

SAP Business Intelligence
Java Software Development Kit

Developer’s Guide

Palo Alto, California

ii

Copyright

© Copyright 2004-2006 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express
permission of SAP AG. The information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components of other
software vendors.

Microsoft, Windows, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex, MVS/ESA, AIX, S/390, AS/400, OS/390, OS/400,
iSeries, pSeries, xSeries, zSeries, z/OS, AFP, Intelligent Miner, WebSphere, Netfinity, Tivoli, and Informix are
trademarks or registered trademarks of IBM Corporation in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or registered
trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide Web Consortium,
Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented and
implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and services mentioned
herein as well as their respective logos are trademarks or registered trademarks of SAP AG in Germany and in
several other countries all over the world. All other product and service names mentioned are the trademarks of their
respective companies. Data contained in this document serves informational purposes only. National product
specifications may vary.

These materials are subject to change without notice. These materials are provided by SAP AG and its affiliated
companies ("SAP Group") for informational purposes only, without representation or warranty of any kind, and SAP
Group shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP Group
products and services are those that are set forth in the express warranty statements accompanying such products
and services, if any. Nothing herein should be construed as constituting an additional warranty.

iii

Typographical Conventions

To denote Java source code, package, interface, class, path, and file names, we use the Courier New font. If
rendering and viewing this document with color capability, you will in addition see the following Java code coloring
conventions assigned to example code snippets:

Code comments – teal:

// display HTML

Java keywords – boldfaced violet:
public void doGet(HttpServletRequest request,

Java strings – blue:

out.println("<html>");

Code excerpts are displayed in boxes.

Icons

Icons used in this Guide may include the following:

Icon Meaning

Caution

Example

Note

Recommendation or tip

Contents at a Glance

iv

Table of Contents

Introduction... 1

Chapter 1: Getting Started .. 12

Chapter 2: Connecting to Data Sources.. 31

Chapter 3: Accessing Metadata .. 42

Chapter 4: Creating Queries .. 64

Chapter 5: Retrieving Result Sets ... 106

Chapter 6: Exceptions ... 124

Appendix A: Installation ..A–1

Appendix B: Examples...B–1

Appendix C: Additional Resources..C–1

Appendix D: Glossary ..D–1

Index.. 1

Detailed Table of Contents

v

Detailed Table of Contents

Introduction... 1
Overview of the BI Java SDK... 1
Components of the SDK .. 2

Application Programming Interfaces.. 2
Documentation .. 3
Examples... 4

BI Java Connectors.. 4
Architectural Overview ... 5

Open Standards in the SDK .. 5
Foundation Technologies Versions ... 11

Chapter 1: Getting Started .. 12
Overview .. 12

System Configuration .. 12
Hello MDX: First Example for a Multidimensional Data Source.. 14

Step 1: Import Packages ... 14
Step 2: Connect to an SAP BI System... 15
Step 3: Retrieve the Metadata ... 18
Step 4: Create a Query.. 18
Step 5: Change the Layout .. 19
Step 6: Specify Selected Members.. 20
Step 7: Execute the Query and Retrieve the Result Set .. 20
Step 8: Render the Result Set ... 20

Hello SQL: First Example for a Relational Data Source ... 23
Step 1: Import Packages ... 24
Step 2: Connect to a JDBC Database ... 24
Step 3: Retrieve the Metadata ... 27
Step 4: Create a Query.. 27
Step 5: Specify Table and Columns .. 28
Step 6: Execute the Query and Retrieve the Result Set .. 28
Step 7: Render the Result Set ... 29

Chapter 2: Connecting to Data Sources.. 31
Overview .. 31
Connection Architecture... 32

Client Interface .. 33
Portal Connection Framework ... 34
Service Provider Interface ... 34
Managed Environment... 34

vi

Non-managed Environment... 35
Connection Specification and Portal Service ... 36

BI Java Connectors.. 37
BI JDBC Connector ... 39
BI ODBO Connector .. 39
BI SAP Query Connector... 40
BI XMLA Connector ... 40

Examples ... 40

Chapter 3: Accessing Metadata .. 42
Overview .. 42
Common Warehouse Metamodel... 42
Generating Interfaces... 43
Metadata APIs.. 45

OLAP Metadata Model .. 46
Relational Metadata Model .. 57

Examples ... 62

Chapter 4: Creating Queries .. 64
Overview .. 64
Query APIs... 64

OLAP Query Model.. 65
Relational Query Model ... 95

Examples ... 101
OLAP Queries ... 101
Relational Queries ... 104

Chapter 5: Retrieving Result Sets ... 106
Overview .. 106
ResultSet API... 106

Key Features ... 107
OLAP Result Sets.. 108
Relational Result Sets ... 115

OLAP Table Model... 116
Examples ... 118

Chapter 6: Exceptions ... 124
Overview .. 124
Exception Handling .. 124

Exception Translation .. 125

Appendix A: Installation ..A–1
Overview ..A–1
System Requirements..A–1
Classpath Configuration...A–2

vii

Logging and Tracing, JARM...A–2
Using the BI XMLA Connector in a non-managed environmentA–3
Documentation ...A–4

How-To Guides..A–4
BI Java Connectors..A–5

BI Java Connectors Overview ...A–6
Testing the BI Java Connectors...A–7

Appendix B: Examples...B–1
Overview ..B–1
Finding the Examples...B–1
Configuring your System..B–2

Data Sources...B–2
Rendering to File ...B–3
Connection Properties ...B–3

Index of Examples..B–3

Appendix C: Additional Resources..C–1
Web References ..C–1
Books ...C–3

Appendix D: Glossary ..D–1

Index.. 1

1

Introduction
This Guide helps developers use the SAP Business Intelligence Java Software Development Kit (BI Java SDK). With
the BI Java SDK, you can build analytical applications that access, manipulate, and display both multidimensional
(Online Analytical Processing, or OLAP) and tabular (relational) data. The target audience is Java developers with
business intelligence experience and needs.

This chapter provides an overview of the BI Java SDK and the BI Java Connectors and introduces their foundation of
open standards technologies.

Overview of the BI Java SDK

SAP Business Intelligence (BI – or earlier BW) front-end tools and their business content fulfill many business
intelligence needs. Now, with the addition of the BI Java SDK, you can develop highly customized business analytics
to complement your existing business intelligence solution, using the BI Java SDK as SAP's main interface for
accessing any OLAP or relational data your applications or client components need.

SAP BI’s existing Open Analysis Interfaces — XML for Analysis, the OLAP BAPI, and OLE DB for OLAP — allow you
to access SAP BI or external OLAP data for your custom application needs. The BI Java SDK provides additional
capabilities and simplifies the task of implementing client applications based on these interfaces. The SDK
encapsulates underlying low-level communication protocols such as HTTP, and simplifies the generation of complex
MDX or SQL query statements.

Although the primary intention of the SDK is to simplify programming against the BI OLAP engine within a Java
environment, the application programming interfaces (APIs) can also be used to access non-SAP and even non-
OLAP data sources, such as relational JDBC data sources. This allows programmers to work with a single uniform
approach throughout development of an application.

The BI Java SDK provides an object-oriented framework in which to:

• Connect to a variety of data sources

• Access master- and metadata

• Create and execute complex queries

• Render and access query result sets

A driver-based architecture supports access to different data formats using a variety of protocols:

• Java Database Connectivity (JDBC)

• OLE DB for OLAP (ODBO)

Introduction

Components of the SDK

2

• SAP Query

• XML for Analysis (XMLA)

Components of the SDK

The BI Java SDK consists of a set of application programming interfaces (APIs), documentation, and examples,
described below.

Application Programming Interfaces

The following diagram provides a simplified picture of the APIs of the BI Java SDK:

BI Java SDKBI Java SDK

OLAP APIs

RELATIONAL APIs

R
esultSetA

PI

C
onnection Interfaces

OLAP Metadata API OLAP Query API

Relational Metadata API Relational Query API

BI JDBC ConnectorBI JDBC Connector

RELATIONAL

BI ODBO ConnectorBI ODBO Connector

OLAP

BI SAPQ ConnectorBI SAPQ Connector

RELATIONAL

BI XMLA ConnectorBI XMLA Connector

OLAP

BI Java SDKBI Java SDK

OLAP APIs

RELATIONAL APIs

R
esultSetA

PI

C
onnection Interfaces

OLAP Metadata API OLAP Query API

Relational Metadata API Relational Query API

BI JDBC ConnectorBI JDBC Connector

RELATIONAL

BI JDBC ConnectorBI JDBC Connector

RELATIONAL

BI ODBO ConnectorBI ODBO Connector

OLAP

BI ODBO ConnectorBI ODBO Connector

OLAP

BI SAPQ ConnectorBI SAPQ Connector

RELATIONAL

BI SAPQ ConnectorBI SAPQ Connector

RELATIONAL

BI XMLA ConnectorBI XMLA Connector

OLAP

BI XMLA ConnectorBI XMLA Connector

OLAP

Figure 1 — BI Java SDK APIs

Introduction

Components of the SDK

3

As pictured above, the BI Java SDK consists of the following APIs:

• OLAP APIs:

 OLAP Metadata API, for accessing OLAP metadata

 OLAP Query API, for creating, processing, and navigating queries against an OLAP data source

• Relational APIs:

 Relational Metadata API, for accessing relational metadata

 Relational Query API, for creating, processing, and navigating queries against a relational data source

• Common ResultSet API, for accessing and rendering either OLAP or relational result sets

• Connection Interfaces

For detailed architectural information about the SDK’s APIs, refer to the following chapters of this Guide:

• Connection Interfaces: see Connecting to Data Sources

• Metadata APIs: see Accessing Metadata

• Query APIs: see Creating Queries

• ResultSet API: see Retrieving Result Sets

In addition, the SDK provides an exception framework, which you can read about in the Exceptions chapter.

Documentation

In addition to the APIs, the SDK includes comprehensive documentation, including this Developer’s Guide with step-
by-step tutorials (see Getting Started), Javadocs with package and overview documentation, and additional
supporting HTML documents. Launch the package from the Javadoc ../index.html file located in the docs folder of the
unpackaged distribution archive.

The names of the interfaces exposed in the SDK’s APIs begin with the prefix IBI. Many of the concepts are introduced
in the documentation together with UML class diagrams to illustrate the links between the different Java interface
components.

For complete interface descriptions, refer to the corresponding Javadocs, included in the SDK distribution package.
We may include direct links to the Javadoc HTML pages for specific classes or packages, or you can navigate
through the Javadocs yourself:

• SDK Javadocs overview page

• CWM Javadocs overview page

Introduction

BI Java Connectors

4

• Documentation set root – the Javadoc index page in the doc folder of the SDK distribution package

 Caution:

In many cases, this Guide provides links to other components of the documentation set, for example, to
Javadoc packages, so that you can easily navigate to them. These links are set relative to the original
location of the Guide, in the docs/devguide folder of the distribution package, and will not resolve if
the devguide.pdf file is removed from this folder.

The links have been tested on Windows systems only, and may not work on other systems.

Examples

Examples provide easy-to-use Java servlets which demonstrate many aspects of our query APIs, as well as step-by-
step connection instructions. Examples subsections at the end of each chapter, where relevant, show usage of the
SDK’s APIs in real-world scenarios. Although each example may embody all of the SDK’s APIs, we introduce the
examples within the context of the API most emphasized in the given example.

The examples are also cataloged in the documentation set (begin with the index.html file located in the docs folder of
the unpackaged distribution archive and see the Examples link) and in Appendix B: Examples. Refer to these
sections for the system configuration information you’ll need to get up and running.

BI Java Connectors

The BI Java Connectors are a group of four JCA (J2EE Connector Architecture)-compliant resource adapters that
implement the BI Java SDK's APIs and allow you to connect the applications you build with the SDK to
heterogeneous data sources. They may be deployed onto SAP NetWeaver's J2EE Web Application Server.

The BI Java SDK contains the JAR files you need to develop applications using any of the BI Java Connectors and to
use them in an unmanaged scenario, but to use your application with a data source in the managed environment of
the J2EE server, you need to deploy the appropriate BI Java Connector. The connectors themselves are deployed
with NetWeaver’s optional BI UDI component.

Four connectors are available:

• BI JDBC Connector, for connecting to relational JDBC data sources

 implements the SDK’s relational APIs

• BI ODBO Connector, for connecting to OLE DB for OLAP-compliant data sources

 implements the SDK’s OLAP APIs

• BI SAP Query Connector, for connecting to data from SAP operational applications

 implements the SDK’s relational APIs

Introduction

Architectural Overview

5

• BI XMLA Connector, for connecting to XMLA-compliant data providers such as SAP BI systems (BW)

 implements the SDK’s OLAP APIs

For more information about the connectors, see the BI Java Connectors section of this Guide.

Note:

The BI Java Connectors are distributed separately from the BI Java SDK, deployed with NetWeaver’s
optional BI UDI component.

Architectural Overview

The SDK’s components are architected to simplify the integration of data from diverse data sources by displaying a
unified metadata model and common access interface. We leverage the concepts of open standards such as the Java
Metadata Interface (see Java Metadata Interface, below) and the Common Warehouse Metamodel (see Common
Warehouse Metamodel, below) to support accessing and representing metadata. This approach hides the complexity
and details of the underlying communication and access protocols (such as HTTP), enabling you to focus instead on
your specific business requirements.

Another benefit of this approach is that applications are written only once for different types of data sources and
operating systems. Developers do not need to understand the specifics of a particular system. Our driver-based
architecture allows you to use a set of connectors, the BI Java Connectors, to connect applications to SAP data
sources such as the SAP Business Information Warehouse, as well as to non-SAP data sources such as relational
JDBC-based databases.

An additional key architectural feature of the SDK is the use of OLAP and Relational Query Models. These models
provide interfaces for defining complex multidimensional or relational queries without negotiating the details and
complexity of the specific query language—for example, MDX in the case of OLAP data sources. You need only
interact with a simplified command API.

The rest of this section discusses the importance of open standards in the SDK and summarizes key individual
standards. The SDK’s architecture is discussed in more detail in the subsequent chapters of this Guide.

Open Standards in the SDK

Instead of designing a new API entirely from scratch, the SDK development team began by capitalizing upon the best
of available open standards and technologies.

Introduction

Architectural Overview

6

This approach has several advantages. Open standards provide high-quality specifications that have undergone a
significant review process and are based on the experience of many developers. Reliance upon open standards also
increases the chances for interoperability between components from different vendors, helps toward building easy-to-
learn APIs, and supports potential synergies with other emerging J2EE standards. There are currently more than 100
Java technology specifications under development in the Java Community Process (JCP) program, including the next
versions of Java 2 Micro Edition (J2ME), Java 2 Platform Enterprise Edition (J2EE), and Java 2 Standard Edition
(J2SE). Many of these specifications are related or interconnected to the point that there are many synergies among
them.

The following open platforms and standards are of particular relevance to the SDK architecture:

• The J2EE Platform

• J2EE Connector Architecture (JCA)

• Common Warehouse Metamodel (CWM)

• Java Metadata Interface (JMI)

• Java Database Connectivity (JDBC)

• Meta Object Facility (MOF)

• XML Metadata Interchange (XMI)

• OLE DB for OLAP (ODBO) and XML for Analysis (XMLA)

The following sections describe these standards and explain the rationale for using them in the SDK.

The J2EE Platform and Java Development with SAP NetWeaver

By leveraging the benefits of Sun’s J2EE platform, the BI Java SDK provides an object-oriented framework for
building multi-tier, Web-centric analytical applications that are:

• Portable

• Highly scalable

• Secure

• Reusable component-based

SAP’s NetWeaver combines Java technologies with proven SAP programming models and technologies. With the
Web Application Server, SAP offers a runtime environment for Web applications that can be written both in ABAP and
in Java. A fully J2EE-compliant server has been integrated with the traditional SAP Web Application Server, providing
fast connectivity between applications written in Java and ABAP. The SAP Web Application Server, therefore, has two
personalities that allow us to write purely Java-based applications:

• The straightforward J2EE programming model

Introduction

Architectural Overview

7

• The ABAP/Java mixture: a combination of existing functionality written in ABAP with new components
developed in Java

The BI Java Connectors, used by the SDK to connect to diverse data sources, are optimized for full compliance and
deployment to SAP NetWeaver’s Web Application Server, which provides additional enhancements to the following
areas of J2EE-standard compliance:

• Stability

• Serviceability

• Performance and Scalability

• Improved Administration

• Replacement of the internal database by open JDBC.

