i8pace=99.861.336iTotal=418.643.968
GC INPGC=222 ITimeStamp=588_501 762 |0bject=s=1.652_382{8pace=99 861 _336Total=418 643 968
> com.myconpany.test.LoadTestComponent. doContent

request | getServletRequest.getQueryString! staticMemory=290806

qc
GCINPGG=223 ITimeStamp=580.512.60% i0hjects=1.662.957 iSpace=180.157.872 |Total=418.643.968
GC INPGC=224iTinmeStanp=580.515.332i10bjects=1.661.977 iSpace=97.984.672iTotal=418.643.968
4

Sherlok Manual 1.4

This is the load test component. Increasing the “staticMemory” for each step will result into the following
output:

Seite 46

=

o eh

=

0
=

B (51 b o

oo

|

& &
oS-SS
L N

R ==

o =0 G0
(B w0 50
o b S
By (5

=)

DEDDEEED S
HEEIEEEEEE
AR R R R B Rl

I CCEEEE S

8wl bl D D

=
5

=
=
=
5

=
=

After ten steps Sherlok finds the memory leak and gives this output, which tdls the user that
LoadTestComponent created 310.000 objects of type MemoryContainer. The short heap dump shows all
scaar objects created in the context of the growing class.

Now the next step is to find the context, where objects of type “MemoryContainer” where created. We search
for the method “<init>", which is normally called by the JVM for al scalar objects. We can choose the
context, if these d ements where created in different sections of the application.

set TraceMet hods=/ . Di spatcher./. MenoryCont ai ner.<init>
set TraceTri gger=..Dispatcher. service

reset -s

start trace

trace rem paraneter

trace add stack —tree -p

start nonitor

VVVVYVVYV

> reset —s
Infoimonitor stopped...
InfoiTrigger activated com.sapportals.portal.prt.dispatcher.Dispatcher.init{(Ljavax.ce
Infoimonitor started...
> service icom.sapportals.portal.prt.dispatcher.DispatcheriCallstack: Bi586.388.626
run icom.sapportals.portal.prt.dispatcher.DispatcherSdoService iCallstack! 11586.388
handleRequest icom.sapportals .portal.prt.connection.ServletConnectioniCallstack! 2
runReguestCycle icom.zapportals .portal.prt.core.PortalRequestManageriCallstack! 3
dispatchRequest icom.sapportals.portal.prt.core.PortalRequestManageriCallstack!
dispatchRequesticom.sapportals.portal.prt.core.PortalBequestManageriCallstack!
callPortalComponent icom.sapportals.portal_prt.core.PortalRequestManageriCallsta
service icom.sapportals.portal.prt.pon.PortalMode iCallstacki: 7i586.388.767
include icom.sapportals . portal.prt.component.PortalComponentResponze iCallstack
dizpatchRequest icom.zapportals .portal.prt.core.PortalRequestManageriCallstac
dizpatchRequest icom.sapportals.portal.prt.core.PortalRequestManageriCallsta
callPortalComponent icom.sapportals .portal.prt.core . PortalRequestManager iCa
service icom.sapportals.portal.prt.component .AbstractPortalComponent 1Calls
serviceDeprecatedicom.sapportals.portal.prt.conponent .AbstractPortalComp|
doContent icom.mycompany.test .LoadTestComponent iCallstack! 141586 .388.77
allocateToStaticicom.mycompany.test.LoadlestComponent iCallstack! 15158
{init>icom.mycompany.test.MemoryContaineriCallstack: 161586.388.787
{init»icom.mycompany.test.MemoryContainer iCallstack! 16i586.380.787
{init>icom.mycompany.test.MemoryContainer 16i586.3868_.787
{init>icom.mycompany.test.MemoryContainer 16:586.388_.787
{init>icom.mycompany.test.MemoryContainer 1 161586.388.787
{init>icom.mycompany.test.MemoryContainer 16i506.388.787
{init>icom.mycompany.test.MemoryContaineriCallstack: 161586.388_787
{init>icom.mycompany.test.MemoryContaineriCallstack! 161586.388.787
{init>icom.mycompany.test.MemoryContainer iCallstack! 161586.388.787
{indit>icom.mycompany.test.MemoryContaineriCallstack! 161586.3868.787

The result shows, that doContent cals the method “all ocateToStatic” which alocates “MemoryContainer”. A
look to the source “L oadTestComponent.java’ shows the reason: All memory is stored in alist which has a
static roat.

Sherlok Manual 1.4 Seite 47

private static MenoryContainer mstaticMenory;

public void doContent (
| Port al Conmponent Request request,
| Por t al Conponent Response r esponse)

m staticMenory = all ocateToStaic(staticMenoryVal, mstatichMenory);

Check the number of dements and the number of calls to this method with the Ism command:

> | sm -f. Menor yCont ai ner . <ini t>
> |sm —f.allocateToStatic
> | sm —f . doCont ent

8.4.3 PermSize Overflow

The PermSize is the space for permanent static class attributes. The PermSize is alocated as extra
application memory space, which is not correlated or interfered with the Java memory heap. Its sizeis set by
the VM parms PermSize as shown bel ow, typically between 64 and 256 MB.

- XX: Per nSi ze=192M —XX: MaxPer n5i ze=192M

The space needed is proportional to the number of classes |oaded, i.e. the number and size of the gpplications
running on that server node. You can use Sherlok to watch the number of classes with the following
command:

> | ss

Some applications allow hot deployment (like iViews, ...). Inthis case the class |oader is st to zero when a
new version of the application is loaded and thus makes the old code (in Perm space) victim for the garbage
collector. A new class loader will reload al its classes.

Sherlok allows to watch the state of unloaded classes to keep track of the memory, they are still responsible
for:

> | sd —nxm ni mum nunber of bytes to display>

8.4.4 Maximum number of Threads

On different operating systems there are different restrictions on the number of threads, which can be
handled by one application. Each thread will need by default 500K on memory, so this resource should be
used very carefully.

Use the following command to list the actual number of threads. Make sure, that the number does not
increase to val ues bigger than 300, because this will cause also major impact on performance.

> | ss

Note: iView programmers should generally not create threads, definitely not simply create threads with new
Thread() but aways usethread pools.

Sherlok Manual 1.4 Seite 48

8.4.5 Maximum address Space, DLLs

On different operating systems there are different restrictions on the addressable application memory. On
Windows this address space is less than 2GB including all DLLs, PermSize, threads and Java heap.
Increasing for exampl e the PermSize will reduce the maximum possible Java heap size.