J2EE Connector Architecture

Sun’s J2EE Connector Architecture (JCA) defines a standard architecture for connecting the Java 2 Platform to
heterogeneous Enterprise Information Systems (EISs) such as mainframe transaction processing and database
systems. The connector architecture satisfies the SDK’s needs for a pluggable driver-based architecture, required for
achieving the openness necessary to integrate with a variety of data sources.

The SAP J2EE engine is JCA compliant. SAP provides a Java Connector (JCo) that allows Java applications to
communicate with any SAP R/3 system. The Portal Runtime offers additional services on top of JCA for persisting
connection information in a SystemLandscape, and a ConnectorGateway service that integrates with the portal user
management.

The SDK leverages JCA to provide consistent connection management to heterogeneous data sources and to
support the pluggability of connectors into multiple J2EE engines.

Advantages to the SDK of JCA compliance include:

• Support for connectivity to heterogeneous data sources:
The SDK provides connectivity via data source-specific connectors that conform to the JCA patterns. This is a
modular and pluggable architecture, where new adapters can be easily added. The BI Java Connectors provide
a BI-specific tailored connection that serves as the entry point to any services.

The BI Java Connectors are kept lightweight, so that connectors deal only with the specific domain of the
resource to which they connect. For example, the BI JDBC Connector has only to deal with mapping relational
metadata into the CWM Relational-based JMI service. Any type of metadata (queries, OLAP, and relational) is
represented via JMI-compliant interfaces and implementations that are generated by the JMI mapping service
of SAP’s Metamodel Repository.

• Leveraging of SAP’s NetWeaver Portal services:
The BI Java Connectors integrate with the Portal runtime by extending the Generic Connector interfaces. Thus,

Introduction

Architectural Overview

8

the Java components can leverage services provided by the Portal such as SystemLandscape and
ConnectorGateway.

Common Warehouse Metamodel

The Common Warehouse Metamodel (CWM) is an Object Management Group (OMG) standard that provides a
framework for representing metadata in data warehousing, business intelligence, knowledge management, and portal
technologies.

CWM is of particular relevance to the BI Java SDK because BI applications are typically strongly driven by metadata.
We chose CWM as the common metamodel for the SDK, grounding our architecture in a solid, standardized metadata
approach. CWM is currently gaining momentum in the industry, and provides the required expressiveness to model
metadata from different implementations of OLAP and relational models. The SDK’s OLAP and Relational Metadata
Models are provided entirely by CWM.

The SDK leverages CWM metamodels for various additional reasons:

• CWM conforms to the MOF standard, which allows the SDK to apply JMI mappings to render a standard API
for manipulating and navigating instances of the model.

• CWM metamodels are capable of modeling a wide spectrum of OLAP and relational providers. They are not
only generic and extensible in their overall content and structure, but are also separated from implementation
considerations. This is of particular importance for the SDK, where a large variety of providers are mapped into
one common metamodel.

• CWM provides a complete relational metamodel that is based on the SQL standard. Therefore, defining a
relational metadata service for accessing tabular data providers like JDBC is straightforward.

• CWM provides an OLAP metamodel that contains the essential OLAP concepts common to most OLAP
systems.

Java Metadata Interface

The OMG’s Java Metadata Interface (JMI) specification defines a platform-neutral infrastructure that enables the
creation, storage, access, discovery, and exchange of metadata. JMI defines a Java mapping for the MOF. It can be
viewed as an extensible metadata service for the Java platform that provides a common Java programming model for
accessing metadata. Any system that provides a JMI-compliant API to its public metadata is a JMI service. JMI
provides the following to the J2EE environment:

• A metadata framework that provides a common Java programming model for accessing metadata.

• An framework for integration and interoperability for Java tools and applications.

• Integration with OMG modeling and metadata architecture.

Introduction

Architectural Overview

9

As the Java rendition of the MOF, the JMI specifies a set of rules that generate, for any given MOF-compliant
metamodel, a set of Java APIs for manipulating the information contained in the instances of that metamodel.

The JMI specification also contains a Java implementation of MOF reflection. Although reflective capabilities are more
relevant for advanced tools, they are of interest for the SDK, because by supporting the reflective interfaces we
automatically gain support for XMI.

In the SDK, JMI is used to render the CWM model into programmatic APIs. It is specifically geared for a Java
rendering of MOF-compliant metamodels and its mapping templates provide a uniform and flexible Java API for
manipulating and accessing data based on the CWM models.

Java Database Connectivity

Java Database Connectivity (JDBC) is Sun’s Java API that provides access to virtually any relational data source from
within the Java programming language. It provides cross-DBMS connectivity to a wide range of SQL databases, and
also provides access to other tabular data sources such as spreadsheets or flat files. Sun maintains a database of
JDBC-enabled drivers currently containing more than 170 entries, which indicates the broad industry support for this
API.

In the SDK, JDBC is respected as the existing Java standard API for accessing result sets. JDBC is widely used, and
many Java developers are familiar with the ResultSet API. We only needed to add a few extensions to utilize the
ResultSet API with multidimensional (OLAP) datasets as well as relational result sets, and in this way the SDK’s
ResultSet API achieves a common look-and-feel across relational or OLAP result sets.

Meta Object Facility

The MOF is an OMG standard which provides an open-ended information modeling capability. MOF consists of a
base set of meta-modeling constructs used to describe technologies and application domains, and a mapping of those
constructs to CORBA IDL (Interface Definition Language) for automatically generating model-specific APIs. The MOF
also defines a reflective programming capability that allows applications to query a model at runtime to determine the
structure and semantics of the modeled system.

Although MOF is not directly utilized or exposed by the SDK, it is important as a foundation technology, and many of
the SDK interfaces are the result of mapping MOF-compliant metamodels using the JMI code templates.

XML Metadata Interchange

XML Metadata Interchange (XMI) is an OMG standard that supports the interchange of any kind of metadata that can
be expressed using the MOF specification, including both model and metamodel information. XMI integrates the
Unified Modeling Language (UML), MOF, and XML, and allows developers of distributed systems to share object
models and other metadata over the Internet. XMI, together with MOF and UML, form the core of the OMG metadata
repository architecture. There are many advantages of basing a metadata interchange format on XML. These include
the following:

Introduction

Architectural Overview

10

• XML is an open, platform-independent, and vendor-independent standard.

• XML supports the international character set standards of extended ISO Unicode.

• XML is metamodel-neutral, and can represent metamodels compliant with OMG’s meta-metamodel, the MOF.

• In the SDK, implementing the metadata services exposed by the connectors as full-blown JMI services
automatically provides XMI support. A JMI service provides APIs for streaming metadata in the XMI format. The
XmiWriter and XmiReader interfaces import and export XML documents to and from a JMI service.

XMI, together with MOF, is important in the SDK as a foundation technology. By applying a JMI rendering to
interfaces, we also provide XMI capabilities, which support a common exchange format for metadata.

OLE DB for OLAP and XML for Analysis

Microsoft’s OLE DB for OLAP is the de-facto industry standard API for exchanging metadata and data between an
OLAP server and a client on a Windows platform. (Throughout this Guide, we abbreviate OLE DB for OLAP with
“ODBO.”) Microsoft’s XML for Analysis (XMLA) is advancing this standard by leveraging many of the established
concepts of ODBO for a Web services API. Both ODBO and XMLA utilize a SQL-like query language called MDX
(Multidimensional Expressions). Since MDX-based OLAP providers are currently the de-facto standard, the SDK
takes capabilities of such providers into account.

Although many of the expressions used in the SDK’s OLAP Query API are common to different OLAP
implementations, they were designed with MDX-based providers and mind and therefore resemble various
expressions described in the MDX grammar in some areas. Note however that the SDK takes a strongly object-
oriented approach to defining queries, rather than a linguistic approach.

Introduction

Architectural Overview

11

Foundation Technologies Versions

The table below lists the version of each foundation technology used in the BI Java SDK:

Foundation Technology Supported/Required version

SAP NetWeaver ’04 and greater Web Application Server 6.40 and greater

Business Information Warehouse (SAP BI
Systems – or BW)

BW 3.5 and greater

Meta Object Facility (MOF) 1.4

Java Metadata Interface (JMI) 1.0

Common Warehouse Metamodel (CWM) 1.0

J2EE Connector Architecture (JCA) 1.0

Java Database Connectivity (JDBC) 2.0

Java Development Kit (JDK) 1.4

XML Metadata Interchange (XMI) 1.2

12

Chapter 1: Getting Started

Overview

This chapter contains two complete tutorials to jump-start you in using the BI Java SDK in end-to-end scenarios, from
establishing a connection to rendering the results into an HTML page:

• Hello MDX

• Hello SQL

We excerpt from the code below to illustrate and comment on the major steps. The complete source code of these
examples, from the SDK package com.sap.ip.bi.sdk.samples, can be found in Tutorial_1.java (MDX) and
Tutorial_2.java (SQL) in the docs/examples folder after unzipping the BI Java SDK. There, you can also view
the HTML rendering of the result.

System Configuration

First, we introduce the technical requirements and configuration instructions for running these tutorials.

Data Source Requirements

Hello MDX

This chapter’s OLAP tutorial, "Hello MDX," uses the BI XMLA Connector JAR file included with the SDK and is based
on the SAP BI demo content InfoCube OD_SD_C03 "SAP Demo: Sales and Distribution Overview" and the
query 0D_SD_C03/0D_SD_C03_Q009 "Order and Sales values." To reproduce this tutorial, you need access
to SAP BI system release 2.0 or higher with this SAP demo content activated.

This tutorial runs locally in an unmanaged environment, so you do not need the BI XMLA Connector itself to
reproduce it.

Hello SQL

This chapter’s SQL tutorial, "Hello SQL," uses the BI JDBC Connector JAR file included with the SDK and a JDBC
data source. To reproduce this tutorial, you need an active JDBC data source for which you have a valid user name
and password, and you need to have properly configured your JDBC driver in your local environment.

In contrast to the OLAP tutorial, this tutorial doesn’t depend on specific data in a specific data source. We will show
you how to retrieve the data in all the columns of the first table in your JDBC database, so results on different
databases will vary.

Getting Started

Overview

13

 Caution:

Note that the relational tutorial’s sample class, Tutorial_2.java, depends on the presence of your
database provider's JDBC driver in your classpath. If this is not configured correctly, this tutorial will fail.

Connection Properties

We rely on easily accessed and edited properties files to supply your connection-specific information such as
username and password to the connectors. We include four properties files, one for each BI Java Connector, in the
examples folder nested in the com.sap.ip.bi.sdk.samples package with the full set of Java source files. For
this tutorial, you will want to work with the XMLA or the JDBC properties file:

 Helpers.xmla.properties: connection information for the BI XMLA Connector, used in “Hello MDX” Tutorial 1.

 Helpers.jdbc.properties: connection information for the BI JDBC Connector, used in “Hello SQL” Tutorial 2.

Edit the existing files with your own connection information, or create new files in the
com.sap.ip.bi.sdk.samples package to locally override the properties, named
Helpers.nnnn.local.properties (where "nnnn" corresponds to the four-letter connector name). The Helpers
class will first look for the local file, and if not found, will take the original properties files.

For connector properties configuration information, refer to the howto.html file that ships inside of each resource
adapter archive or is available in the SDK documentation set, on the Connectors page.

Note:

The connectors’ howto.html files are also included in the SDK distribution package for your reference.
See index.html in the docs folder of the package, then follow the Connectors link.

Rendering the Servlets

These tutorials, like all the SDK examples, implement a minimal HTTP servlet, which generates HTML for easy
viewing of results. By default, running the main method without a parameter will write the HTML to the console. To
write it to an HTML file instead for easy viewing in a Web browser, specify a filename, with full path and .html
extension, as the parameter.

Getting Started

Hello MDX: First Example for a Multidimensional Data Source

14

Hello MDX: First Example for a Multidimensional Data
Source

Our OLAP version of “Hello World” demonstrates the complete code sequence required to display a result on the
screen. In this tutorial, you build a servlet that connects to an OLAP data source, accesses its metadata, builds a
query, executes it, and accesses and renders the result set. You will actually be defining and rendering the result of
an MDX query, but with our OLAP Query API, the complexity of the underlying MDX statement is hidden.

The figure below shows a basic result set created with a query in the BEx Analyzer when drilling down by sales
organization (0D_SALE_ORG) with the key figures on the columns. This view also has a single filter value on division
set to ”High Tech“:

Figure 2 — Example BEx Result Set

The goal of this tutorial is to use the BI Java SDK to create a servlet with a result similar to this.

Step 1: Import Packages

First, configure the imports required for this SDK servlet. You may import by package, but we recommend you import
by specific interfaces. For this tutorial, you will need the basic data access, connectivity, query generation, and
supporting interfaces. The full list of imports is described below:

Getting Started

Hello MDX: First Example for a Multidimensional Data Source

15

import java.io.IOException;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.Locale;
import java.util.Properties;

import javax.resource.spi.ManagedConnectionFactory;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.omg.cwm.analysis.olap.Cube;
import org.omg.cwm.analysis.olap.Dimension;

import com.sap.exception.IBaseException;
import com.sap.ip.bi.sdk.dac.connector.IBIConnection;
import com.sap.ip.bi.sdk.dac.connector.IBIOlap;
import com.sap.ip.bi.sdk.dac.connector.olap.odbo.BIOdboMetadataConstants;
import com.sap.ip.bi.sdk.dac.connector.xmla.XmlaConnectionConstants;
import com.sap.ip.bi.sdk.dac.connector.xmla.XmlaManagedConnectionFactory;
import com.sap.ip.bi.sdk.dac.olap.query.IBICommandProcessor;
import com.sap.ip.bi.sdk.dac.olap.query.IBIMemberFactory;
import com.sap.ip.bi.sdk.dac.olap.query.main.IBIQuery;
import com.sap.ip.bi.sdk.dac.olap.query.member.IBIMember;
import com.sap.ip.bi.sdk.dac.result.IBIDataSet;
import com.sap.ip.bi.sdk.dac.result.model.BIDataSetTableModel;
import com.sap.ip.bi.sdk.dac.result.model.BITableItem;
import com.sap.ip.bi.sdk.exception.BIException;
import com.sap.ip.bi.sdk.exception.BISQLException;
import com.sap.ip.bi.sdk.localization.sdk.samples.Samples;
import com.sap.ip.bi.sdk.samples.servlet.MinimalServletContainer;
import com.sap.ip.bi.sdk.util.impl.BIResourceProperties;
import com.sapportals.connector.connection.IConnectionFactory;
import com.sapportals.connector.connection.IConnectionSpec;

Step 2: Connect to an SAP BI System

The next step is to connect to the SAP BI system. A connection to a data source is represented by an instance of the
IBIConnection interface.

First create a basic servlet and prepare to read the connection information from the properties helper file, with help
from Helpers.java:

Getting Started

Hello MDX: First Example for a Multidimensional Data Source

16

public class Tutorial_1 extends HttpServlet {
 private final static String CONTENT_TYPE = "text/html";

 private static Properties connProp =
 new BIResourceProperties(Helpers.class, ".xmla");

 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 }

 public void doGet(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType(CONTENT_TYPE);

 PrintWriter out = response.getWriter();

To establish a connection, you must provide connection information in your Helpers.xmla.properties file that
encapsulates all relevant parameters for a specific system. Because you are connecting to an SAP BI server, the
server name, system number, client, user name, password, and language parameters are required.

Note: How to find the URL of your XMLA provider

For an SAP B I system, you can find this information by executing the function module
RSBB_URL_PREFIX_GET under transaction SE37. For the import parameters of the function module,
use the following values:
I_HANDLERCLASS = CL_RSR_MDX_SOAP_HANDLER

I_PROTOCOL = HTTP

I_MESSAGESERVER =

The URL path is always */sap/bw/xml/soap/xmla.