DLLs aso live in the same memory space as the Java process and thus take memory away from the Java
heap. This can become a problem when the address space is limited as is the case on Windows (heap size
max 1.3 GB). In that case the address space used by DLLs must be taken away from the java heap size.

Sherlok itsdlf isaDLL and aso needs memory to run, typicaly 10-15% of the monitored application if full
memory monitoring is used.

It can happen that an OOM occurs when the Java heap is still not 'full’ but when a DLL tries to allocate too
much memory and thus eats away at the allotted space for the Java heap.

Note: It is very important to make sure the Java process never runs out of physical memory. Make sure that
the VM with heap size + perm size + DLLs all together fits into physica memory. This should be carefully
monitored on the operating system levd.

Sherlok Manual 1.4 Seite 49

9 Performance Profiling

For basic performance profiling concepts see section ... aove.

9.1 Latency

Most of the problems come from high latencies the application is suffering. These can be spotted by
comparing the e apsed time with the CPU time. When the elapsed time is significantly higher than the CPU
time, the reason for the loss of performance does not lie in the computations performed inside the
application’s thread. Instead the application is waiting for another party to complete.

9.1.1 Contention

Sometimes a method requires excl usive access to some object or resource that it does not own. Depending on
the competition, it may spend most of the time in waiting for another thread to release it. This kind of
bottleneck is a performance bug that prevents an application from being scalable. When the object is shared
with the infrastructure or other gpplications the entire portal installation may suffer. In both cases the iView
sourcecode has to be inspected in detail in order to find and remove the bottleneck.

9.1.2 Broad Queries

When an external database or R/3 repository is queried for information, alot depends on efficiency of the
guery. When the query (like an SQL statement) is too generd, the time needed to performit isvery long. As
aresult the calling thread is spending most of the time waiting for the results to come in from the externa
system. The method takes too long to execute and the connected system may be overloaded with queries. The
iView sourcecode has to be inspected for complex queries using JDBC, JCo or other middleware technol ogy.

9.1.3 Bad System Configuration

High latencies during the execution of a method may come from slow connections to an external system or
from an overloading of the system itself. The iView and the environment have to be inspected in order to
find the responsi ble subsystem. Every stage of the portd request has to be examined for performance leaks.

9.2 Computational Complexity

Applications that perform complex computations can be found by comparing the e apsed time with the CPU
time. When the CPU time is close to the dgpsed time, the method is spending most of the time being busy.
While this may be normal for scientific applications, expensive computations are a rare exception in portal
applications. So Morelikdy is a defect in the iView. Examples of such defects are:

9.2.1 Busy Waiting

A status is queried over and over to observe a change. Correct implementations would register for some
event or signal in order to be notified and sleep in the meantime. In broken implementations the sleeping
phase is missing or broken, leading to continuous requeries (polling).

9.2.2 Inefficient algorithms

There are many ways to waste time in a program. I nefficient al gorithms waste time because they fail to use
the fastest path to the solution of a problem. There are many ways to sort alist, but there are only a few ways
that offer superior performance.

Sherlok can be used to detect slow methods, but it cannot tell if there is a better solution available. To find
inefficient a gorithms, two parameters for a method are important:

Sherlok Manual 1.4 Seite 50

 CPUtime Ittdlstheoveral costs of the method.
* No. of calls: It can be used to see if some operation is performed more often than expected.
Common cases of inefficient a goriths are:

* Inappropriate choice of data structures (eg. Java Collection Classes): Often these can be
discovered by looking at the number of calls to the equals method. High numbers indicate i nefficient
algorithms.

* Repeated evaluation of invariant expressionsin aloop: A high number of calls may point to this
praoblem, too.

* Back and forth transfor mations: These can sometimes be observed by looking at the number of
cdlsto the constructor.

9.3 Missing caches

Some methods are inherently complex. They require a lot of time to be executed and there is no way of
accd erating them substantialy. In this case caching is a hdpful strategy to avoid repeated execution of these
expensive methods. When an expensive operation is called severa times with the same parameters yielding
the same result, amissing cache is a defect that may seriously degrade the overall performance of the system.

9.4 Garbage Collection Delays

9.4.1 High memory allocation and deallocation rate (Full garbage
collections)

In Java al abjects (complex types) are created on the heap using dynamic memory management, and
released automatically some time after the last reference is dropped. This alows for a very simple memory
model that avoids the risk of dangling references. On the downside, the simplicity is paid with high costs for
memory management. Dynamic allocation of memory is a complex operation, much slower than the creation
of variables on the stack. As all objects are created on the heap, operations that create alot of temporary data
suffer ahigh penalty for dynamic memory management and put high load on the garbage collector.

On a system with high load, the garbage collector may fail to catch up on releasing unused objects, because
its thread runs with a lower priority. At some point, the available memory is exhausted and the garbage
collector is forced to do a full garbage collection’, a lengthy operation that may interrupt norma program
execution for several seconds.

See http://devel opers.sun.com/techtopi cs/mobility/midp/articles/garbagel for compl ete coverage.

" as opposed to a partial garbage collection that uses heuristi cs to improve performance

Sherlok Manual 1.4 Seite 51

10 Application Tracing

Beyond the profiling functionality of Sherlok which alows to take an overal picture of the software, tracing
allows us to monitor the execution of a program itsdf, i.e. the dynamic behavior. You can observer certain
events and then have certain actions performed at these events. All output goestothe sher | ok. | og and/or
web Ul.

The most important are these:
» Trace Methods: You can trace methods to see when they are called and even print parameters.
» Trace contentions: You can trace athread contention, if the thread has to wait on a monitor.

» Stack Traces: When a method is entered / reached you can get a stack trace for that call to see who
cdls the method

* You can trace exceptions. All unhandled exceptions are traced with additional information. For out-
of-memory there are additiona actions performed to collect rd evant data

e Trace Trigger: You aso have the option to show al calls (program execution) 'underneith’ a certain
method. This can betriggered by athreshold of 'uses moretimethan ..." and 'more memory than ..’

The trace functions can generate more data than you can possibly analyze ont-the-fly. So its important to
have direct control and user input, which makes it unavoidable to use the telnet console interface

Tracing can be started and stopped in the consol e with the short command “s’.

10.1 Startup

10.1.1 Telnet Console

Operation of the Sherlok console and all its commands, as well as configuration files is described in detail
bel ow. In this section we only show what is needed for the trace exampl es.

Launch a command line termina in your operating system and enter the following command line:
$ telnet |ocal host 2424
If you didn’t keep the defaults, modify the line and insert the current values of TelnetHost and TelnetPort.

Now you can login with user “Administrator” and password “sherlok” (default login or other user you have
set up). The Sherlok telnet console shows up with a table of commands and a short description. The help
command can generate this list of commands as wel and with hel p <cnd> you get detailed help on
<cnd>.

Sherlok Manual 1.4 Seite 52

LUE L] HHSHESIH
L un Ll nn
H

H= n= LE]
HEHHERHE RS
HE HE

Picture 13: Telnet Console

10.1.2 Logging

First of al you should consider to log your sess on. Everything you see on the consol e can be logged into the
file sher | ok. | og, including the commands you launch an their timestamp of execution. Check if you
havean old sher | ok. | og you want to keep and rename it. Then enter:

> start | og

Each start log command will deletesher | ok. | og for rewrite. Later enter st op | og to closethelogfile.

10.1.3 Activate the Tracer

Some trace functions will only work if the monitor is running:
« trace add trigger
* trace add thread

e trace add nethod

If you stop the monitor all data will be frozen. You can re-read a changed configuration file and restart the
monitoring session with the reset command.

> start nonitor
> stop nonitor

(edit configuration file; now re-read:)
> reset

You haveto start the tracer to have any output

> start trace
> trace add gc

You can stop the tracer, if you don't want any output anymore. Some of the traces might result in a mass
output. These traces can be stopped by just pressing the return key:

« trace add trigger
* trace add contention
* trace add thread
The output for al these traces is handled specia to prohibit spoiling thelog file:

Sherlok Manual 1.4 Seite 53

* No output parameter: Output only on console
o -f<fil e>: Outputtoafilelocated in ConfigPath
e - p: Output to Sherlok.log
Thetracer has different output volume for different settings and shows different behavior:
» smadl volume as “trace add gc” or “trace add classes’ will write output into the sherlok.log file

* huge volume as “trace add stack” need additional parameter to define output file. Option —p to write
output into the sherlok.log and —f<name> to write the output into the specified file (no output to
consal e for good performance).

10.2 Trace Garbage Collector

Use to GC Trace see more details about GCs in the sherlok log. The GC trace is triggered by the GC
activation and is activated by the following command:

> start trace
> trace add gc

The GC traceis independent from monitor. The trace writes foll owing information to the console and log file

10.2.1.1 Column | 10.2.1.2 Description

Trigger Trigger isGC

GCNr The count of garbage coll ecti ons since start of the application
TimeStamp Relative operating system dependent time

Objects Number of objectsin VM

Space Space dlocated by dl objects

Totd Available heap space (why not call it 'Availabl€ or 'free instead of 'totd")

10.3 Trace Thread Contentions

The thread contention tracer is a fast and lightweight function to check the performance of a multithreaded
application. It shows you the bottl enecks of the application, where threads have to wait for each other. This
function is lightwei ght with minimal impact to the performance.

In the properties file specify the following entries

Ti mer
Profil eMenory

on
of f

On thetelnet consol e enter the following commands

> start | og
> start trace
> trace add contention —e30 —-a -p

10.4 Trace Methods

Method tracing is useful to show if certain methods are called and with what parameters. Significant methods
can e.qg. bealogin method (parm: what user), a http request (parm: user and URL), etc. All methods specified
in TraceM ethods property will be activated.

Sherlok Manual 1.4 Seite 54

Tr aceMet hods = . D spatcher. service; .doContent

The method trace is triggered by method enter and exit events, both are recorded. This feature replaces the
typical print statement in your code. The trace writes following information to the console and log file

Column Description

Trigger Trigger isTrace

Event Name of the event is Enter or Exit

Time Timestamp of this event

Class Class and package of the method

Method Method name

Thread Name of the executing thread. Useful if you want to check if there are any pending
requests.

Info (for Exit events only) CPU timein nano seconds by this method call

10.5 Trace Parameters

Sometimes you want to not only see a method being called but also the parameters passed with the call.
Sherlok can show you parameters for basic types and trace them together with the method output. In contrast
to the method trace, this event is only activated an method entry and is independent from the state of the
monitor.

The parameter traceis triggered by the method enter event. It isindependent from monitor. To use this trace,
you have to set the TraceM ethods property in the active configuration fil e which defines the methods to be
traced. Please note Thelist of methods are semicolon separated. Exampl e

Tr aceMet hods = . Dispatcher. service {request.get RequestURI }; . doContent

In curly brackets you can access methods of the call parameter object, which have void parameter and
returns an object.

For output the method toString is caled. If you do not specify any curly brackets, the output is done for all
cal parameters. Its possible to specify the method getClass to retrieve the class information. You can get the
method signature with the command “Ism —a —m0 -—n0 —e0 —f.Dispatcher.service”.

Column Description

Name Cadll parameter name

Method Requested method

Vaue Result for execution method toString on the dereferenced object

Sherlok Manual 1.4 Seite 55

Picture 14: Trace Parameter

10.6 Trace HotSpots

Sometimes you wonder “what takes the system so long”. This can be because a certain low leve activity is
slow and affects al programs. More often, there are few certain functions that take very long and slow down
the execution of arequest. Sherlok can show all methods that take longer than a certain time or use more
memory than a certain limit.

To find these slow functions you should use the “hotspot method”, i.e. look for the slowest first, then the next
and so forth.

10.6.1 Setup

The HotSpot trace is triggered by an method exit event and a the eapsed response time or the alocated
memory.

Example Writetrace for all methods in scope and filter that take more than 100 msecs.

> start nonitor
> start trace
> trace add trigger —100 -p

To use HotSpot, you have to set the TraceTrigger property in the config file (*.skp) and start the tracer. For
aportal application the following entry would be possible

TraceTri gger = . Dispatcher.service

This trace point is an example that is relevant in the porta. You can find many possible trigger pointsin the
file EP_trace.skp. For other applications, you should create another file that contains the proper
‘important methods' for tracing.

The tracer is active during the execution of method specified with TraceTrigger, i.e. underneath the
TraceTrigger cal, methods are traced.

It may happen, that there are two methods with the same name. In this case you can specify the signature
separated with a colon. If there are methods with the same name and signature, you can specify the row
number in the output of the reset command.

TraceTri gger = .doTest, (Ljava/lang/String;)V,2

Sherlok Manual 1.4 Seite 56

10.6.2 Options

Option Description

-ascii Output formats. The xml format can be used in any browser, but will be finished
-tree only by the command stop trace. The tree format will write indent spaces to
-xml represent the call hierarchy. Default is ascii.

-e<time> Elapsed time to trigger event. Any method, that takes more time will trigger a

callstack dump. unit = msecs

-m<memory> Allocated memory to trigger event. Any time the application allocates this amount
of memory it will trigger a calstack dump. In the output only the monitored
classes are listed.