Get the connection properties with which to create the connection from the properties file with the following lines:

Getting Started

Hello MDX: First Example for a Multidimensional Data Source

17

 try {
 ManagedConnectionFactory mcf;
 IConnectionFactory cf;
 IConnectionSpec cs;

 mcf = new XmlaManagedConnectionFactory();
 cf = (IConnectionFactory) mcf.createConnectionFactory();
 cs = cf.getConnectionSpec();

 cs.setPropertyValue(
 XmlaConnectionConstants.USERNAME.toString(),
 connProp.getProperty(XmlaConnectionConstants.USERNAME.toString()));

 cs.setPropertyValue(
 XmlaConnectionConstants.PASSWORD.toString(),
 connProp.getProperty(XmlaConnectionConstants.PASSWORD.toString()));

 cs.setPropertyValue(
 XmlaConnectionConstants.URL.toString(),
 connProp.getProperty(XmlaConnectionConstants.URL.toString()));

 cs.setPropertyValue(
 XmlaConnectionConstants.DATA_SOURCE.toString(),
 connProp.getProperty(XmlaConnectionConstants.DATA_SOURCE.toString()));

 cs.setPropertyValue(
 XmlaConnectionConstants.STATEFULNESS.toString(),
 connProp.getProperty(XmlaConnectionConstants.STATEFULNESS.toString()));

 cs.setPropertyValue(
 XmlaConnectionConstants.LANGUAGE.toString(),
 connProp.getProperty(XmlaConnectionConstants.LANGUAGE.toString()));

Note:

Be sure to prepare the Helpers.xmla.properties file with your own connection parameters.

Actually create the connection now by instantiating IBIConnection. In establishing the connection to an OLAP data
source, the IBIOlap interface provides an entry point to access metadata and execute queries:

 IBIConnection connection = (IBIConnection) cf.getConnectionEx(cs);
 IBIOlap olap = connection.getOlap();

Note:

For more information on the SDK’s connection architecture, see the Connecting to Data Sources chapter
of this Guide.

Getting Started

Hello MDX: First Example for a Multidimensional Data Source

18

Step 3: Retrieve the Metadata

Standard client applications need access to metadata to construct queries. Now that you’re connected to your data
source, you will retrieve its metadata. In this example, you get an interface to a specific cube of the SAP BI system to
which you are connected. BEx queries are mapped to cubes.

For this example you will need the "0D_SD_C03/0D_SD_C03_Q009" cube and the two dimensions "0D_SALE_ORG"
and "0D_DIV". You retrieve the metadata using the ObjectFinder provided by IBIOlap. The code sample below
also contains a sanity check to ensure that the required cube is available:

 Cube cube = olap.getObjectFinder().
 findCubeFirst((String)null, "0D_SD_C03/0D_SD_C03_Q009");
 if (cube==null){
 throw new BIException(Locale.getDefault(),
 Samples.SDK_SAMPLES_1000,
 new Object[] {"0D_SD_C03/0D_SD_C03_Q009"});
 }
 Dimension salesOrgDimension = olap.getObjectFinder().
 findDimensionFirst(cube, "0D_SALE_ORG");
 Dimension divisionDimension = olap.getObjectFinder().
 findDimensionFirst(cube, "0D_DIV");

To filter the data by the "[0D_DIV].[7]" division, create the corresponding member:

 IBIMemberFactory queryFactory = olap.getQueryFactory().getMemberFactory();
 HashMap taggedValues = new HashMap();
 taggedValues.put(BIOdboMetadataConstants.MEMBER_UNIQUE_NAME,
 "[0D_DIV].[7]");
 IBIMember divisionHiTechMember = queryFactory.
 createMember(divisionDimension, "7", null, taggedValues);

Note:

For more information on the SDK’s metadata APIs, see the Accessing Metadata chapter of this Guide.

Step 4: Create a Query

You’re now ready to create a query. Query construction is done by olap.createQuery(cube), and IBIQuery is
the outcome.

Getting Started

Hello MDX: First Example for a Multidimensional Data Source

19

Querying is greatly assisted by the use of the OLAP Command Processor. The OLAP Command Processor is part of
the OLAP Query API and makes it easier to use the underlying query model by hiding the complexity of this model.
With it, you can create and manipulate complex queries with simple commands. You can think of the individual
methods of the command processor in terms of macros that consist of several method calls manipulating the
structures of queries.

Next, you therefore create a query and an instance of the OLAP Command Processor associated with this query:

 IBIQuery query = olap.createQuery(cube);
 IBICommandProcessor commandProcessor = query.getCommandProcessor();

In its initial state, this query has the measures dimension of the associated cube drilled down on the columns axis and
all other dimensions on the slicer axis, and will select all members of their respective dimensions.

Although a query can be executed immediately after its creation, executing it would not be very useful because the
query does not contain specific information. Because nothing is selected for the dimensions by default, all dimensions
are on the slicer axis, with default values that are mostly ALL members. Such a query would return a single cell on the
columns axis for all available members. You therefore need to modify the query by changing its layout and specifying
members.

Note:

For more information on the SDK’s query APIs, see the Creating Queries chapter of this Guide.

Step 5: Change the Layout

“Layout” refers to the distribution of the dimensions and the axes of a query. In a two-dimensional layout, dimensions
can be oriented along the columns or rows axis, and the selected members of the dimensions are visible on these
axes of the result set. The slicer axis is used to filter the query by dimensions, which are oriented along this axis.

The OLAP Command Processor’s moveDimensionTo[Axis].(dimensionUniqueName) methods append a
dimension to the last position on the target axis. Additional methods provide more control with the positioning, which is
important if there is already a dimension on the target axis.

To achieve a result similar to the BEx query, you must move the Sales Organization dimension to the rows axis.

 commandProcessor.moveDimensionToRows(salesOrgDimension);

Getting Started

Hello MDX: First Example for a Multidimensional Data Source

20

Step 6: Specify Selected Members

To further specialize the query, use the OLAP Command Processor to specify the members you would like to select
for some of the dimensions.

In this case, you must add the member HiTech to the member set of the Division dimension. Because this
dimension is still on the slicer axis, this dimension results in a single filter value in the WHERE clause of the resulting
MDX:

 commandProcessor.addMember(divisionHiTechMember);

Step 7: Execute the Query and Retrieve the Result Set

Now you can execute the query and retrieve its result set, by calling the execute()method on a query object. This
method triggers the selection of data from the connected server:

 IBIDataSet dataset = query.execute();

Instances of IBIDataSet represent data sets, which are multidimensional result sets.

Note:

For more information on the SDK’s ResultSet API, see the Retrieving Result Sets chapter of this Guide.

Step 8: Render the Result Set

With your query created, you can visualize its result by rendering it into the output stream of a servlet. To format the
HTML, enlist the help of a stylesheet contained in the examples helpers class Helpers.java, and for illustration,
also display the MDX statement that was executed on the server:

Getting Started

Hello MDX: First Example for a Multidimensional Data Source

21

 out.println(Helpers.getDocTypeDefinition());
 out.println("<html>");
 out.println("<head><title>Tutorial_1</title>");
 out.println(Helpers.getStyleSheetDefinition());
 out.println("</head><body>");

 out.println(
 "<p>MDX Statement that was executed:
 "
 + ""
 + (String) query.getNativeRepresentation()
 + ""
 + "</p>");

Now you use the OLAP Table Model, BIDataSetTableModel, in conjunction with the stylesheet to render to a
table. This provides a projection of the data set into a tabular view where cells can be accessed by row and column
coordinates:

 try {
 BIDataSetTableModel table =
 new BIDataSetTableModel(dataset, false);
 out.println("<p>Result set:</p>");
 out.println("<table width=700 border=1 cellpadding=0 cellspacing=0>");

 int row = table.getRowCount();
 int col = table.getColumnCount();

 for (int i = 0; i < row; i++) {
 out.println("<tr>");

 for (int j = 0; j < col; j++) {
 BITableItem item =
 (BITableItem) table.getValueAt(i, j);
 out.println("<td class=\"headCenter\">");
 out.println(Helpers.escape(item.toString()));
 out.println("</td>");
 }

 out.println("</tr>");
 }

 out.println("</table>");
 } catch (BISQLException e) {
 e.printStackTrace();
 out.println("<p>Error: " + e.getMessage() + "</p>");
 }

 out.println("</body>");
 out.println("</html>");
 }

Getting Started

Hello MDX: First Example for a Multidimensional Data Source

22

Note:

We've kept the HTML fairly simple in this tutorial, but as you will see in the other examples, you can use
the stylesheet to distinguish between header rows and columns and to stripe rows of the data.

And finally, catch errors and finish the servlet:

 catch (Exception e) {
 e.printStackTrace();
 if (e instanceof IBaseException)
 out.println("Error: " +
 ((IBaseException)e).getNestedLocalizedMessage());
 else
 out.println("Error: " + e.getMessage());
 }
 }

 public void destroy() {
 }

 public static void main(String[] args) {
 if (args.length == 1) {
 MinimalServletContainer.executeServlet(new Tutorial_1(), args[0]);
 } else {
 MinimalServletContainer.executeServlet(new Tutorial_1(), System.out);
 }
 }

}

Note:

See more on the SDK’s exception framework in the Exceptions chapter of this Guide.

The Output

The output of this tutorial is the following HTML table:

Getting Started

Hello SQL: First Example for a Relational Data Source

23

Figure 3 — Tutorial 1 Result Set

Remember, you can view the full source code for this tutorial and the Helpers class in Tutorial_1.java in the
docs/examples folder after unzipping the BI Java SDK. There, you can also view the HTML output of the above
result.

Hello SQL: First Example for a Relational Data Source

Our SQL version of “Hello World” demonstrates the complete code sequence required to display a result on the
screen. In this tutorial, you build a servlet that connects to a relational data source, accesses its metadata, builds a
query, executes it, and accesses and renders the result set. You will actually be defining and rendering the result of a
SQL query, but with our Relational Query API, the complexity of the underlying SQL statement is hidden.

This tutorial is a little different from the OLAP tutorial in that it creates a query against the data in your own JDBC
database, rather than using specific data in a specific data source such as a BI cube. We will show you how to
retrieve the data in all the columns of the first table in your JDBC database, so results on different databases will vary.

Getting Started

Hello SQL: First Example for a Relational Data Source

24

Step 1: Import Packages

First, configure the imports required for this SDK servlet. You may import by package, but we recommend you import
by specific interfaces. For this tutorial, you will need the basic data access, connectivity, query generation, and
supporting interfaces. The full list of imports is described below:

import java.io.IOException;
import java.io.PrintWriter;
import java.sql.ResultSet;
import java.util.Iterator;
import java.util.List;
import java.util.Properties;

import javax.resource.spi.ManagedConnectionFactory;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.omg.cwm.resource.relational.Column;
import org.omg.cwm.resource.relational.Table;

import com.sap.exception.IBaseException;
import com.sap.ip.bi.sdk.dac.connector.IBIConnection;
import com.sap.ip.bi.sdk.dac.connector.IBIRelational;
import com.sap.ip.bi.sdk.dac.connector.jdbc.JdbcConnectionConstants;
import com.sap.ip.bi.sdk.dac.connector.jdbc.JdbcManagedConnectionFactory;
import com.sap.ip.bi.sdk.dac.relational.query.IBICommandProcessor;
import com.sap.ip.bi.sdk.dac.relational.query.IBIQuery;
import com.sap.ip.bi.sdk.samples.servlet.MinimalServletContainer;
import com.sap.ip.bi.sdk.util.impl.BIResourceProperties;
import com.sapportals.connector.connection.IConnectionFactory;

import com.sapportals.connector.connection.IConnectionSpec;

Step 2: Connect to a JDBC Database

The next step is to connect to a JDBC database. A connection to a data source is represented by an instance of the
IBIConnection interface.

First create a basic servlet and prepare to read the connection information from the properties helper file, with help
from Helpers.java:

Getting Started

Hello SQL: First Example for a Relational Data Source

25

public class Tutorial_2 extends HttpServlet {
 private final static String CONTENT_TYPE = "text/html";

 private static Properties connProp =
 new BIResourceProperties(Helpers.class, ".jdbc");

 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType(CONTENT_TYPE);

 PrintWriter out = response.getWriter();

To establish a connection, you must provide connection information in your Helpers.jdbc.properties file that
encapsulates all the relevant connection properties for your JDBC database.

Note: About JDBC connection URLs

The URL used to connect to a JDBC database is vendor-specific. JDBC URLs have the following
components:

<protocol>:<subprotocol>:<subname>

where <protocol> is always “jdbc.” Both <subprotocol> and <subname>, however, are vendor-
specific, depending on the actual JDBC driver used.

Get the connection properties with which to create the connection from the properties file with the following lines:

Getting Started

Hello SQL: First Example for a Relational Data Source

26

 try {
 ManagedConnectionFactory mcf;
 IConnectionFactory cf;
 IConnectionSpec cs;

 mcf = new JdbcManagedConnectionFactory();
 cf = (IConnectionFactory) mcf.createConnectionFactory();
 cs = cf.getConnectionSpec();

 cs.setPropertyValue(
 JdbcConnectionConstants.USERNAME.toString(),
 connProp.getProperty(JdbcConnectionConstants.USERNAME.toString()));

 cs.setPropertyValue(
 JdbcConnectionConstants.PASSWORD.toString(),
 connProp.getProperty(JdbcConnectionConstants.PASSWORD.toString()));

 cs.setPropertyValue(
 JdbcConnectionConstants.URL.toString(),
 connProp.getProperty(JdbcConnectionConstants.URL.toString()));

 cs.setPropertyValue(
 JdbcConnectionConstants.DRIVERNAME.toString(),
 connProp.getProperty(JdbcConnectionConstants.DRIVERNAME.toString()));

Note:

Be sure to prepare the Helpers.jdbc.properties file with your own connection parameters.

Actually create the connection now by instantiating IBIConnection. In establishing the connection to a relational
database, the IBIRelational interface provides an entry point to access metadata and execute queries:

 IBIConnection connection = (IBIConnection) cf.getConnectionEx(cs);

 IBIRelational rel = connection.getRelational();

Note:

For more information on the SDK’s connection architecture, see the Connecting to Data Sources chapter
of this Guide.

Getting Started

Hello SQL: First Example for a Relational Data Source

27

Step 3: Retrieve the Metadata

Standard client applications need access to metadata to construct queries. Now that you’re connected to your data
source, you will retrieve its metadata. In this example, you retrieve metadata by using the getTables method
provided by the IBIRelational interface.

First, you get an interface to a table in your database by getting a list of all tables, then retrieving the first table in the
list. You then retrieve the list of columns of that table, evoking exceptions if no tables or columns are found:

 List tables = rel.getTable();
 if (tables == null || tables.size() == 0) {
 throw new ServletException("no tables found");
 }

 Table table = (Table) tables.get(0);

 List columns = table.getFeature();
 if (columns == null || columns.size() == 0) {
 throw new ServletException("no columns found");

Note:

For more information on the SDK’s metadata APIs, see the Accessing Metadata chapter of this Guide.

Step 4: Create a Query

You’re now ready to create a query. Query construction is done by rel.createQuery(), and IBIQuery is the
outcome.

Querying is greatly assisted by the use of the Relational Command Processor. The Relational Command Processor
is part of the Relational Query API and makes it easier to use the underlying query model by hiding the complexity of
this model. With it, you can create and manipulate complex queries with simple commands. You can think of the
individual methods of the command processors in terms of macros that consist of several method calls manipulating
the structures of queries.

Next, you therefore create a query and an instance of the Relational Command Processor associated with this query:

 IBIQuery query = rel.createQuery();
 IBICommandProcessor commandProcessor = query.getCommandProcessor();

Getting Started

Hello SQL: First Example for a Relational Data Source

28

Although a query can be executed immediately after its creation, executing it would not be very useful because the
query does not contain specific information. No tables and columns are specified, and such a query would return data
in the list of all the tables and all the columns in your database. Refine your query, therefore, by specifying table and
columns.

Note:

For more information on the SDK’s query APIs, see the Creating Queries chapter of this Guide.

Step 5: Specify Table and Columns

Since relational queries support multiple tables and even multiple instances of the same table in the same query, each
instance of a table in the query has to be uniquely identifiable. This is achieved by using references (String)
identifying the particular instance of the table in the query. These references can either be provided when adding the
table or generated by the command processor when adding the table.

In this tutorial, you use the Relational Command Processor to add the table to the query:

 String tref = commandProcessor.addTable(table);

Continue using the command processor to add all of the columns of the table to the query:

 for (Iterator c = columns.iterator(); c.hasNext();) {
 Column column = (Column) c.next();
 commandProcessor.addColumn(column, tref);
 }

Step 6: Execute the Query and Retrieve the Result Set

Now you can execute the query and retrieve its result set, by calling the execute()method on a query object. This
method triggers the selection of data from the connected relational database:

 ResultSet result = query.execute();

The ResultSet object represents the relational result set.