-f<file name> Redirect output to the given file
-p Redirect trace output to sherlok.log

10.6.3 Output Option -ascii

The ascii output writes the result into an unformatted text line, separated by vertical slashes. This kind of
output is useful if you have post processors, which can extract the data you need like awk or Excdl. Each line
contai ns the following information:

10.6.3.1 Column | 10.6.3.2 Description

Trigger Trigger nameis constant: Trace

Leve Levd in cal stack counting from the entry point Trigger M ethod

Class Class and package of the method

Method Method name

Event Name of the event is Call or Time

Info For Call event: CPU time in nanoseconds by this method cal
For Time event: Elapsed timein milliseconds

10.6.4 Output Option -tree

The tree output indents the lines to represent the call hierarchy. This allows pattern recognition at a glance.
The most right method in ajigsaw pattern is the method, which triggered the event. The caller is the [eftmost
method.

Sherlok Manual 1.4 Seite 57

nt' system32\telnet.exe

getUalidationKey ! com.sapportals.portal.ph. lU1euP10f1le i 4:
getTitle | com.sapportals.portal.pb.IUiewProfile | 423. 921
getParamFromBesourceBundle | com ‘apportals.portal.pb.lUle
getResourceBundle |
getResourceBundle
getResourceBundle | com.sapportals.portal.prt.core.brok|
getResourcefisStream | com.sapportals.portal.prt.util.f
getResource | com.sapportals.portal.prt.util.
getResource | co il
getResource |
getResource |
getResource |
getResource
getResourcefisStrea
getHesource | com
getResource | co
getResource | com.sapportal
getResource | com.sapporta
getResource | com.sapport

getResource | com.sapporta

com.sapportals.portal.prt.component.P|
! com.sapportals.portal.prt.core.broke

getResourceBundleProvider | com.sapportals .po}tal prt.
lookup | com.sapporta ortal.application.applicatio
lookup ! com.sapporta rtal.pcd.gl.PcdGlContext
lookup | com.sapporta ortal.pcd.gl.PcdProxyConte
'

roxyLooku

Picture 15: Trace HotSpot Tree

In the upper example you can see, that the method
getResourceBundle calls
getResourceAsStream twi ce and getResourceBundl eProvider afterwards.

10.6.4.1 Column | 10.6.4.2 Description

Method Method name

Class Class and package of the method

Event Name of the event is Trigger

Leve Levd in cal stack counting from the entry point Trigger M ethod
Info Timestamp of the entry of the method

Thread Name of the thread

All entries are separated by the ProfileOutputSeparator character.

10.6.5 Output Option -xml

The xml output is generated in two paths. The finalize process, which closes dl open tags is only called with
the command stop trace. The limit for browsers to process this kind of input is about 2MB of data. The
caler isthe root (left most / top)node.

Sherlok Manual 1.4 Seite 58

23 L\ temp' foginaaml - Microsoft Internet Enplorer provided by SAP IT
|[fcde coke pew;iiraiees ion ek e
v - = - Q[GY | Qe Ciitbvoniss By | T O -
|| deess [3] ¢-teptiogn.ami =li@a ||

<Trace Mathod="service" Class="com.sapportals.portal.prt.dispatcher.Dispatcher’
Time="687.276.781">
- <Trace Method="run" Clzss="com.sapportals portal.prt.dispatcher.Dispatcher$doService”
Time="6G87.276.781">
— =Trace Method="handleRequest’
e ="com.sapportals.portal.pri.connection.ServietConnection”
7.276.781">

ethod="runRequestCycle’

= conv.sapportals.portal.prt.core.PortalRequestManager”
Time="687.276.781">

hed="dispatchRequest"

-om . sapportals.portal.prt.core.PortalRequestManager’
B7.276.781">

<Trace Method="dispatchRequest"

om . sapportals . portal. prt.core. PortalRequestManager’
276.7681"

hod="callPortalComponent”

c m.sapportals.portal.prt.core.PortalRequestManager”
Time="687.276.781">

- =Trace Mathod="service'
com,sapportals.portal.pri.pom.PortalNode”
687.276.791">

< co Method="include" &
. : k e R - J_I

S —

Picture 16: Trace HotSpot xml

10.7 Trace Java Exceptions

The exception trace is triggered by unhandled Java exceptions and writes some information to the log for
each unhandled exception. It isindependent from the monitor.

OutOfM emoryError exceptions are handled in a specia way:

» Sherlok requests a full VM thread dump (like dt -a command). This shows you what requests were
active a the time of the OOM.

» Sherlok dumps the location and the thread, which caused the exception.
» Sherlok dumps the monitored thread and methods to console (usedt —c)

> start trace
> trace add exception

10.8 Trace Thread Contentions

A thread contention event is raised whenever a thread has to wait on a monitor. Sherlok gives you the time
the thread waited and the callstack for detailed analysis.

> start trace
> trace add contention [-a]

If you specify option —a, you get also contention information in packages, which are not in your
Profil eScope.

Later on you can view the accumulated results for contentions in your scope:
> |sm-nmD —n0 —-e0 —c1

Sherlok Manual 1.4 Seite 59

10.9 Trace Stack

The stack trace shows the full callstack for a given method call. All methods given in property TraceTrigger
will be activated for tracing.

> start trace
> trace add stack [-a][-tree J[-p][-f<file>]

With stack trace its possible to find alocation points for specific objects tracing its <init> method. The
following statement will trace all string allocations in a given context:

set TraceTrigger = /./[.nyPackage././java.lang. String. <i nit>
reset -s

start trace

trace add stack

V V.V V

With the option —a the trace shows the source code line of each statement.

10.10 Trace Threads

Sherlok can trace activities of a specific thread. This is useful if you want to evaluate an activity on waiting
or sleeping threads. Sometimes you see some hundred thread sleeping if you request a full thread dump, but
a huge adtivity in your system performance viewer. The thread tracer can show how often a thread is
activated in a certain time span and what load results. This is especialy useful, if you want to monitor
communication on an idle node, or if you don't know the entry points of aforeign application.

Use the command “dt” for alist of threads and “dt —¢" to list Sherlok callstacks.

> start trace
> trace add trace [-n<nane of the thread] [-tree | —xml | —ascii] [-f<file>]

if you don’'t specify a name, Sherlok will start to dump activities of al threads. Thetrace result isin the given
format and can beredirected into afile.

Sherlok Manual 1.4 Seite 60

11 Reference

11.1 Configuration Reference

11.1.1 General Config Concepts

11.1.1.1 Class Patterns

During the operation of Sherlok there is often the need to restrict some facility to alimited set of classes to
control monitoring or tracing. To define a subset of classes we use strings we call class-pattern. A class-
pattern is a fully qualified name of a class. To denote a set of classes the dot “.” is supported as a wildcard
character. When used as the first or the last character of a class-pattern it is interpreted as an arbitrary

seguence of characters. In al other cases (infix) it istreated like an ordinary dot-character.
Examples:

* The pattern “javatil.Tree.” is matched by java.util.TreeSet, java.util. TreeMap any other class
whose full qualified name starts with “java.util. Tree".

o “List" matches any class “*List” in any package, like java.util.LinkedList, java.util.ArrayList or
org.w3c.dom.NodeL ist .

o “” matches any class.

e ‘“javautil.TreeSet” matches only java.util.TreeSet, but it does not match
java.util.TreeSet.Iterator.

11.1.1.2 Method Patterns

In addition to specifying entire classes for monitoring, it is aso possibleto limit datato a certain method call.
This is done by specifying a pattern for method names in the same manner as it was done for dasses before,
simply by adding the method name.

Examples

e The pattern “.ge” matches any method that is cdled “get” in any class, for example
java.util.HashM ap.get.

* Thepattern “.Entry.get.” matches any method whose name starts with “get” and whose classis called
“Entry”, likejava.util.HashM ap.Entry.getK ey.

11.1.1.3 Call Stack Patterns

In order to specify the targeting method of some Sherlok function more precisdy, it is possible to define not
only a pattern for methods but even for method-calls in conjunction with a certain state of the call-stack. The
call-stack pattern specifies a matching rule for the cal-stack contents at some point in time. It consists of
seguence of nested method-calls, separated with a slash.

Cadll-stack matching is enabled by starting the method expression with aslash “/”. The dash at the beginning
denotes the top of the cal-stack, like the main method or the run method of a thread. For example the call-
stack resulting from method f calling g and g calling h (f 2 g = h) would be expressed as “/f/g/h*. Each
component in such an expression is interpreted as a simple method pattern, as explained above.

Sherlok Manual 1.4 Seite 61

Example
e “/..lset./.get.” ismatched by any setter-method that directly calls a getter®.

* “/MyApp.main/.save’ is mached by cals to any method named save as long as this cal happens
directly in the static method main of executable class MyApp.

The call-stack patterns support another wildcard: “...”. The dlipse “...” stands for an arbitrary number of
subsequent calls’. A specific method call can be described with a substring of the full qualified method name.

Example

e “/../.doContent/.../.createRepository” denotes the call to some method createRepository, aslong as
it is executed as part of acdl to another method doContent. This would be the case for the call-stack
... 2 doContent > myDispatcher - DataAccess > createRepository

11.1.2 Handling Multiple Configuration Files

Sherlok has a lot of settings that determine its behavior. These are specified in configuration files. One
configuration is active at a time and the user can select a configuration to be activated in the web Ul and
consol e mode.

This alows to define multiple profiles, each one with a specific purpose eg. one for catching out-of-
memory issues, one for portal operation tracing, one for catching time or memory hotspots etc. Also, one
development group can write one or more config files that are geared towards their set of classes and
situation. Sherlok comes with a set of predefined config files for typica situations. These can be adjusted to a
application area e.g. by defining the classes that are rd evant.

Configuration files have the suffix “.scp” and reside by default in a subdirectory sher| ok of where the
Sherlok DLL is. This config directory is specified at startup time with a WM parameter ConfigPath (see
section 2.2.4).

11.1.2.1 Loading configuration files

You can load a configuration filein the Ul by sd ecting the Configuration combobox 1n the console you can
specify which configuration is to be loaded with the command set configfile = ... andthenload it
with reset.

11.1.2.2 List of predefined config files
Sherlok comes with a set of predefined config files. The most important ones are:

File Description

default.skp Default properties for portal namespace
default.customer.skp Default properties for customer namespace
default.drilldown,skp Drill down for memory problems
monitor.leak.skp Configuration for memory |l eak detection
trace.skp Configuration for performance anaysis

8 Getters and setters are a pattern used to set public attributes of an object in Java. A getter method starts with
“get”, asetter method starts with “set”: getName, setName, getCity, ...

° Roughly spesking: “.” and “...” arefor call-stacks like”?* and “*” for characters sequences.

Sherlok Manual 1.4 Seite 62

11.1.3 Defining the Profile Scope

Severd config parameters work together to define exactly which classes and methods are considered for
profiling. It is important to understand the exact effect of these parameters so that you on one hand can limit
the scope of Sherlok (and overhead) and also define it wide enough to catch possible trouble sources. The
relevant parameters are defined as dass / method patterns.

Fundamentally one always sdl ects methods to be monitored — or excluded. Specifying 'by class, asit is done
in Packages and Excludes, sdlects or desd ects all methods of the matching classes.

Class paterns are generaly defined by prefix, e.g. “com.sap.km.” denotes al classes underneith
com.sap.km. Method patterns are generally specified as suffix, eg. “.doContent” selects al doContent
methods in all packages/classes.

11.1.3.1 Definition
Profile Scope = Packages + Methods - Excludes

Packages matches on classes and sdlects al methods from al classes matching patterns
Methods matches on methods and sd ects all methods matching the method patterns

Excludes matches on classes and removes al classes matching the patterns, and thereby also all
methods in those classes

11.1.4 Configuration Parameters

A configuration file is a simple text file with name-value pairs, where “#” is used as comment prefix. Each
row consists of one assignment, i.e name = val ue.

All configuration items listed here can be changed dynamically, i.e. when Sherlok runs. In the console mode
you can usethe'set' command to change avaue, in the Ul there are special Ul dements for certain settings,
but not for al.

Some of the configuration settings done in the console mode / Ul take effect immediately. For the other
items, you must reset Sherlok. The reset command reloads the specified configuration files, and clears
internal tables, history etc.

11.1.4.1 Global Settings

Property Name Description Default
Profilelnfo Textual description of this profile. (empty)
ProfileStart Possible values are yes or no. Activates the monitor at the very | no

dart of Sherlok, i.e. at the startup of the VM and when
rel oading a configuration.

When you have a problem during the initialization / startup
phase of a VM / application, i.e. before you can do any user
input, you should set this valueto yes".

Sherlok Manual 1.4 Seite 63

ProfileMode

Possible values are profile or interrupt.

profile In profile mode every method invocation is
intercepted by Sherlok and all involved
methods and classes are recorded according to
the other Profile scope settings (see beow).
This mode is appropriate when you have no
predefined few classes to stat you
investigation from. This mode is slower than
interrupt mode but looks at all classes.