Note:

For more information on the SDK’s ResultSet API, see the Retrieving Result Sets chapter of this Guide.

Getting Started

Hello SQL: First Example for a Relational Data Source

29

Step 7: Render the Result Set

With your query created, you can visualize its result by rendering it into the output stream of a servlet. To format the
HTML, enlist the help of a stylesheet contained in the examples helpers class Helpers.java, and for illustration,
also display the SQL statement that was executed on the server:

 out.println(Helpers.getDocTypeDefinition());
 out.println("<html>");
 out.println("<head><title>Tutorial_2</title>");
 out.println(Helpers.getStyleSheetDefinition());
 out.println("</head><body>");

 out.println(
 "<p>SQL Statement that was executed:
 <code>"
 + (String)rel.getNativeRepresentation(query)
 + "</code><p>");

 Helpers.renderResultset(out, result);

 out.println("</body>");
 out.println("</html>");
 }

And finally, catch errors and finish the servlet:

 catch (Exception e) {
 e.printStackTrace();
 if (e instanceof IBaseException)
 out.println("Error: " +
 ((IBaseException)e).getNestedLocalizedMessage());
 else
 out.println("Error: " + e.getMessage());
 }
 }

 public void destroy() {
 }

 public static void main(String[] args) {
 if (args.length == 1) {
 MinimalServletContainer.executeServlet(new Tutorial_2(), args[0]);
 } else {
 MinimalServletContainer.executeServlet(new Tutorial_2(), System.out);
 }
 }

}

Getting Started

Hello SQL: First Example for a Relational Data Source

30

Note:

See more on the SDK’s exception framework in the Exceptions chapter of this Guide.

The Output

This tutorial fetches all the columns for the first table retrieved in your own JDBC database, so your results will vary.
The output against one example JDBC database is the following HTML table:

Figure 4 — Tutorial 2 Sample Result Set

Remember, you can view the full source code for this tutorial and the Helpers class in Tutorial_2.java in the
docs/examples folder after unzipping the BI Java SDK. There, you can also view the HTML output of the above
result.

31

Chapter 2: Connecting to Data Sources
Overview

The first step in building applications with the BI Java SDK is to connect to a data source. The BI Java SDK relies
upon a driver-based connector architecture based on the J2EE Connector Architecture (JCA) in order to achieve the
openness necessary to integrate many different data sources into a variety of Java applications and BI tools.

This chapter explains the architecture and basic concepts involved with connecting to data sources with the SDK, in
the following sections:

• Connection Architecture

 Client Interface

 Portal Connection Framework

 Service Provider Interface

 Managed Environment

 Non-Managed Environment

 Connection Specification and Portal Service

• BI Java Connectors

 BI XMLA Connector

 BI JDBC Connector

 BI ODBO Connector

 BI SAP Query Connector

 Note:

To find out more about the JCA and SAP NetWeaver Portal Architecture, refer to references listed in
Appendix C: Additional Resources.

API Documentation:

Refer to the Javadocs for the Connection Interfaces in the following package of the SDK:

com.sap.ip.bi.sdk.dac.connector

Connecting to Data Sources

Connection Architecture

32

Connection Architecture

Sun’s J2EE Connector Architecture (JCA) defines a standard architecture for connecting the Java 2 Platform to
heterogeneous Enterprise Information Systems (EISs) such as mainframe transaction processing and database
systems. The JCA enables an EIS vendor to provide a standard resource adapter, in our case a BI Java Connector,
which is defined as a system-level software driver used by a Java application to connect to an EIS. The connector
plugs into an application server and provides connectivity between the EIS, the application server, and the application.

The BI Java Connectors implement JCA’s Service Provider Interface (SPI) to realize the system contract. The
connectors use the connection management components of both the JCA’s Common Client Interface (CCI) and the
SPI. In a layered approach, the BI Java Connectors implement the connection management interfaces in an abstract
implementation layer, and each individual connector implements a concrete layer.

The figure below details this layered connection management approach:

getNative()

IConnection

supports()
getOlap()
getRelational()

IBIConnection

supports()
getSchema()
getCurrentSchema()
setCurrentSchema()
getTable()
createQuery()
...

IBIRelational

getSchema()
getCube()
getDimension()
getObjectFinder()
getMemberData()
getTaggedValue()
getTopLevelPackage()
createQuery()
excute()
getQueryFactory()

IBIOlap

supports()
getNative()

INative

javax.resource.cci

com.sapportals.connector.connection

com.sap.ip.bi.sdk.dac.connector

Connection

Figure 5 — BI Java SDK Connection Management

Connecting to Data Sources

Connection Architecture

33

In brief, as depicted, JCA’s CCI provides the Connection interface, which the SAP NetWeaver Portal has extended
with the IConnection interface of its Portal Connection Framework API. Taking this one step further, for BI-specific
connections, we’ve extended IConnection with our IBIConnection interface. By extending the Portal Connection
Framework interfaces and thus integrating with the Portal Runtime, Java components can leverage services provided
by the Portal such as SystemLandscape and ConnectorGateway.

Client Interface

The Common Client Interface (CCI) is a key component of the JCA specification. This is the interface that a resource
adapter – in our case, a BI Java Connector – provides to a client application to enable it to interact with its underlying
EIS. This interface defines a standard client API for application components, which enables application components
and enterprise architecture frameworks to drive interactions across heterogeneous EISs using a common client API.

Each BI Java Connector used by the BI Java SDK implements the CCI interfaces described below:

• IConnectionFactory – the extension of javax.resource.cci.ConnectionFactory.

• IConnectionSpec – the extension interface of javax.resource.cci.ConnectionSpec.

• IConnection – the extension of javax.resource.cci.Connection interface.
In the BI Java SDK, we create an IBIConnection interface that extends the IConnection
interface. IBIRelational stands for tabular databases, and IBIOlap stands for multidimensional
data sources.

• IConnectionMetaData – the extension of interface
javax.resource.cci.ConnectionMetaData. A component calls the method
IConnection.getMetaData to get a ConnectionMetaData instance. A CCI implementation is
required to provide an implementation class for the ConnectionMetaData interface.

 Note:

Refer to the JCA specification, at http://www.jcp.org/en/jsr/detail?id=16, for documentation on these
interfaces.

Consumer code deals only with the external CCI interfaces; these interfaces provide a wrap encapsulating all other
JCA interfaces.

In short, here’s how to connect to data sources using the SDK:

1. In your consumer code, look up the CCI connection factory interface of the connector.

2. Create a connection specification (connection string) object and set the connection parameters, including user
context. This may be done using a predefined connection string related to this connector. See the
howto.html file inside each BI Java Connector's resource adapter archive for a list of specific connection
parameters.

3. Call the getConnection method that receives the connectionSpec object as a parameter.

4. A CCI connection interface is returned as a result of the call.

http://www.jcp.org/en/jsr/detail?id=16

Connecting to Data Sources

Connection Architecture

34

Portal Connection Framework

The SAP NetWeaver Portal has extended the CCI with its Portal Connection Framework interface, which consists of
three components: Connection, Execution, and Metadata. The BI Java SDK uses this Portal Connection Framework,
but only relies upon its Connection component. The Execution component defines functions, objects, and structures
not currently used by the SDK, and for the Metadata functionality, the SDK has leveraged the CWM and JMI
specifications (see Accessing Metadata, below).

The Connection component of the Portal Connection Framework provides the connection management interfaces
(again, extending CCI’s connection component), which include:

• IConnection – the extension of CCI’s Connection

• IConnectionFactory – the extension of CCI’s ConnectionFactory

• IConnectionMetaData – the extension of CCI’s ConnectionMetaData

• IConnectionSpec – the extension of CCI’s ConnectionSpec
• INative – the native handle to an EIS

Service Provider Interface

The BI Java SDK’s Service Provider Interface (SPI) handles connection management contracts between an
application server and a resource adapter.

Below are the service provider interfaces which need to be implemented by a resource adapter:

• ConnectionManager - javax.resource.spi.ConnectionManager
• ManagedConnectionFactory - javax.resource.spi.ManagedConnectionFactory
• ManagedConnection - javax.resource.spi.ManagedConnection
• ManagedConnectionMetaData - javax.resource.spi.ManagedConnectionMetaData

(Refer to the JCA specification, at http://www.jcp.org/en/jsr/detail?id=16, for documentation on these interfaces.)

Managed Environment

SAP’s BI resource adapters, the BI Java Connectors, may be used without an application server (in a non-managed
environment), or may be deployed onto SAP’s J2EE-based application server, the Web Application Server, version
6.40 (in a managed environment). The Web Application Server (WAS) is a J2EE application server that complies with
JCA.

http://www.jcp.org/en/jsr/detail?id=16

Connecting to Data Sources

Connection Architecture

35

During the deployment process, the Web Application Server binds the Portal Connection Framework connection
factory (IConnectionFactory) of the BI Java Connector to a JNDI lookup string. When the application server starts
up, it instantiates a managed connection factory, passing an instance of its own connection manager to the BI Java
Connector.

This process is schematically diagrammed below:

Application Component

Application Server

ConnectionManager

Enterprise Information System(EIS)

ConnectionFactory Connection

ManagedConnectionFactory

ManagedConnection

PoolManager

Architected contract

Implementation specific

ConnectionEventListener

Figure 6 — Architecture Diagram: Managed Application Scenario

Non-managed Environment

As stated above, the BI Java Connectors may also be used without an application server (in a non-managed
environment). In this environment, your application client (the first tier) directly uses a BI Java Connector to access
the EIS, which defines the second tier for a two-tier application. The BI Java SDK contains the JAR files you need to
develop applications using any of the BI Java Connectors and to use them in an unmanaged environment.

Connecting to Data Sources

Connection Architecture

36

In this scenario, the BI Java Connector uses its default connection manager. Your consumer code creates an instance
of the Portal Connection Framework IConnectionFactory without passing a connection manager as parameter.
The IConnectionFactory creates a managed connection factory and the Connector’s default connection manager.

Since the BI Java Connector is deployed in this scenario to an environment that does not contain the application
server end of JCA, the managed connection factory, implemented by each individual BI Java Connector, is directly
exposed to the consumer.

You can instantiate an instance of the managed connection factory and work directly with the physical connection
layer to manage connections.

Connection Specification and Portal Service

You need to specify certain parameters in order to configure your connection. The SDK implements the empty
ConnectionSpec interface provided by the JCA for these purposes. In addition, the BI Java Connectors use the
ConnectionSpec to define additional properties specific to the underlying EIS.

In order to conform to the Portal Connection Framework, we implement IConnectionSpec, which is an extension of
ConnectionSpec.

In order to use Portal services such as the ConnectorGateway, we also need to implement several Portal-specific
interfaces, including:

• IConnectionSpecMetaData

• IConnectionProperty

• IConnectionPropertyGroup

• additional related implementations such as IString

The following diagram illustrates ConnectionSpec and its related classes, using the BI ODBO Connector scenario
as an example:

Connecting to Data Sources

BI Java Connectors

37

ConnectionSpec

IConnectionS
pec

OdboConnectionProperties
m_Properties : Properties

clone()
getUserName()
setUserName()
getPassword()
setPassword()
getLanguage()
setLanguage()
hashCode()
equals()

ConnectionRequ
estInfo

ConnectionSpecMet
aDataImpl

IConnectionSpec
Metada

IConnectionProperty
Group

ConnectionProperty
Impl

OdboConnectionSpec

getAllConnectionProperties()
retrieveConnectionSpecMetaData()
getPropertyValue()
setPropertyValue()

OdboConnection
PropertyGroup

OdboConnection
Property

OdboConnectionSp
ecMetaData

ConnectionProperty
Impl

IConnection
Property

Figure 7 — ConnectionSpec and Related Classes

BI Java Connectors
In the JCA architecture, a resource adapter plugs into an application server and provides connectivity between the
EIS, the application server, and the application.

The BI Java Connectors are a group of four JCA-compliant resource adapters created for Java applications to
connect to relational or OLAP data sources in an EIS. The BI Java Connectors may be deployed onto SAP
NetWeaver '04 - Web Application Server version 6.40. The connectors implement the specific client interface defined
by the SDK's Connector Architecture.

The BI Java SDK contains the JAR files you need to develop applications using any of the BI Java Connectors and to
use them in an unmanaged scenario, but to use your application with a data source in the managed environment of
the J2EE server, you need to deploy the appropriate BI Java Connector. The connectors themselves are distributed
separately, deployed with NetWeaver’s optional BI UDI component.

Connecting to Data Sources

BI Java Connectors

38

The BI Java Connectors are packaged in resource adapter archives, or RAR files. Each RAR file includes class
libraries and dependencies, a deployment descriptor, and connector properties documentation in the form of a
howto.html file. General system guidelines are listed below in the Connector Overview section.

Note:

The connectors’ howto.html files are also included in the SDK distribution package for your reference.
See index.html in the docs folder of the package, then follow the Connectors link.

Four BI Java Connectors are available, listed below with the name of the resource adapter archive in which they are
deployed:

• BI JDBC Connector : bi_sdk_jdbc.rar

• BI ODBO Connector : bi_sdk_odbo.rar

• BI SAP Query Connector : bi_sdk_sapq.rar

• BI XMLA Connector : bi_sdk_xmla.rar

The flow between the data sources, the BI Java Connectors, the BI Java SDK, and its potential clients is
schematically depicted below:

Figure 8 — BI Java SDK Connectivity Flow

Connecting to Data Sources

BI Java Connectors

39

The following sections briefly introduce each connector, but refer to howto.html file inside of each archive for
additional specific configuration and deployment information.

Note:

The BI Java Connectors are distributed separately from the BI Java SDK, deployed with NetWeaver’s
optional BI UDI component.

BI JDBC Connector

Sun's JDBC (Java Database Connectivity) is the standard Java API for relational database management systems
(RDBMS). The BI JDBC Connector allows you to connect applications built with the BI Java SDK to over 170 JDBC
drivers, supporting data sources such as Teradata, Oracle, Microsoft SQL Server, Microsoft Access, DB2, Microsoft
Excel, and text files such as CSV.

The connector adds the following functionality to existing JDBC drivers:

• Uniform connection management that integrates with user management in the SAP NetWeaver Portal

• Uniform metadata service, by implementing Java Metadata Interface (JMI) capabilities based on the Common
Warehouse Metamodel (CWM)

• SQL generator

The BI JDBC Connector implements the BI Java SDK’s IBIRelational interface.

BI ODBO Connector

Microsoft's ODBO (OLE DB for OLAP) is the established industry-standard OLAP API for the Windows platform. The
BI ODBO Connector allows you to connect applications built with the BI Java SDK to ODBO-compliant OLAP data
sources such as Microsoft Analysis Services, SAS, Microsoft PivotTable Services, and SAP’s BI.

The BI ODBO Connector uses Microsoft's ADO (ActiveX Data Objects) and ADO MD (ActiveX Data Objects
Multidimensional) to support connectivity to OLAP data sources. ADO provides access to the schema object; ADO
MD adds easy access to multidimensional data by extending ADO with objects specific to multidimensional data, such
as the cubes and cellsets. With ADO and ADO MD, you can browse multidimensional schema, query a cube, and
retrieve the results, thus providing convenient access to OLAP data from languages such as Microsoft Visual Basic,
Microsoft Visual C++, and Microsoft Visual J++. Like ADO, ADO MD uses an underlying OLE DB provider to gain
access to data.

The BI ODBO Connector implements the BI Java SDK's IBIOlap interface.

Connecting to Data Sources

Examples

40

BI SAP Query Connector

SAP Query is a component of SAP’s Web Application Server that allows you to create custom reports without any
ABAP programming knowledge. The BI SAP Query Connector uses SAP Query to allow applications created with the
BI Java SDK to access data from these SAP operational applications.

The BI SAP Query Connector implements the BI Java SDK's IBIRelational interface.

BI XMLA Connector

Microsoft's XMLA (XML for Analysis) facilitates Web services-based, platform-independent access to OLAP providers.
The BI XMLA Connector enables the exchange of analytical data between a client application and a data provider
working over the Web, using a SOAP-based XML communication API. The XMLA Connector sends commands to an
XMLA-compliant OLAP data source in order to retrieve the schema rowsets and obtain a result set.

The BI XMLA Connector allows you to connect applications built with the BI Java SDK to data sources such as
Microsoft Analysis Services, Hyperion, MicroStrategy, MIS, and SAP BI 3.x.

The BI XMLA Connector implements the BI Java SDK's IBIOlap interface.

Examples

Although all of the SDK’s examples connect to data sources, the tutorial examples focus in particular on connecting,
only minimally referring to the Helpers class to retrieve connection properties:

 Tutorial_1.java – OLAP Tutorial:

The OLAP Tutorial specifically steps you through setting connection properties and connecting to an OLAP data
source – in this case, via the BI XMLA Connector. This tutorial reads your connection properties from a properties file
and connects to your data source with the assistance of helper methods in Helpers.java.

See Hello MDX: First Example for a Multidimensional Data Source in the Getting Started chapter for step-by-step
instructions on how to use this tutorial.

 Tutorial_2.java – Relational Tutorial:

Connecting to Data Sources

Examples

41

The Relational Tutorial specifically steps you through setting connection properties and connecting to a relational
database – in this case, using the BI JDBC Connector. This tutorial reads your connection properties from a
properties file and connects to your database with the assistance of helper methods in Helpers.java.

See Hello SQL: First Example for a Relational Data Source in the Getting Started chapter for step-by-step instructions
on how to use this tutorial.

 Helpers.java:

The Helpers class provides static helper methods that facilitate connecting to data sources, reading your own
connection properties from Helpers.*.properties files.

Note:

See Appendix B: Examples for the full index of examples and instructions on getting your system up and
running with them.

42

Chapter 3: Accessing Metadata
Overview

Once the connector has established a connection to the data source, the next step is to understand the data inside of
it in order to browse the metadata with which to build queries. To do this, the SDK’s connectors rely upon metadata
APIs, which provide interfaces that expose the metadata of a given data source. These APIs are rendered via the
Java Metadata Interface (JMI) from standard metadata models provided by the Common Warehouse Metamodel
(CWM), and each in turn provide the basis upon which the query APIs can formulate queries.

This chapter describes the CWM, generation of interfaces from models via JMI, and the resultant metadata APIs of
the SDK, including the models that form their basis, in the following sections:

• Common Warehouse Metamodel

• Generating Interfaces

• Metadata APIs

 OLAP Metadata Model

 Relational Metadata Model

API Documentation:

Refer to the Javadocs for the OLAP Metadata API in the following package of the CWM:

org.omg.cwm.analysis.olap

Refer to the Javadocs for the Relational Metadata API in the following package of the SDK:

org.omg.cwm.resource.relational

Common Warehouse Metamodel

A metadata model defines an abstract language for expressing metadata, or data about data. In order to support
connectivity wide ranges of data sources, the SDK needs to rely upon metadata models that have sufficient
expressiveness to cover a broad range of different OLAP and relational implementations. To do this, the SDK uses
the Common Warehouse Metamodel (CWM), which provides a basis for common metadata exchange.

CWM is an Object Management Group (OMG) open standard that describes the representation and exchange of
shared, global metadata in the data warehousing and analysis, business intelligence, knowledge management, and

Accessing Metadata

Generating Interfaces

43

portal technologies domains. The SDK has leveraged CWM to create its metadata models. CWM provides a
framework for representing metadata about data sources, data targets, transformations and analysis, and the
processes and operations that create and manage warehouse data and provide lineage information about its use. The
CWM Metamodel consists of a number of sub-metamodels, which represent common warehouse metadata in data
warehousing, business intelligence, knowledge management, and portal technologies.

CWM metamodels are capable of modeling a wide spectrum of data providers. The metamodels are not only generic
and extensible in their overall content and structure, but are also separated from implementation considerations. This
is of particular importance for the SDK, in which we support a large variety of providers mapped into common
metamodel.

Our use of CWM is fully in keeping with the standards-based approach we outline in the Introduction, in Open
Standards in the SDK. Using CWM’s industry-standard metamodels means we use their respective terminology,
which is agreed upon by a wide spectrum of vendors active in the data warehousing domain. This in turn makes it
easy even for a non-SAP BI specialist to understand and learn the organization of the BI Java SDK’s APIs, because
they build upon this common industry domain knowledge.

The CWM metamodels also provide excellent documentation with precise definitions of all objects, attributes, and
methods, and package-level documentation that introduces the major concepts of a specific sub-model. We provide
that documentation in our distribution package, and cite it in this chapter.

Generating Interfaces

A large amount of the APIs provided by the BI Java SDK, including its metadata APIs, are generated by a template-
based translation or rendering of CWM models into Java interfaces. In order to generate Java interfaces out of these
models, the SDK uses Java Metadata Interface (JMI) mapping. JMI is an extensible metadata service for the Java
platform, used for introspection, discovery, and dynamic access to metadata sources, thus creating a Java
programming model for accessing metadata. It supports the design and use of generic tools for working with
metadata, for example the interaction with a metadata repository such as SAP’s Metamodel Repository.

In this way, CWM metamodels are easily extensible in that they are separated from implementation considerations,
since the implementation is rendered separately through the use of JMI.

A JMI service is any system that provides a JMI-compliant API to access its public metadata. The BI Java
Connectors expose metadata of the underlying EIS via JMI services. Any type of metadata, including objects that form
the basis of OLAP and relational queries, can be represented via JMI-compliant interfaces and implementations that
are generated by the JMI mapping service of the Metamodel Repository. JMI thus provides the benefits of
interoperability and compliance with the industry standards, as well as allowing for future extensibility.

Through JMI, the metadata models are translated into Java APIs that allow your visualization components to access
and navigate instances of the metamodels. The process is diagrammed below:

Accessing Metadata

Generating Interfaces

44

.java

measure dimension …

cube

MMR

BI Java SDK :
• Relational Metadata Model
• OLAP Metadata Model

BI Java SDK :
• Relational Metadata Model
• OLAP Metadata Model

Relational
Metadata

Model

OLAP
Metadata

Model

Relational
Metadata

Model

OLAP
Metadata

Model

CWM XMI JMI Metadata Models

.java

measure dimension …

cube

MMR

BI Java SDK :
• Relational Metadata Model
• OLAP Metadata Model

BI Java SDK :
• Relational Metadata Model
• OLAP Metadata Model

Relational
Metadata

Model

OLAP
Metadata

Model

Relational
Metadata

Model

OLAP
Metadata

Model
.java

measure dimension …

cube

measure dimension …

cube

MMRMMR

BI Java SDK :
• Relational Metadata Model
• OLAP Metadata Model

BI Java SDK :
• Relational Metadata Model
• OLAP Metadata Model

Relational
Metadata

Model

OLAP
Metadata

Model

Relational
Metadata

Model

OLAP
Metadata

Model

CWM XMI JMI Metadata Models

Figure 9 — The JMI Process

As diagrammed, the major contributors to this process are:

...

1. CWM: The SDK uses Unified Modeling Language (UML) tools to extend CWM models with our Business
Intelligence needs.

The SDK has built upon the basis of CWM to create its metadata models. CWM provides standard base UML
metamodels in UML format. UML represents the model, and the Meta Object Facility (MOF) provides the
modeling language, including syntax and semantics.

2. XMI: The UML file is saved in XMI format and ready for interchange.

XML Metadata Interchange (XMI) is the interchange mechanism for the modeled metadata, helping exchange it
from its origin in UML into its destination as Java source code.

3. JMI: We use the MMR to create a discrete Java interface for each modeled metadata object.

SAP’s Metamodel Repository (MMR) is a tool that uses JMI to create Java interfaces out of the XMI file.

4. Metadata Models: The SDK delivers these in its Java APIs.

The metadata models can be thought of as templates for creating objects, which the connectors then use to create
instances of the metadata objects to expose to your application components:

Accessing Metadata

Metadata APIs

45

Sales Division Quarter

FoodMart

Sales Division Quarter

FoodMart

measure dimension …

cube

measure dimension …

cube

0

20

40

60

80

100

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East

West

North

FOODMART PROFIT:

0

20

40

60

80

100

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East

West

North

0

20

40

60

80

100

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East

West

North

FOODMART PROFIT:

Figure 10 — UML Metadata "Templates"

The UML diagram on the left is the template for creating the objects (center) which are then exposed to your
application components (right).

 Caution:

Metadata instances referring to the same metadata object retrieved from the same data source are
guaranteed to be identical (a compare with "==" would deliver "true") only when they have been
retrieved via the same connection instance.

This means when two connections to the same data source are open at once, it is possible that
metadata instances with the same MOF-ID referring to the same metadata object of the data source are
not identical in the Java sense. In other words, comparing two such metadata objects with "equals()"
might result in "true", whereas comparing them with "==" might not.

 Note:

The JMI rendering process also includes the model description as Javadocs, and as part of our
documentation set, we have included the Javadocs for the CWM packages used by the BI Java SDK.
Specific references are cited in this chapter.

Metadata APIs

The SDK’s metadata APIs are rendered via JMI from metadata models. The SDK provides two metadata models,
each based on the Common Warehouse Metamodel (CWM): the OLAP Metadata Model, and the Relational Metadata
Model. These metadata models represent all the metadata objects necessary to create queries upon a wide variety of
data sources – both relational and OLAP.

Accessing Metadata

Metadata APIs

46

OLAP Metadata Model

The OLAP Metadata Model is based on the CWM OLAP package, which exposes business data in a multidimensional
format that specifically supports data analysis. You use it to retrieve CWM-compliant metadata objects from an OLAP
data source.

API Documentation:

Refer to the following Javadoc package for the OLAP Metadata Model’s API documentation:

org.omg.cwm.analysis.olap

In the sections that follow, we first introduce some basic concepts of OLAP models, and then we highlight the
corresponding CWM and SAP BI mappings together with extensions added on the BI Java SDK layer.

OLAP Systems

OLAP systems organize data typically drawn from multiple and diverse business information sources into a form that
supports the fast analysis of this data to gain strategic business insight.

A primary characteristic of the OLAP model is that the data is presented in a multidimensional framework. This is a
natural expression of the way business enterprises view their strategic data. Multidimensional models provide the
data views needed to perform OLAP analyses, which look simultaneously at several dimensions of data, such as time,
geography, and product.

Business analysts don't typically examine data in flat queries of two dimensions or less, but rather in more complex
analysis such as "How much money in total returns were there in San Jose in Q1?" – a three-dimensional question.
Complex queries can include six, seven, and even more dimensions. The OLAP engine of SAP’s Business
Information Warehouse (SAP BI), for example, executes queries that are formulated from such business questions. It
allows you to quickly switch between different orientations of the dimensions, as well as between various structural
arrangements of the data values of the dimensions.

The sections below introduce the basic components of the OLAP system. SAP BI users should note that BI
occasionally deviates from this system, and in the BI Java SDK we base our OLAP Metadata Model upon the CWM
OLAP package that more closely approximates the OLAP standard, while also adding some extensions to this
standard. We talk about BI, CWM, and SDK mappings in the Mapping of OLAP Metadata section, below.

Accessing Metadata

Metadata APIs

47

Cubes and Dimensions

The central object of a OLAP system is a cube. A cube is a logical organization of data for reports and analyses,
organized as a collection of measures that share the same dimensionality.

Dimensions are sets of related identifiers or attributes of the data values of the system. They help categorize the data,
or represent the attributes of the data values of the system.

The figure below illustrates a simple, three-dimensional OLAP cube:

1,285.63
201

111.27
36

1,410.46
207

5,292.95
778

1,641.13
237

2,381.81
377

522.77
149

171.68
46

219.49
66

5,593.14
796

1,507.70
232

2,676.11
415

1,796.52
295

3,582.22
541

2,313.48
350

8,231.08
1150

Whole W. Bread

Sweet Butter

Decaf F. Roast

Deluxe Jelly

Product
Dimension

ST15 ST02 ST03 ST17

San Jose Atherton

CA WA

USA

Portland

Store Level

City Level

State Level

Country Level

Store
Dimension

Measures
Revenue

Sales Count
Q1
Q22002

Q1
Q22003

Time
Dimension

1,285.63
201

111.27
36

1,410.46
207

5,292.95
778

1,641.13
237

2,381.81
377

522.77
149

171.68
46

219.49
66

5,593.14
796

1,507.70
232

2,676.11
415

1,796.52
295

3,582.22
541

2,313.48
350

8,231.08
1150

1,285.63
201

111.27
36

1,410.46
207

5,292.95
778

1,641.13
237

2,381.81
377

522.77
149

171.68
46

219.49
66

5,593.14
796

1,507.70
232

2,676.11
415

1,796.52
295

3,582.22
541

2,313.48
350

8,231.08
1150

Whole W. Bread

Sweet Butter

Decaf F. Roast

Deluxe Jelly

Product
Dimension

Whole W. Bread

Sweet Butter

Decaf F. Roast

Deluxe Jelly

Product
Dimension

ST15 ST02 ST03 ST17

San Jose Atherton

CA WA

USA

Portland

ST15 ST02 ST03 ST17

San Jose Atherton

CA WA

USA

Portland

Store Level

City Level

State Level

Country Level

Store
Dimension

Store Level

City Level

State Level

Country Level

Store
Dimension

Measures
Revenue

Sales Count
Q1
Q22002

Q1
Q22003

Time
Dimension

Q1
Q22002

Q1
Q22003

Time
Dimension

Figure 11 — OLAP Cube

Each of the three dimensions (Time, Store, and Product) consists of a set of related members. In this visualization,
the edges are formed by the values of the different categories that form the key. The cells of the cube, formed at the
intersection of coordinates of all categories (representing a particular value tuple), contain the measures.

A cell represents data values and their relevant attributes; for example, in referring to the figure above, store ST02
booked a certain revenue and sales count for the product Deluxe Jelly in the timeframe of Q1 2002. The
revenue and sales count values are contained in the cell, and the cell is defined by the three different attributes:

• Store

Accessing Metadata

Metadata APIs

48

• Product

• Time

 Note:

• Not all cells contain data. For certain combinations of members, no data exists and the
corresponding cell is said to be empty.

• Since the number of cells in a cube equals the product of the sizes of all dimensions, OLAP
cubes can be very large.

Members and Properties

The individual elements of a dimension are called members. In the case above, the Store dimension has the
members: ST15, ST02, ST03, ST17, San Jose, Atherton, Portland, CA, WA, and USA.

Members often carry additional descriptive information or dimension properties. A product may have properties like
color, weight, and size, or a customer may have properties like country, city, and phone number.

Measures

Measures, or key figures in BI terminology, are the quantifiable values – such as currency amounts, in the above
example – that are stored in a cube. Measures are typically of a numeric data type and often aggregate by simple
summation. However, other data types such as date and time, and different aggregation behaviors such as average,
minimum, or maximum are also possible.

For example, Sales would usually be a currency type, where Quantity is an integer, and Weight a real number.
Sales values may be summed when aggregated over time, whereas average or final values are more adequate for
inventory data.

For convenience and simplification, measures are often treated as members of another dimension of a cube – the
measures dimension – which makes the model more symmetrical.

Hierarchies, Levels, and Default Members

In ODBO-specific data sources, the members of dimensions are usually arranged in a hierarchical structure, and
sometimes there can be more than one “natural structure” or hierarchy . For example, think of large retailers or
government agencies that have millions of customers. You may wish to report revenues of a set of customers
grouped by countries and continents, and all continents finally roll up into a root node of the hierarchy. At different
times, you want to look at the customers individually or as families arranged according to other criteria.

Accessing Metadata

Metadata APIs

49

Levels are the different categories by which objects that share a number of common attributes in a hierarchy are
grouped. The Store dimension in our example above, Figure 11 — OLAP Cube, has four levels:

• Country

• State

• City

• Store

A data value of a cube can only be unambiguously identified by specifying all its attributes, or its dimension values. In
a cube with many dimensions, it is therefore convenient to use the concept of a default member, or ALL member. If
the value of a dimension is not specified, a query processor can set its value to the default member. Typically, this is a
member that represents the aggregate for all members of the dimension.

Member Selection Based on Level

Many hierarchies have at least two levels, the first of which is the ALL level. The ALL level usually contains just one
member, the ALL member, which represents the aggregated values of all members.

It's important to note that it is often not meaningful to return the ALL member in a result set, but rather to return results
based on a specific level, beginning with the second level, which begins the set of "real" members. Consider the
hierarchy diagram below:

Figure 12 — Hierarchies and Levels

Accessing Metadata

Metadata APIs

50

This is a geography hierarchy, with three levels shown:

• Level 1: ALL level

• Level 2: Region level

• Level 3: Country level

If you create a query that returns the top five countries based on sales without restricting to a specific level, the first
result returned would be "All Countries," because the highest sales would be the total of all sales values across the
hierarchy – the ALL member. The second two results would be "Europe" and "America." Instead, you would want to
create a query based on a specific level – the Country level.