Profile mode is required for tracing.

interrupt The interrupt mode is gppropriate when you
have a set of predefined components (classes)
to be considered for monitoring (e.g. memory).
It works by Sherlok inserting interrupts into
the bytecode code and is much faster than
profile mode. However, the VM can only
handle up to 1000 interrupts gracefully, so this
mode can only be used for a few defined
classes as entry points eg. for al iViews.

jarm The jarm mode allows to attach Sherlok to
JARM instrumented java code. Sherlok will
generate the memory information for JARM
contexts

ats In ATS mode Sherlok uses only one global
stack for context information. This allows to
create client-server test suits.

profile

ProfileLimitOutput

Limit the length output for one command (in console an Ul
lists). Thisis useful to limit the output of commands that can
create very long lists such aslsm.

2000

ProfileLimitHash

Internal Sherlok parameter: Limits the amount of memory
Sherlok needs internally. It is the number of entities (objects,
dasses, ...) that Sherlok can monitor, where each entity needs
20 bytes.

When this internal space allocated to Sherlok is exceeded,
Sherlok issues an error message and stops monitoring. You
must increase this parameter and restart the VM.

4000000

ProfileOutput Type

Format of output used for the output socket. The console mode
is attached to the output socket as well.

Possible values are ascii or xml. The XML output could be
used to link the telnet port to other applications, e.g. a custom
Sherlok UI.

asdi

Tracer

Enabl es trace functions from the start of the program. You can
specify any trace option and its parameters (preceding with two
minus signs):

Tracer=tri gger--e100--tree, gc, net hods

Sherlok Manual 1.4

Seite 64

11.1.4.2 Selecting Profiling/Monitoring Scope

Property Name

Description

Default

ProfilePackages

Defines the set of classes considered for profiling. It is a
comma-separated list of class patterns. Each class that
matches one of the patterns is monitored — unless it also
matches ProfileExcludes. (see bel ow).

Example

Profil ePackages = com nyconpany., .myconsult.,
de. mei nefirma. portal . Myl Vi ew

(no dasses)

ProfileMethods

Comma-separated list of Method Patterns. The matching
method calls will be profiled for performance and memory
(memory aggregated on class levd),.

Example:

Activate al doContent methodsin all classes.
Profi | eMet hods = . doCont ent

(no methods)

ProfileExcludes

Commarseparated list of class-patterns. All methods from the
matching packages/classes are not monitored even if they
match ProfilePackages or ProfileM ethods. Thisis important
to exclude system components.

Example:

Profil eExcl udes = com sap., com sapportals.,
comingnmy., java., javax., sun., org.xni.

(no dasses)

Sherlok Manual 1.4

Seite 65

11.1.4.3 Memory Monitoring

Property Name

Description

Default

ProfileMemory

Controls whether Sherlok monitors memory allocations and
releases. There are three settings:

off No profiling of memory
on Profileall memory activities within the defined scope

adl Sameas'on' but in addition also al memory activities
outside of the scope are collected into one unknown
entry. Useful to seeif a problem occurs outside of the
defined scope (e.g. amemory leak).

off

MemoryLimitHistory

Number of GC cycles Sherloks remembers for memory
profiling. For each remembered cycle Sherlok stores the total,
allocated and deallocated size together with a timestamp per
class. This way you can see how the memory needs of a class
developed over time.

Note: The history uses 'smart compression’. See section xxx!

10

MemoryStatistic

Controls how Sherlok processes memory allocation and release
information for each monitored class. Possible values:

(empty) For each monitored class just the
accumulated allocated and released
memory is kept.

info For each monitored class a history is kept
(default: last 10 entries) that shows how the
memory values behaved over time.

alert Selects the 'leak detector mode' which
keeps a compressed history and watches
for increases. For details see section 8.2

(empty)

11.1.4.4 Performance/ Timing Measurements

Property Name

Description Default

Timer

Activates all methods in profile scope for time| off
measurement. Possible vaues are on or off.

TimerMethods

Comma separated list of methods in profile scope, which | (no methods)

are activated for time measurement (as opposed to ‘Timer'
which activates all methods).

11.1.4.5 Trace Parameters

Property Name

Description Default

TraceMethods

Semicolon separated list of methods, which will be | (ho methods)

activated for method trace. These methods can be used to
monitor enter / exit events, observe parameter values etc.

The method tracer will output the matching methods when
they are caled. When the timer is activated for these
methods then also their execution times will be reported.

TraceGC

Activates tracing of garbage collections when turned on. | off
Will output detailed info about each GC into the
sher | ok. | og. Possible values are on and off.

Sherlok Manual 1.4

Seite 66

TraceTrigger

Method as activation point for trace events. For details on | (no trigger)
usage see section 10

TraceVerbose

This option will write additiona fid d header information to | on
the trace output for each line. Possible va ues are on or off.

Sherlok Manual 1.4

Seite 67

11.2 Telnet Console Reference

This section describes the commands and output for the Sherlok console interface. All Sherlok features are
accessible viathe console. This is mostly used by ‘power users.

11.2.1 Starting the Telnet Client
Launch a command line termina in your operating system and enter the following command line:
$ telnet |ocal host 2424

If you didn't keep the defaults, modify the line and insert the current values of TelnetHaost and TelnetPort.
(specified as command line args on the VM call).

Now you can login with username “Administrator” and password “sherlok” (unless you changed the
password).

11.2.2 Accounts

With the first startup Sherlok will create a telnet account in the text file sherlok.pwd with the following
entry:

Admi ni st rat or=<encrypt ed_passwor d_sher| ok>

You can add new accounts by copying an entire line and renaming the user. The password is encrypted and
can be changed using the telnet consol e command chpwd.

Note: User name and password are case sensitivel
Note: Adding a user will not become effective until arestart of the java process (not just 'reset’).

11.2.3 Command: man | help

Sherlok offers the following commands on the console. You get the list from the 'help’ or 'man’ command.
You can specify a command as argument to get detail help for this command.

man| hel p [<command>] | |i st conmmands
start <function> start nonitor/trace/l og

trace <options>
| cf

set nane = val
exit

chpwd

versi on

trace dynam c runti me behavi our

list avail able configuration files
set options

| eave the tel net session

change password for the current user

I I

I I

| stop <function> | stop nmonitor/trace/l og

| I'sc [-m-s]|-h] | list classes

| I'sd [-n]-s|-h] | I'ist deleted classes

| I'm [-n]-s|-h] | I'ist grow ng classes / nenory | eaks
| I'sm[-m-n|-e|-s] | I'ist methods

| Iss | list nonitor statistics

| I'sp | list property keys and val ues

| ITco [-vm-vt] | I'ist contexts

| I'hd | list heap dunp

| reset | read the property file and restart nonitor
| repeat [<seconds>] | repeat the |ast command

| gc | start garbage collection

| dt | dunp threads

| info | wites info string to alog file with a tinmestanp
I I

I I

I I

I I

I I

I I

Sherlok Manual 1.4

di splay the current version

Seite

68

11.2.4 Command: Isp

The Isp command shows you all the config parameters and their current values. See section 11.1 for a

detailed description on parameter semantics.