Example source code:

See the following Java code for an example of using the OLAP Command Processor to select the members of the
right level for this query:

 Level countryLevel = olap.getObjectFinder().
 findLevelFirst(geographyHierarchy, "Country");
 commandProcessor.addLevelMembers(countryLevel);
 commandProcessor.createTopCountFilter(geographyDimension, 5, salesMeasure);

 Note

For the API documentation on the OLAP Command Processor, see the Javadoc at
com.sap.ip.bi.sdk.dac.olap.query.IBICommandProcessor.

Query Operations

An OLAP API must provide operations that allow an application to rapidly navigate between different views of the data
stored in a cube. The most common operations are:

• Pivot – Pivoting rearranges the projection of dimensions on the axes of a multidimensional result set.

• Drill up – Drill up operations navigate in a dimension to lesser detail.

• Drill down – Drill down operations navigate in a dimension from lesser detail to greater detail.

Accessing Metadata

Metadata APIs

51

Mapping of OLAP Metadata

As we noted above, the SAP BI OLAP model occasionally deviates from the CWM OLAP model. This section
describes how SAP BI objects are mapped to the objects of the CWM OLAP model, and particularly how CWM object
names, and the names we use in the BI Java SDK, are derived from the corresponding identifiers used in SAP BI.

The class diagram below shows the major classes of the CWM OLAP model and their associations:

Figure 13 — CWM OLAP Model

Accessing Metadata

Metadata APIs

52

 Notes:

• All deployment-related classes, such as CubeRegion, CubeDeployment and
DimensionDeployment, are omitted from the model. The methods to navigate the
corresponding associations to these classes are not implemented by the SDK, and if used return
empty collections.

• For a detailed description of each class, refer to the CWM Javadocs included in the BI Java SDK
documentation set.

Introduction to the CWM OLAP Model

As depicted in the diagram above, the Schema class serves as a container for Dimensions and Cubes. A Cube is
associated with a set of Dimensions and a set of Measures. Dimensions can have multiple hierarchies. There are
two specializations of hierarchies: hierarchies that support ordering members by Level
(LevelBasedHierarchies), and hierarchies that support ordering members by value
(ValueBasedHierarchies). The Dimension class supports the identification of special dimensions by providing
the boolean attributes isMeasure and isTime.

Measures and Attributes

If you are familiar with OLE DB for OLAP or XML for Analysis and the concept of schema rowsets, or if you are new to
the CWM model, you may feel that certain key concepts such as measures and dimension attributes are missing in
this model. These objects are provided in a more generalized form in a parent class. To illustrate, consider the
relationship between a Dimension and its attributes. Dimension is a subclass of the class Class in the CWM Core
package. The dimension’s ability to have attributes is inherited from Classifier in its association with
StructuralFeatures, of which Attribute is a specialization. The JMI interfaces rendered from this model allow
retrieval of the attributes of a dimension with the getFeature() method. The objects returned can be cast into
Attribute.

Likewise, in this model, measures are considered features or attributes of a cube. The cube has the same relationship
to Classifier as Dimension, and Measure is a subclass of Attribute.

Members

Another distinction of the CWM OLAP metamodel is that there is no direct association between the Dimension class
and a Member class. The JMI interfaces derived from the model therefore do not support any direct navigation – for
instance, from a level to its members.

Accessing Metadata

Metadata APIs

53

From a formal point of view, members are typically considered as data rather than metadata, and are therefore not
within the scope of this metamodel. However, there are also good practical reasons to treat members differently. In
contrast to metadata objects such as cubes, dimensions, hierarchies, and levels, members can occur in very large
cardinalities. Exposing this information only through heavyweight JMI objects would be impractical when dealing with
large dimensions such as products or customers.

Member information is therefore queried in the BI Java SDK either via full-blown queries, or with various convenience
methods that are provided in addition to the JMI interfaces. These methods and the queries make member
information accessible through a light-weight result set that is based on the JDBC ResultSet API.

Note that SDK OLAP Query API therefore provides an IBIMember class. This is required, since the query model
relies on Members as metadata objects for input references in certain types of queries.

Mapping Table

The table below lists the major classes of the CWM OLAP metamodel (together with the BI Java SDK-specific
extensions) and how they relate to corresponding SAP BI objects. The mappings described here are essentially the
same mappings as the mappings used by the MDX-based APIs (OLE DB for OLAP, XMLA, and the OLAP BAPI).
Since the BI Java SDK provides access to SAP BI via the BI XMLA and the BI ODBO Connectors, the mappings are
determined to a large extent by the mappings that already occur on the XMLA interface.

Notes and additional details follow the table.

CWM OLAP Metamodel (and SDK extensions) and SAP BI Equivalents

CWM OLAP metamodel
and SDK extensions

SAP BI
equivalents

Mapping notes CWM object in SAP BI
name format (used in the
SDK)

Schema N/A Since Schema is not an optional
element of the CWM model, one
Schema object with the name
$INFOCUBE is created as a container
for all InfoCubes of a system. In
addition, there is one Schema for
each InfoCube that contains a query
that is released for the OLE DB for
OLAP (ODBO) interface.

$INFOCUBE

<InfoCube>

Examples:
$INFOCUBE

0D_SD_C03

Cube InfoCube,
Query

In addition to InfoCubes, BEx queries
that are released for external access
via the ODBO interface are also
mapped to Cube objects.

$<InfoCube>

<InfoCube/
technical query name>

Examples:
$0D_SD_C03

0D_SD_C03/0D_
SD_C03_Q009

Dimension Characteristic, The dimensions for a cube are filled <InfoObject>

Accessing Metadata

Metadata APIs

54

CWM OLAP metamodel
and SDK extensions

SAP BI
equivalents

Mapping notes CWM object in SAP BI
name format (used in the
SDK)

Structure with all free characteristics and the
special measures dimension. In
addition, SAP BI structures are
mapped to dimensions. In the BEx
Query Designer, you can set a
technical name in the properties of
structures or structural components.
Otherwise, the UNIQUE-ID (UID) is
used.

Examples:
0D_DIV

0D_SALE_ORG

0CALMONTH

Hierarchy Hierarchy In SAP BI, each dimension has a
default hierarchy with the same name
as the dimension to which it belongs
(first example listed).

The second example listed is an
example of an external hierarchy
exposed by the ODBO interface.

<InfoObject or hierarchy
name>

Examples:
0D_DIV

0HYEA1_MON

Level N/A Hierarchies in SAP BI are not leveled
in a strict sense. The ODBO interface
constructs level names by numbering
the levels.

LEVEL##

(Where ## is a two-digit
number ranging from 00 to
99.)

Examples:
LEVEL00

LEVEL01

Measure Key Figure,
Structure
Element

Measures are handled in the SDK as
Members (type IBIMember) of a
special Dimension, the Measures
dimension.

In the SDK, measures are also
accessible as features of the cube, of
type Measure. Call
Dimension.isMeasure():boolea
n to determine whether a dimension
is a measures dimension.

<InfoObject>

Examples:
0D_COSTVALS

0D_OORVALSC

Attribute Attribute [<InfoObject>]

(Note that the surrounding
angle brackets are required
in the SDK naming
convention.)

Examples:
[10D_COUNTRY]

[10D_DIV]

Accessing Metadata

Metadata APIs

55

CWM OLAP metamodel
and SDK extensions

SAP BI
equivalents

Mapping notes CWM object in SAP BI
name format (used in the
SDK)

Member
(SDK extension)

Characteristic
value

In the SDK, members are associated
with a dimension. IBIMember is an
extension added on the SDK level.

<characteristic value>

Examples:
7

DE

All

SAP variable
(SDK extension)

SAP variable IBISapVariable is one of two
extensions added on the SDK layer to
support SAP Variables. We've also
extended Cube with
IBICubeOwnsSapVariable,
IBISapVariable's association with
Cube.

[<SAP variable>]

(Note that the surrounding
angle brackets are required
in the SDK naming
convention.)

Examples:

[0D_SA_OR]

[0D_DISCH]

 Notes:

• The elements in brackets in the naming column, such as <InfoCube>, indicate that the name of
the CWM object is formed by the name of the corresponding SAP BI object. For example, where
the name of the InfoCube is 0D_SD_C03, the name of the CWM cube is $0D_SD_C03. Note also
that to refer to a BI cube, you must prefix its name with "$".

• The naming examples in the table above are taken from the SAP Sales DemoCube:
Overview (see its documentation on the SAP Help Portal). The OLAP tutorials and examples
are also based on this cube. See in particular OLAP 1 - Accessing OLAP metadata, for additional
examples of working with metadata in the BI Java SDK. To view the complete list of examples,
start at the root of the documentation set (index.html in the docs folder of the unpackaged
distribution archive) and choose Examples.

• In the SDK, we recognize the name value of the InfoObjects (not the unique name or technical
name).

Schema and Cube

The schema concept in the CWM specification is not supported by SAP BI. The current version of SAP’s OLE DB for
OLAP implementation allows for various options to access the data stored in an InfoProvider:

• Direct access to the data of an InfoProvider:

With certain restrictions, you can directly access data belonging to a BI InfoProvider, using the MDX command
$InfoProvider. This option is available for the following objects:

o for all InfoCubes having type BasisCube and for MultiProviders as Cubes

http://help.sap.com/saphelp_nw04/helpdata/en/6e/0cdf3713f1d71de10000009b38f842/frameset.htm

Accessing Metadata

Metadata APIs

56

o for all characteristics and key figures as Dimensions/Measures
Exceptions are navigation attributes and key figures that are neither restricted nor calculated.

• Access to the data of an InfoProvider using a query:

In this approach, you use the BEx Query Designer to define queries for the requested InfoProvider, and use
these queries as data sources. This is the recommended approach.

The following diagram illustrates the mapping of a BEx query onto a cube:

Figure 14 — BEx Query Mapping

Measures

SAP BI's calculated and restricted key figures are mapped to measures by default. This gives the BI Java SDK API
consumers access to complex key figure definitions. Defining calculated and restricted key figures on the provider
(SAP BI) side of the interface bears the following advantages:

• Potential performance optimizations on the SAP BI side

• Less complexity for the client application

Accessing Metadata

Metadata APIs

57

• Consistent interpretation and use of derived key figures guaranteed for various application areas.

Hierarchies and Levels

Every characteristic in a SAP BI query is modeled to a dimension with a flat hierarchy . The name of this hierarchy is
the same as the name of the dimension. This hierarchy has the following levels:

• Level 0 with ALL members (all members are displayed regardless of their position in the hierarchy).

• Level 1 with a subset of master data table values.

SAP BI hierarchies can be established as additional hierarchies. The default hierarchy for a dimension is filled with the
presentation hierarchy of a BI query definition.

 Note:

For additional information on metadata mapping and SAP BI, see the Mapping the Metadata document
on the SAP Help Portal.

Relational Metadata Model

The Relational Metadata Model is based on the CWM Relational package and describes data accessible through a
relational interface such as JDBC. You use it to retrieve CWM-compliant metadata objects from a relational data
source.

API Documentation:

Refer to the following Javadoc package for the Relational Metadata Model’s API documentation:

org.omg.cwm.resource.relational

In the sections that follow, we first introduce some basic concepts of relational models, and then we highlight the
corresponding CWM mappings.

Relational Databases

Relational databases are repositories for typically large amounts of information, structured in accordance with the
relational model, in tables with columns. They are created and administered by relational database management
systems (RDBMSs). With an RDBMS, you define storage structures for data and mechanisms for its manipulation and

http://help.sap.com/saphelp_nw04/helpdata/en/9b/c1993c54966f3ae10000000a114084/frameset.htm

Accessing Metadata

Metadata APIs

58

retrieval. An RDBMS must also provide a system for safeguarding in case of events such as system crashes and
unauthorized access.

The relative ease with which data can be managed with relational databases is one of the main factors for the
success of the RDBMS. Data definition and manipulation is typically done with the help of the Structured Query
Language (SQL), which is supported to various degrees by the vast majority of currently available RDBMSs.
Application development that relies upon access to relational databases is simplified by standard APIs such as Open
Database Connectivity (ODBC) and Java Database Connectivity (JDBC).

The relational database typically consists of physical storage spaces also known as catalogs, which in turn contain a
set of namespaces known as schemas. The schemas contain the tables which hold the data. Since the tables are
organized as sets of rows with an identical structure per table, they represent relations - hence the name relational
databases. The rows of tables represent tuples in a mathematical sense. The mathematical theory behind the
relational model has been thoroughly investigated and has led to the design of database languages such as SQL and
their underlying execution model.

Tables

The central object of the relational model is the relation, also known as the table. A table is a set of rows (or tuples).
The term “set” in this context is mathematical, since most tables have an associated unique index that ensures the set
property. The tuples of the table each possess an identical structure, with columns that have the same name and data
types and possible additional information such as participation in indexes.

Rows

The rows (or tuples) in a table contain the data of the table. Each row has the same structure, predefined for a
particular table.

Columns

Columns describe the structure and type of the rows of a table. They have a name, a data type, and an implicit order
(ordinal) based on the order chosen when defining the table. Columns can also belong to indexes, which are used to
ensure uniqueness (set property) of rows in the table.

For example, if columns c1…cn of table t belong to a unique index i, then no two rows r1 and r2 can exist in t, with
r1(c1)=r2(c1), …, r1(cn)=r2(cn).

Accessing Metadata

Metadata APIs

59

Relational Query Operations

Queries in the relational model can be formulated with the help of a set of operators of the relational algebra. These
operators have direct representations in all relational query languages that have the same capability of expression as
the relational model, which includes SQL. Each operator returns a relation as the result of its execution, and this
relation supports the construction of complex queries by nesting these operators.

A typical SQL statement is semantically equivalent to a set of nested operators of the relational algebra. Most
relational databases use an internal representation of SQL statements similar to the relational algebra. This facilitates
the optimization of queries, since relational algebra supports the concept of so-called equivalence transformations, or
transformations that do not change the result of the expression. For example, select(project) is equivalent to
project(select), however, the latter is more efficient since the projection only takes place on the result of the
selection, which is in general smaller than the relation upon which it operates.

The list of operators, and their SQL equivalents, is described in the table below.

Relational Query Operators and SQL Equivalents

Operator Description SQL equivalent / notes

select Takes a relation and a predicate (logical expression) and allows
restriction of the relation to the rows that satisfy the given set
returned as the result of a query.

WHERE

project Takes a relation and a set of columns and returns a new relation
containing all rows of the given relation where each row of the
result contains only those columns contained in the given set of
columns.

SELECT

rename Takes a relation and either a name or a map of column names to
new column names. In the first case, rename renames the relation
itself. This case functions to support multiple uses of the same
relation in a complex query – or self-joins. The second case
supports the renaming of columns in the result, and is used in
Cartesian products involving tables that have identically named
columns.

In SQL, the FROM and
SELECT clause support
renaming of columns and
tables which thereafter can be
referred to using their new
names, for example in the
WHERE clause.

Cartesian
product

Takes two relations and returns a relation containing the Cartesian
product of both, given relations where each row is a tuple
comprised of the columns contained in both given relations. In
other words, for each possible pair of rows of both relations, the
result contains a row comprised of the concatenation of the rows of
that pair.

FROM clauses in SQL
containing more that one
table specify the Cartesian
product of all tables involved.

union Takes two relations of identical structure (with the same number
and data type of columns) and returns the set comprised of all the
rows of both given tables.

UNION

set difference Takes two relations of identical structure (with the same number
and data type of columns) and returns the set comprised of all the
tuples of the first relation that are not contained in the second
relation.

INTERSECTION

Accessing Metadata

Metadata APIs

60

Most relational query languages extend the relational algebra to support operators that allow the manipulation of the
result in a way that can not be represented in the relational algebra, adding additional operators such as:

Additional Operators and SQL Equivalents

Operator Description SQL equivalent / notes

sort Takes a relation and a set of columns with sort direction
(ascending, descending) and returns the relation with the rows
ordered accordingly.

ORDER BY

aggregate Takes a relation and a set of columns with aggregation functions. In
addition, each aggregation function can be accompanied by a set
of columns by which the aggregation is to be grouped — one
aggregated value of the column for each distinct member of the
group. The result is a set of rows with the columns aggregated
according to their chosen function (for example, sum, min, max,
avg, count) and grouped by the columns chosen for the
aggregation function.