> | sp
Properties

| Property | Val ue
Profil eStart no
Profi | evbde profile
Prof i | ePackages
Profi | eExcl udes
Prof i | eMet hods . doCont ent
Profil eLim t Qut put 500
Profil eLim tHash 131. 071
Profi | eCut put Type asci i
Prof i | eQut put Separator| |
Profil eMenory on
MenoryLi m t Hi story 10
Ti mer on

Ti mer Met hods
Tr aceMet hods

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| MenoryStatistic | alert
| |
| |
| |
| TraceTrigger |
| |
| |
| |
| |
| |
| |

. Di spat cher. servi ce|
. Di spat cher. servi ce|

Tr aceVer bose on

TraceGC of f

Tel net Port 2.222

Tel net Host | ocal host

ConfigFile sher | ok\ def aul t. scp|
Tracer

Inital startup: [yes|no]

Profiling node: interrupt or profile(event)
Li st of classes added to profile

Li st of classes renoved fromprofile

Li st of nmethods added to profile

Maxi mum nunber of output |ines for any cnd
Maxi mum nurmber of objects for profiler

Sets the output type [xm|ascii]

Qut put separator for traces

Switch nmenory profiling [on|off|all]

Nunber of entries for nmemory history
Menory | eak detection for alert [alert]|info]
Activates the timer for all nethods [on|off]
Met hods to activate for time measurenent
Met hods to activate for tracing

Trigger nethod for trace

trace output for GC

Trace GC information [on|off]

Port to connect

Host name for renote access

Active config file

Startup configuration for trace

11.2.5 Command: start | stop monitor

Activates or deactivates the Java profileinterface, which inserts or remove hooks to
* Method enter and exit events
* Memory alocation, deallocation and move events

Memory tracking and methods performance measurement is possible only if the monitor is running.

> start nonitor

11.2.6 Command: start | stop trace

The Tracer alows output triggered by the application execution. You can add or remove trigger conditions
after you started the tracer (see command trace). The tracer can be used in combination with the monitor. The
result is an application execution trace. The trace can be started and stopped with the short command “s”.

> start trace
> trace add nethods

11.2.7 Command: start | stop log
Starting the logger will create anew sher | ok. | og fileand will pipeall console output also into thisfile.

Note: If you want to save your old log file, rename it before you do a'start log'.

> start | og

11.2.8 Command: Isc

The command I sc lists monitored classes. The possible command options are as follows:

Sherlok Manual 1.4 Seite 69

> man | sc

I sc [-nmenunber>] [-s<columm name>][-f<pattern>][-h]: |ist nonitored cl asses
| Attribute | Description
-h out put with GC history

-f <pattern> filter classes

I I
| - mcnunber > | select classes with allocated bytes > <nunber>
I I
| -s<columm name>| sort by col unm nane

The default is to show al registered dasses, even if they currently don't hold memory (equivdentto | sc —
nD). Use | sc —nL0000 tolist dl classesthat are responsible for at least 10 KB.

11.2.9 Command: Isd

The command Isd lists deleted classes. These are classes that have been expired by the VM, i.e. cannot be
used anymore, but that are still responsible for memory being kept and therefore still shown in Sherlok. This
allowsto trap classes that allocate some memory, passit on/ storeit in another class (e.g. globd session) and
then get removed.

Classes will berdoaded for hot deployment or for the JSP compiler results.

When a cdass appears multiple times in Isd, it means that an expired copy of the class is still in the
permanent space (in the code part of the VM memory) and not unloaded by the GC yet. For JDK 1.3.1.
these classes are only removed from the JVM by a full garbage coll ection.

You can aso monitor / trace the behavior of classes, i.e. loading and unloading, by using trace add
cl ass command. Seethetrace command.

> man | sd
I sd [-nm<nunber>] [-s<colum name>][-h]: |ist del eted classes
| Attribute | Description
| -h | output with GC history
| - mcnunber > | select classes with allocated bytes > <nunber>

| -s<columm nanme>| sort by col unm nane

11.2.10 Command: Iml

The command Iml lists potential memory leaks, i.e. 'growing classes’.

> man | m
I'm [-nmenunber>][-s<colum name>][-h]: list grow ng cl asses
| Attribute | Description
| -h | output with GC history
| - mcnunber > | select classes with allocated bytes > <nunber>

| -s<columm nanme>| sort by col unm nane

11.2.11 Command: Ism

The command Ism lists al monitored methods with CPU time, eapsed time, and number of calls, ordered by
CPU time (default).

Sherlok Manual 1.4 Seite 70

> man | sm

I sm [- mknunber >] [- n<nunber >] [- e<nunber >] [- s<col urm name>]: |i st nonitored nethods
| Attribute | Description
- m<numnber > sel ect nethods with CpuTine > <nunber>

I I
| -n<nunber> | select nmethods with NfrCalls > <nunber>
| -e<nunber> | select nmethods with El apsed > <nunber>
| -s<colum nanme>| sort by col unm nane

11.2.12 Command: Isp

The command Isp lists the current values of the Sherlok properties. These can be set in the config file or
partly by the set command.

Prof il eScope Li st of classes

Profil eMode profile Profile Mode: [profile|interrupt]

Prof i | ePackages com sap. . Li st of classes added to profiler

Profi | eExcl udes Li st of classes renpved from profiler

Profi | eMet hods Li st of methods added to profiler

ProfileStart no Initial startup: [yes|no]

Profil eLimt Qut put 500 Maxi mum nunber of output |ines for any conmand
ProfileLintHash 131. 071 Maxi mum nunber of objects for profiler

Prof i | eCut put Type asci i [xm | ascii] Sets the output type

Tr aceMet hods

Tr aceVer bose on trace output for GC

Switch nmenory profiling [on|off|all]
TraceCGC of f Trace CGC information [on]|off]
MenmoryLi mi t Hi story 10 Nunmber of entries for menmory history buffer
MenorySt atistic alert [alert|info] Menory |eak detection for alert
Ti mer on Activtes the tiner for all nethods [on|off]

Met hods to activate for time measurenent
| Qut put separator for traces
. D spatcher.service| Trigger nethod for trace

Ti mer Met hods
Prof i | eQut put Separ at or
TraceTri gger

|
|
|
|
|
|
|
|
: | _ _
. Di spatcher.service| Methods to activate for tracing
|
|
|
|
|
|
|

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| ProfileMenory | on
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

Tel net Por t 2.222 | Port to connect
Tel net Host | ocal host | Hostname for renote access
ConfigFile sher| ok\ defaul t.scp| Active config file

11.2.13 Command: Iss

The command Iss lists overall statistics, i.e. number of classes, threads, function calls, and a few other
va ues.