SQL supports this in the
SELECT clause with
aggregation functions on the
selected columns and using
the GROUP BY clause to
specify the grouping.

Mapping of Relational Metadata

The CWM Metamodel consists of 21 separate packages. One of these is the Relational package, which can be used
to describe SQL99-compliant relational database schemata. Nearly all current RDBMS implementations support
SQL99 or subsets of SQL99, which means that CWM’s Relational package can be used to support CWM-based
metadata interchange between these systems.

The following class diagram shows the subset of the classes used in the BI Java SDK that make up the CWM
Relational package:

Accessing Metadata

Metadata APIs

61

Package
(from core)

Column

CatalogSchema

ColumnSet

Attribute
(from core)

Class
(from core)

NamedColumnSet

Table

Package
(from core)
Package

(from core)

ColumnColumn

CatalogCatalogSchemaSchema

ColumnSetColumnSet

Attribute
(from core)

Attribute
(from core)

Class
(from core)

Class
(from core)

NamedColumnSetNamedColumnSet

TableTable

Figure 15 — CWM Relational Package

As expressed in the diagram, the BI Java SDK uses the following subset of classes and their relationships from the
CWM Relational package:

• Catalog

• Schema

• Table

• Column

The Relational package uses other packages of the CWM Metamodel, evident in the diagram via inheritance, to
provide necessary functionality without having to repeatedly design similar concepts in the various packages. For
example, Table is a subclass of Class, and Column is a subclass of Attribute. Each instance of Class owns an
ordered list of instances of Attribute via the ClassifierFeature association. Therefore, the instances of
Column that belong to a Table instance can be retrieved via the same ClassifierFeature association.

Accessing Metadata

Examples

62

The JMI interfaces rendered from the Relational package allow us therefore to navigate from a given Table instance
to its Column instances via the getFeature() method, which returns a list of Attribute instances that can be
cast into instances of Column.

Examples

Although most of the SDK’s examples retrieve metadata from data sources, the following three examples focus in
particular on accessing metadata:

 Olap_1.java – Accessing OLAP metadata:

Demonstrates four different ways to retrieve OLAP metadata:

1. Via connection-level methods:

The connection-level methods getSchema(), getCube(), getMemberData(), and getTaggedValue()
allow you to browse top-level metadata objects such as cubes and schema. Typically, the objects retrieved
are then used as an entry point to further "navigate" to objects that are contained in these name-space-like
objects.

 Caution:
Be careful when retrieving data from cubes and consider displaying data for only one cube at a time. The
results could be too large and could impact performance if there are many cubes. In this example, we only
display the data for the first cube.

2. Via ObjectFinder methods:

ObjectFinder methods provide the ability to retrieve a specific object or set of objects. Note that there are
always four find methods for each object type (such as Cube, Dimension, and Hierarchy) that differ in
their signatures:

i. finder.findDimension(Cube cube,String dimensionName)

ii. finder.findDimensionFirst(Cube cube,String dimensionName)

iii. finder.findDimension(String schemaName,String cubeName,String dimensionName)

iv. finder.findDimensionFirst(String schemaName,String cubeName,String
dimensionName)

The first two methods use a Cube object and a dimensionName to identify the dimension(s) to be found. The
findDimensionFirst() methods are simply for convenience; they are equivalent to
(Dimension)finder.findDimension(cube,dimensionName).get(0).

Accessing Metadata

Examples

63

3. Via CWM-based JMI interfaces:

Starting from the top level objects of the OLAP Metadata Model, such as Cube, you can the use the JMI
interfaces provided by each object to "navigate” to associated objects. The example in this section shows
how to retrieve from a cube its associated dimensions, the hierarchies of a given dimension, and the levels of
a given hierarchy.

Note that in the OLAP package of the CWM metamodel, members are not directly associated with levels. This
is rooted in the considerably different nature of members compared to other objects such as cubes,
dimensions, hierarchies and levels. Members somehow straddle the line between data and metadata, and in
particular, members can potentially occur in very large cardinalities. For example, a customer dimension of a
large retail data warehouse may have millions of entries. Heavy weight metadata objects are thus not suitable
to represent members.

4. Via member data access methods (getMemberData(List, List))

 Relational_1.java – Accessing Relational metadata:

Illustrates the process of retrieving relational metadata from catalog to column from a JDBC data source.

 Relational_2.java:

Demonstrates three different ways to retrieve relational metadata:

1. Via connection-level methods:

The connection-level methods getCatalog(), getSchema(), and getTable() allow you to browse
metadata objects such as schemas and tables. Typically, the retrieved objects are used then as an entry point
to further "navigate" to objects that are contained in these name-space-like objects.

2. Via ObjectFinder methods:

ObjectFinder methods provide the ability to retrieve a specific object or a set of objects.

3. Via CWM-based JMI interfaces:

Starting from the top-level objects of the Relational Metadata Model, such as Table, you can the use the JMI
interfaces provided by each object to "navigate" to associated objects. The example in this section shows how
to retrieve from a given table its associated columns and the schema and catalog to which it belongs.

Note:

See Appendix B: Examples for the full index of examples and instructions on getting your system up and
running with them.

64

Chapter 4: Creating Queries
Overview

Build queries based on the metadata in the SDK's CWM-based metadata models using the SDK’s query APIs. These
APIs provide methods to create and execute complex OLAP and relational queries.

This chapter describes the SDK’s query APIs and their underlying models in the following sections:

• Query APIs

 OLAP Query Model

 Relational Query Model

API Documentation:

See the individual subsections.

Query APIs

The SDK provides two query APIs, both generated via JMI (see Generating Interfaces, above) from their respective
query models:

• OLAP Query API, generated from the OLAP Query Model, for defining queries against an OLAP server

• Relational Query API, generated from the Relational Query Model, for defining queries upon relational data
sources

To support the definition of often complex queries in a methodical, step-by-step process, the query APIs also include
simplified command processors. These are interfaces that are part of the query APIs and make it easier to use them
by hiding the complexity of the underlying query models. With the command processors, you can create and
manipulate complex queries with simple commands. The SDK provides two command processors:

• OLAP Command Processor

• Relational Command Processor

Creating Queries

Query APIs

65

Most of the time, the command processors will be all you need to query data sources. However, to leverage the full
functionality of the query APIs, you will want to understand their underlying query models. To that end, the rest of this
section discusses the query models in more detail.

For additional documentation:

• To learn how to use the methods of the OLAP or Relational Command Processor, refer to the Javadocs for the
respective IBICommandProcessor class (see table, below)

• For step-by-step examples of using the query APIs and command processors, refer to the examples that ship
with the SDK. See a listing in the Examples section at the end of this chapter.

Components of the SDK’s Query APIs:

Component OLAP Relational

Command
Processor

com.sap.ip.bi.sdk:

dac.olap.query.IBICommandProcessor

com.sap.ip.bi.sdk:

dac.relational.query.
IBICommandProcessor

Query API com.sap.ip.bi.sdk.dac.olap.query.* com.sap.ip.bi.sdk.dac.
relational.query.*

Generated
from

OLAP Query Model Relational Query Model

OLAP Query Model

The OLAP Query Model provides the building blocks for creating OLAP queries. The model is an abstract and source
system-independent way to describe a multidimensional (OLAP) query and therefore specify a multidimensional result
set. This allows you to formulate OLAP queries based on the CWM-compliant metadata provided by the SDK’s
Metadata APIs independently of data source-specific APIs.

The model consists of various components, many of which are expressed with UML diagrams in this section and in
their respective Javadocs packages. Although the OLAP Query Model has been designed specifically for the SDK, it
relies on several CWM packages as well.

 Note:

If you are viewing this guide with a color-capable display, the coloring used in the diagrams helps you
determine the origin of the object. Light yellow represents objects or classes inherited from CWM. Light
blue represents SDK-native objects or classes. A clear color represents an SDK-native object or class
as well, but designates that it is abstract.

The below table summarizes the query model’s components and associated SDK and CWM packages:

Creating Queries

Query APIs

66

OLAP Query Model: components and packages

Component Associated SDK package

OLAP Command Processor

Query factories

com.sap.ip.bi.sdk.dac.olap.query

Main model

AxisDimension

com.sap.ip.bi.sdk.dac.olap.query.main

Contains all associations between objects of
the model

com.sap.ip.bi.sdk.dac.olap.query.assoc

InputReference

Adapter classes

NumericValueFunction

Operation

com.sap.ip.bi.sdk.dac.olap.query.input

Member

MemberExpressions

com.sap.ip.bi.sdk.dac.olap.query.member

MemberSetExpressions com.sap.ip.bi.sdk.dac.olap.query.msx

TupleSetExpressions com.sap.ip.bi.sdk.dac.olap.query.tsx

Types com.sap.ip.bi.sdk.dac.olap.query.types

SAP variables support com.sap.ip.bi.sdk.dac.olap.query.var

Component Associated CWM package

OLAP Metadata Model org.omg.cwm.analysis.olap

Foundation for CWM metamodel development org.omg.cwm.objectmodel.core

Provides the Member Object org.omg.cwm.resource.multidimensional

Provides Object, from which Member is derived org.omg.cwm.objectmodel.instance

For API documentation, refer to the Javadocs for these packages via the links in the table above, or start with the
Javadocs overview pages:

• SDK Javadocs overview page

• CWM Javadocs overview page

Basics of OLAP Queries

We can illustrate the components of on OLAP query beginning with the following representation of its result set:

Creating Queries

Query APIs

67

Figure 16 — The OLAP Result Set

A multidimensional result set is composed of a set of axes – rows, columns, and a slicer, in the above example.
There can be as many axes as desired, but it’s easiest on paper to represent rows and columns, with the slicer on the
additional “third dimension.” Each axis is populated with tuples. In the case above, two dimensions – Country and
Product – have been assigned to the rows axis, and the rows axis is populated with tuples belonging to both these
dimensions:

• USA, Laptop Speedy

• USA, Laptop CN2

• Germany, Laptop Speedy

• Germany, Laptop CN2

Both the columns and the slicer axes have exactly one member selected (Sales Volume and 2001), and are
populated with the tuples those members describe.

The intersection of each of the tuples from all axes forms a cell value. These cell values can be regarded as the
numbers the query returns, which in the above case are:

• $100

• $200

Creating Queries

Query APIs

68

• $50

• $30

In other words, $100 of Speedy Laptops were sold in the USA in 2001, $200 of CN2 Laptops were sold in the USA in
2001, and so on.

This is a simplified representation, but you can see that when you add additional axes and populate your axes with
additional dimensions, you can construct highly complex queries.

Main model

In order to build queries that specify results such as the above, we begin defining the OLAP query model with the
Main Model. The Main Model contains the major OLAP query objects, many of which in turn form the top-most objects
of subsequent sub-models.

The Main Model is diagrammed below:

Creating Queries

Query APIs

69

Figure 17 — Main Model Diagram

The query model is composed of many classes. At its root in the Main Model is the IBIQuery class, which can be
regarded as the top most element of a query.

Creating Queries

Query APIs

70

Query and Axes

A multidimensional query is accomplished by distributing dimensions of a cube on different axes, hence a query
aggregates a number of axes. There are two different types of axes belonging to a query: regular axes, and a special
slicer axis. Correspondingly, note that in the diagram above, IBIQuery has two associations with IBIAxis: the
slicer association and the axis association.

There is a one-to-one relationship between a query and its slicer axis: a query always has one, and only one slicer.
However, the query can have zero to many regular axes. As you can see from the diagram, IBIQuery therefore
aggregates exactly one slicer axis, and zero to many regular axes.

The main difference between the two sets of axes is that the result set for the query will have axes specifications for
the non-slicer axes, but none for the slicer axis.

The Slicer

The slicer axis functions like a filter, influencing only the cell values. The query is filtered by all members of the
various dimensions populated on the slicer axis. For example, you may want to restrict all sales values returned in a
result set to a certain year, in which case you would have the slicer axis define a particular year by selecting only the
member for that year.

The concept of a slicer can be illustrated in two different ways:

• From the point of view of query tool: OLAP tools typically provide a facility to page through different subsets of
data, for example, to sort through certain calendar years or product groups. The value you specify for the slicer
axis, calendar year in this case, allows you to do that.

• In terms of MDX equivalents: slicer values are the values that go into the WHERE clause of an MDX statement.

The slicer axis is sometimes referred to as the page axis or the filter axis.

A slicer axis is not displayed in the visual sense, it simply restricts or filters the values in the result set. On the other
hand, the regular axes contribute directly to the result set display. There are only two that can be easily displayed in
two dimensions: column and row. However, a query can have an unlimited number of axes to it.

The axes therefore define the geometry of the query by orienting the dimensions of the cube along them. Typically, a
tool would display three axes: the slicer (to specify filter values and a subset of data of cube), and columns and rows
(the two visible axes), which allows the display of data in tabular, spreadsheet-like fashion. Remember that the query
itself, however, is not limited to three axes.

Creating Queries

Query APIs

71

The Cube

A query is based on a cube. The Cube object comes from the CWM OLAP package, and is the main part of a query,
referenced by IBIQuery, and aggregating its axes. There is a many-to-one relationship between the query and its
cube: one query is based on a one cube, selecting data from that one cube, though a cube can have many queries.

IBIAxisDimensions need to exist and be assigned to axes for all existing dimensions of the referenced cube.

Axis Dimension

An axis can have zero to many ordered IBIAxisDimensions assigned to it, where an AxisDimension is an
ordered collection (a subset) of members of a specific dimension. The axis dimension is therefore the specification of
selected members which have a certain order, aggregating a subset of members of the dimension that it represents.

AxisDimension and its related classes are further diagrammed below:

Creating Queries

Query APIs

72

Figure 18 — AxisDimension Diagram

There are two ways to populate tuples on axes. One way is to directly specify the ordered collection of tuples –
IBITupleSet – for an IBIAxis. An additional way is to specify member collections – IBIMemberSets – for the
IBIAxisDimensions of an IBIAxis. The specified members of different IBIAxisDimensions of one IBIAxis
will then be crossjoined, which is what builds tuples.

Both ways can be used at the same time. The crossjoin is evaluated first, and then the tuple set specified by
IBITupleSet is joined by union.

Creating Queries

Query APIs

73

Example:

Let’s consider each way and demonstrate how to come to the same result with the two different approaches. As in our
query example above, we assign the IBIAxisDimensions for two dimensions – Country and Product – to an
IBIAxis. The query result set has the following four tuples populated on this particular IBIAxis:

(Country, Product):

• (USA, Laptop Speedy)

• (USA, Laptop CN2)

• (Germany, Laptop Speedy)

• (Germany, Laptop CN2)

1) Direct IBITupleSet specification

Exactly one instance of IBITupleSet is aggregated by an IBIAxis. This instance specifies the collection of tuples
by having an ordered zero-to-many association with IBITupleSetExpression:

- IBIAxis

- IBITupleSet

- IBITupleList (sub-class of IBITupleSetExpression):

(USA, Laptop Speedy)

(USA, Laptop CN2)

(Germany, Laptop Speedy)

(Germany, Laptop CN2)

2) IBIMemberSet specification

Exactly one instance of IBIMemberSet is aggregated by an IBIAxisDimension. This instance specifies the
collection of members by having an ordered zero-to-many association with IBIMemberSetExpression:

Creating Queries

Query APIs

74

- IBIAxis

- IBIAxisDimension (for Dimension Country)

- IBIMemberSet:

- IBIMemberList (sub-class of IBIMemberSetExpression):

USA

Germany

- IBIAxisDimension (for Dimension Product)

- IBIMemberSet:

- IBIMemberList (sub-class of IBIMemberSetExpression):

Laptop Speedy

Laptop CN2

The resulting tuples are calculated by crossjoining the collections of members of the two IBIAxisDimensions:

USA, Laptop Speedy
USA Laptop Speedy

USA, Laptop CN2

Germany, Laptop Speedy
Germany

⊗
Laptop CN2

⇒
Germany, Laptop CN2

TupleSetExpressions and MemberSetExpressions

TupleSetExpressions and MemberSetExpressions both specify an ordered collection of tuples and are derived
from the abstract supertype SetExpression. The difference between the two is that an IBITupleSetExpression
specifies a collection of tuples of members of one to many dimensions (with one member per dimension), while an
IBIMemberSetExpression specifies a collection of tuples of members of one dimension (with one member per
dimension). MemberSetExpression is therefore a specification of an ordered collection of members of one
dimension.