> | ss
Moni tor Statistic

| Name | Val ue

| NewFktCalls | 0
| NewObj ects | 0
| NewAl | ocati on| 0
| NrThreads | 180
| Nrd asses | 5. 409
| Monitor | ide

| Trace | stopped

| Logging | true

11.2.14 Command: Ihd

The command |hd means “list hegp dump”. It ligs dl instances maintained by Sherlok grouped by class
name. The command will only list scalar abject instances, no arrays and no basic types. You can sort the
output with the -s option and filter out classes (e.g. java.lang) with the -f option.

> man | hd
I hd [-s<colum name>][-f<pattern>]: list heap dunp [sorted by col um]

Sherlok Manual 1.4 Seite 71

Use the command |hd together with the command Isc. The command Isc lists the number of bytes a classis
responsibl e for and Ihd shows what kind of objects these are and how many of them where all ocated.

> | hd -sHeapSi ze
d asses

| HeapCount| HeapSize | Nane

| 64.113| 1.538.712| java.lang. String

| 15. 236| 365.664| java.util.HashMap$Entry

| 10. 978| 263.472| java.lang. StringBuffer

| 3. 925] 188.400| java.util.HashMap

| 11. 048| 176.768| java.util.jar.Attributes$Nanme

| 2. 541 142.296| sun.io.Char ToByt e(p1252
| 2. 436| 97.440| java.util.Hashtable
I
I
I
I
I

909| 72.720| com sap. portal s.jdbc.sql server.tds. TDSRPCPar anet er
824| 72.512| java.util.jar.JarFile$JarFileEntry
824| 59.328| java.util.zip.Z pEntry
524| 58.688| com sap. portal s.jdbc. base. BaseCol umm
2. 194| 52.656| java.lang. G assNot FoundExcepti on

11.2.15 Command: reset

The command reset reloads the config file with the currently set config file name (set by the set
configfile=...command). It aso resetstheinternal Sherlok state and all statistics.

> man reset
reset Relead the configuration file and clear all Sherlok statistics

11.2.16 Command: repeat

The command repeat repeats the last command every n seconds, with n being the parameter (default ist 1
second). Thisis very useful for automatic traces or dt commands etc.

> man repeat
repeat [<seconds>]: repeat the |ast command

| Attribute|l Description

| <seconds>| repeater tine intervall in seconds (default is 1 sec)
Any comnmand wi |l stop the repeater

11.2.17 Command: dt

The command dt (=dump threads) shows the threads known by Sherlok. It shows the threads with their
names. (Sherlok doesn’t 'see' all threads of the VM like the finalizer or startup thread)

The command dt —c shows all threads that have currently have a monitored class active in them. For all
these, the current call stack is shown, showing only the methods that are in the monitoring scope.

The Sherlok-internal thread list is reset by the reset command. 'Threads know to Sherlok’ will them again be
accumul ated from scratch (according to activity of monitored d asses).

The command dt -a creates afull thread dump.

The command dt —-vm sends a “kill —3” to the process group and dt I a “kill =3” to the process. The full
thread dump is written to the stdout console (not the sherlok.log!). This shows al threads that are defined in
the system, even if they are inactive. Most will be having the status “waiting on monitor” which means that
they wait for arequest and currently do nothing.

This command dt —vm should not be used if you started within a startup framework, since this may cause the
JVM to terminate and then restart (by the startup framework).

Sherlok Manual 1.4 Seite 72

> man dt
dt [-c][-s<colum>][-a|-vm-jl] dunp threads

| -c | dunp callstack (if not enpty)

| -s<columm>| sort out put

| -a | full heap dunp

| -jl | full heap dunmp (kill -3 to process)

| -vm | kill -3 CAUTION: TH S M GHT TERM NATE APPLI CATI ON

11.2.18 Command: dex

The command dex lists the statistic for all exceptions and prints the name and the number of events, which
causes the exception..

11.2.19 Command: info

The command info allows to write a comment into the sherlok log file. A timestamp is attached.

11.2.20 Command: trace

The command trace adds new triggers to the tracer. For details on how to use the options, see section 10.

> man trace
trace [-verbose] [add|renpve <trace-option>]

-verbose | add additional information to the console output
gc | trace garbage coll ection
par amet er | trace call paraneters for TraceMet hods

|

|

|

|

| exception trace exceptions: stop on QutCf MenoryError

| contention -e<el apsed-tine>

| -a -ascii|-tree|-xnl | trace thread contentions

| stack | trace callstack for TraceTrigger method

| method | trace enter and exit events for TraceMethods
| class | trace class |oad and unl oad events

| thread -n<thread-nanme> | trace nethod enter events for <thread-nanme>

| trigger <options> | trace triggered by TraceTrigger

| trigger -ascii|-xm|-tree | set output to ascii, xml or tree view

| trigger -e<elapsed-tinme> | trace all nethods, which ecceed given elapsed-time
| trigger -a | trace all nethod enter events

| trigger -c | count up nethod enter events

| |

trigger -f<file-nane> redirect output to <file-name>

11.2.21 Command: Icf
The command I cf lists dl available config files. They can then beloaded by set and activated by reset.

11.2.22 Command: set

The command set allows to set config parameters directly for the running Sherlok session. Changes are not
propagated to the config file. Currently the only supported value is 'ConfigFile€ (case sensitivel!). The use
caseisto switch to another config file and the load it with reset.

> set ConfigFile = default.skp

11.2.23 Command: exit

The command exit closes the Sherlok console. Sherlok itsalf will continue to run in the mode it had set |ast.
You can always reconnect with the telnet call.

Sherlok Manual 1.4 Seite 73

11.2.24 Command: chpwd

The command chpwd lets you change the password for your current user. The encrypted password is (over)
written into the file sherl ok.pwd.

11.2.25 Command: version

The command 'version' shows the version of Sherlok.

bieis s bidbiEieie
H Hi b4 i
s it i i
fiE s igis g e Figidigiaie
i i e
HE Hi H H
i i i u

Sherlok Telnet Adminstration
Sherlok 1.4.1.8 (2884 by Albert Rossmann?

Sherlok Manual 1.4 Seite 74