Let’s consider the classes shared by both together in one diagram:

Creating Queries

Query APIs

75

Figure 19 — TupleSetExpression and MemberSetExpression Diagram

The IBITupleSetExpression and IBIMemberSetExpression classes are abstract and can therefore not be
instantiated. A list of subtypes are provided that can be instantiated in order to specify tuple collections in various
ways (see “All Known Subinterfaces” in the IBIMemberSetExpression and IBITupleSetExpression
Javadocs).

Regarding the existing subtypes of TupleSetExpression and MemberSetExpression, there are types which
inherit only from TupleSetExpression, types which inherit only from MemberSetExpression, and types which
inherit from both supertypes. The subtypes which are derived from both supertypes can be used to specify either tuple
collections or member collections, depending on their parameterization.

The subtypes are IBIFilter (with the non-abstract subtypes IBIRankingFilter and
IBIConditionBasedFilter) and IBISort, which can work on both tuple and member collections.

Creating Queries

Query APIs

76

Categories of SetExpressions

Relevant for both TupleSetExpressions and MemberSetExpressions, there are four categories of
SetExpressions:
...

1. Select:
These expressions select tuples or members and specify how they should interact with tuples and members in
preceding expressions:

 Members: IBICompositeMemberSetExpression, and all subinterfaces of IBIMemberSelection.

 Tuples: IBICompositeTupleSetExpression, and all subinterfaces of IBITupleSelection
(which is only IBITupleList).

2. Filter:
These expressions eliminate tuples or members from a given set:

 IBIRankingFilter and IBIConditionBasedFilter

3. Sort:
This expression changes the order of selected tuples or members:

 IBISort

4. Drill:
These expressions either expand or collapse nodes in a hierarchy:

 Members: IBILevelDrill and IBIMemberDrill

 Tuples: IBITupleDrill

Join Types

In order to specify how two tuple or member collections should interact with each other, the model declares six
different join types:

Join types

Type Description Usage

APPEND The resulting collection of tuples/members is
computed by appending the current collection
to the previously defined collection.

Regarded as the default join type,
and used to gradually define the
resulting collection. Potential
duplicate members are retained.

INITIAL The resulting collection of tuples/members
equals the current collection. All previously-
defined selections are ignored.

This is mainly used as join type for
the first TupleSetExpression or
MemberSetExpression in a
sequence.

EXCEPT The resulting collection of tuples/members
equals the previously-defined collection, with
all tuples/members of the current collection
which also exist in the previously-defined
collection removed.

This is used to build business
questions like “all products that are
blue, but not sold in Texas.”

Creating Queries

Query APIs

77

Type Description Usage

GENERATE For each tuple/member of the previously-
defined collection, the current collection will be
applied and a new collection created. The
resulting collection of tuples/members is
computed by joining the newly-created
collections.

Only used if the current collection
contains a variable like
CURRENTMEMBER. With it, you can
create the types of asymmetric result
sets found in business questions like
“the best 5 products of my best 5
stores.”

INTERSECT The resulting collection of tuples/members
equals the intersection of the previously-
defined collection and the current collection.

Used to build business questions like
“all products that are green and
liquid.”

UNION The resulting collection of tuples/members is
computed by joining the previously-defined
collection with the current collection.

Used to gradually define the resulting
collection, like APPEND, but
duplicate members are eliminated.
Builds business questions such as
“all products that are blue or liquid.“

Composite Design Pattern

You can define IBIMemberSetExpressions and IBITupleSetExpressions either in a sequence, or nested in a
tree-like structure. Use parenthesis to specify more complex tuple/member collections, for example:

(blue ∧ solid) ∨ (green ∧ liquid)

The IBIMemberSetExpression and IBITupleSetExpression models employ the concept of a design pattern,
in this case, the composite design pattern, that specifies a treelike structure:

• Abstract component

 Concrete composite

 Concrete component

IBIMemberSetExpression and IBITupleSetExpression are abstract components.
IBICompositeMemberSetExpression and IBICompositeTupleSetExpression are concrete composites,
and all the non-abstract subtypes are concrete components (see “All Known Subinterfaces” in the
IBIMemberSetExpression and IBITupleSetExpression Javadocs).

The composite design pattern is applied twice: once on the level of IBIMemberSetExpressions, and once on
IBITupleSetExpressions. The exception is that there are classes which are concrete components of both design
patterns: IBIFilter and IBISort.

 Note:

For more information on the composite design pattern, see Gamma, Erich; et. al. Design Patterns.
Refer to the Appendix for the reference.

Creating Queries

Query APIs

78

The following example for an IBICompositeMemberSetExpression shows how the composite design pattern
provides this kind of functionality.

Example query:

“All products that are green and liquid:”

• Members of hierarchy level “products”

• Attribute filter “color = green”

• IBICompositeMemberSetExpression (join type = INTERSECT)

• Members of hierarchy level “products”

• Attribute filter “state of aggregation = liquid”

The example “all products that are green and liquid” shows three main steps:

1. Selecting all products of a specific level

2. Restricting this collection to only the ones that are green in color

3. Intersecting this restricted collection with another collection

But before you can intersect both collections, the collection represented by the
IBICompositeMemberSetExpression must be computed first. For this purpose, you can associate the
IBICompositeMemberSetExpression (IBICompositeTupleSetExpression) with a pair of parenthesis.

MemberSetExpressions

IBIMemberSetExpressions and related classes are diagrammed below:

Creating Queries

Query APIs

79

Figure 20 — MemberSetExpression Diagram

Note from the diagram that the four SetExpressions categories (see Categories of SetExpressions) are available:

1. Select:
IBICompositeMemberSetExpression, and all subinterfaces of IBIMemberSelection.

2. Filter:
IBIRankingFilter and IBIConditionBasedFilter

3. Sort:
IBISort

4. Drill:
IBILevelDrill and IBIMemberDrill

MemberSelection

MemberSelection is a MemberSetExpression. Below are the sub-classes of IBIMemberSelection, which are
themselves MemberSetExpressions:

Creating Queries

Query APIs

80

Figure 21 — MemberSelection Diagram

Creating Queries

Query APIs

81

 Note: Member selection in hierarchies

When considering member selection, it's important to consider the effect of the ALL member when
creating queries. For a discussion, see Member Selection Based on Level, in the Accessing Metadata
chapter.

TupleSetExpressions

Below, we diagram IBITupleSetExpression and its related classes:

Figure 22 — TupleSetExpression Diagram

As with MemberSetExpression, the four categories of SetExpressions are available:

1. Select:
IBICompositeTupleSetExpression, and all subinterfaces of IBITupleSelection (which is only
IBITupleList).

Creating Queries

Query APIs

82

2. Filter:
IBIRankingFilter and IBIConditionBasedFilter

3. Sort:
IBISort

4. Drill:
IBITupleDrill

Member

Many SetExpressions must be parameterized with Members. You do this with IBIMember or its sub-types. A
member represents a single and unique value of a dimension. For example, a query has a customer dimension, which
is the container for all existing customers of an enterprise system. One customer, such as “Kozmo USA,” would be
represented by a single member of the customer dimension.

IBIMember and its associated classes are diagrammed below:

Creating Queries

Query APIs

83

Figure 23 — Member Diagram

A customer – a member – is usually also associated with a collection of attributes such as ID, name, address, city,
and zip code. These attributes are also accessible from the member object; from each member, you can request its
associated attributes from the server, and these attributes will be returned with the result set.

In the OLAP Query API’s com.sap.ip.bi.sdk.dac.olap.query.member package, IBIMember is derived from
the Member class defined in the CWM Multidimensional package. IBIMember (and its sub-classes) therefore derives
all properties from Member (CWM).

Creating Queries

Query APIs

84

A class called Slot models attributes and their corresponding values. Object, from which Member (CWM) is
derived, aggregates a collection of Slots. A Slot can be regarded as an Attribute-Value pair. The Slot references
an Instance, the value, and a StructuralFeature, which is the super class of Attribute.

There is only one data type defined in CWM that can be used for values in this scenario: the DataValue class,
which is a subclass of Instance, and which has an attribute “value” of type String.

In order to support various data types for Attribute values, the Member package includes the IBIAnyDataValue
class, which has an attribute of type Any. Any corresponds to the Object class in Java, which is used in the Java
API to allow the following Java Wrapper classes as input:

• Boolean

• Byte

• Character

• Double

• Float

• Integer

• Long

• Short

• String

In the example of the customer Kozmo USA, the attributes of ID, name, address, city and zip code, would be
represented by an instance of the IBIMember class, which aggregates a number of Slots. One Slot would have
an association to an Attribute (for example, zip code) and an association to IBIDataValue (for example, value =
94114) for the value of the Attribute.

IBIMember also references the Dimension to which it belongs.

Several subclasses of IBIMember are special members:

• IBICurrentMember
This class represents the current member of a specific dimension while looping over a collection of members in
the context of a query. Use when joining collections of members with GENERATE join type (see Join Types).

• IBICalculatedMember
This class represents a member that only exists within the context of a query (and not on the server). It is
defined for a specific Dimension, and can have attributes like regular members. A calculated member is
derived from existing values and is used for calculations such as sums, totals, subtotals, complex calculations
based on other objects, and intermediate results (see also InputReference).

• IBIMemberExpression
(see below)

Creating Queries

Query APIs

85

MemberExpressions

MemberExpressions represent single Members. They are used to dynamically refer to a member that has a
relationship with another member that has to be specified. MemberExpression and its related classes are
diagrammed below:

Figure 24 — MemberExpression Diagram

Consider, for example, the MemberExpression IBIParent in the diagram above. You must provide a member as
an input to this expression. The MemberExpression IBIParent therefore represents the parent member of the
member you have provided as input to this expression.

Creating Queries

Query APIs

86

All the available MemberExpressions have in common that they represent a single member based on another
member, and may be based additionally on levels and parameters of type IBIInputReference.

IBIMemberExpression is derived from IBIMember, and can therefore be used where ever a member is required.

InputReferences

All subclasses of type IBIInputReference can be used as input for another expression. They serve as inputs for
other IBIInputReferences, IBIMemberSelections, IBISetExpressions, and IBIMemberExpressions,
and as formulas for IBICalculatedMembers.

You specify a CalculatedMember by one input reference, which acts as its formula. There is only one formula per
calculated member.

IBIInputReference and its related classes are diagrammed below:

Creating Queries

Query APIs

87

Figure 25 — InputReference Diagram

There are three kinds of InputReferences:

• Adapter classes

• NumericValueFunctions

• Operations

Adapter classes

Adapter classes, such as IBIAttributeReference, are direct subclasses of IBIInputReference and make the
classes they adapt usable as input reference.

Creating Queries

Query APIs

88

NumericValueFunctions

The second type, NumericValueFunctions, includes classes such as IBIAverage, which are the direct and non-
abstract subclasses of IBINumericValueFunction. They represent numeric functions that can be used calculate
an average value, a minimum, or just a sum of values. They all operate on collections of tuples/members.

IBINumericValueFunction and its related classes are diagrammed below:

Figure 26 — NumericValueFunction Diagram

Creating Queries

Query APIs

89

Operations

The third type, Operations, includes classes such as IBIAddition, which are the direct subclasses of
IBIOperation, and represent unary and binary operations. In contrast to IBINumericValueFunction,
IBIOperation does not work on a collection of tuples/member, but has one to two input parameters. It takes care of
basic operations like addition, subtraction, multiplication, and division.

IBIOperation and its related classes are diagrammed below:

Figure 27 — Operation Diagram

Types

The OLAP Query Model defines several types, with their corresponding enumerations, that are used as type safe
input for other expressions. They are diagrammed below:

Creating Queries

Query APIs

90

Figure 28 — Types Diagram

Creating Queries

Query APIs

91

 Note:

Two types, IBIResultPositionType and IBIResultSuppressionType, are not available in SAP
NetWeaver 2004 or earlier versions.

Join Types referred to throughout the query model are also described here. For each join type, there is one
enumeration value of the type IBIJoinType.

The available types and their enumerations are also listed in the table below:

Types and their enumerations

Type Enumeration Description

IBIJoinType - APPEND

- EXCEPT

- GENERATE

- INITIAL

- INTERSECT

- UNION

see Join Types.

IBIRankType - TOPCOUNT

- TOPPERCENT

- TOPSUM

- BOTTOMCOUNT

- BOTTOMPERCENT

- BOTTOMSUM

The type of ranking you can
select for the ranking filter.

IBIDrillDirectionType - UP

- DOWN

The options for a drill
operation.

IBISortDirectionType - ASCENDING

- DESCENDING

Specifies sort order.

IBILevelType - YEARS

- QUARTERS

- MONTHS

- WEEKS

Specifies a specific period of
time.

IBIRelationalOperatorType - EQUAL

- NOTEQUAL

Specifies the relational
operator for a condition-based
filter.

Creating Queries

Query APIs

92

Type Enumeration Description

- GREATERTHAN

- GREATERTHANEQUAL

- LESSTHAN

- LESSTHANEQUAL

- BETWEEN

IBISapRangeSignType - INCLUDING

- EXCLUDING

Specifies whether the given
values should be included or
excluded from the selection by
using the SIGN component.

IBISapVariableSelectionType - SINGLEVALUE

- INTERVAL

- COMPLEX

Specifies one of three possible
types of value selections for
variables.

IBIResultPositionType - TOP

- BOTTOM

Specifies the position in which
to display the totals on an
IBIAxis.

IBIResultSuppressionType - SINGLEVALUE

- INTERVAL

- COMPLEX

Specifies the conditions under
which to calculate totals for an
IBIAxisDimension.

 Note:

Two types, IBIResultPositionType and IBIResultSuppressionType, are not available in SAP
NetWeaver 2004 or earlier versions.

SAP Variables

In SAP BI, you can use variables to parameterize queries. For example, you could create a query for a monthly report,
and then parameterize it with the current month using SAP variables.

Since these variables can be used in SAP BI's Open Analysis Interfaces, they therefore are supported in the BI Java
SDK by using various BI-specific enhancements to the MDX syntax.

IBISapVariable and the additional classes related to SAP variable support in the OLAP Query Model are
diagrammed below:

Creating Queries

Query APIs

93

Figure 29 — Variables Diagram

An OLAP query in SAP BI (which corresponds to the CWM Cube in the query model) can have zero to many SAP
variables associated with it. As you can see from the diagram, and as depicted in Figure 17 — Main Model Diagram
above, support for this in the query model is provided by the Slot (see Member for more about slots). IBIQuery
has a one-to-many association with Slot.

Each slot associates a variable with a value or a number of values. Variable values and their associated classes are
diagrammed below:

Creating Queries

Query APIs

94

Figure 30 — Variable Values Diagram

Variable values are specified by selection types (see IBISapVariableSelectionType in the Variables diagram,
above). There are three types of variables, and each specifies a particular selection type:

Variables and their selection types

SAP Variable Selection Type

IBISapHierarchyVariable Single value (you can specify only one
hierarchy)

IBISapMemberVariable Single value / interval / complex selection

IBISapNumericVariable Single value / interval / complex selection

Single values simply select a single value, such as a Member. With an interval, you can select a range of values.
With complex selection, you can select complex sets of collections of ranges and single values, including and
excluding selections as well.

Creating Queries

Query APIs

95

Relational Query Model

The Relational Query Model provides an abstraction layer for formulating relational queries independently of data
source-specific query APIs. The model is based on the CWM Expressions package, and loosely on a subset of the
SQL standard, and binds the CWM-based relational metadata.

A relational query in this sense is an expression tree of a functional representation of the corresponding SQL-like
statement. This allows for simple code generation from the expression tree for the various relational backends
(resource adapters, or BI Java Connectors), such as SQL for the BI JDBC Connector and an RFC call via JCo for the
BI SAP Query Connector.

In contrast to the OLAP Query Model, the Relational Query Model is based almost purely on CWM, with some SDK
extensions. It consists of the following CWM packages, and SDK extensions:

Relational Query Model: components and packages

Component Associated CWM or SDK package

Foundation for the Relational Query Model org.omg.cwm.foundation.expressions

Foundation for the Relational Metadata Model org.omg.cwm.resource.relational

Foundation for CWM metamodel development org.omg.cwm.objectmodel.core

Relational Command Processor

SDK extensions to the CWM Expressions
package

com.sap.ip.bi.sdk.dac.relational.query

Interfaces relevant for SAP Query com.sap.ip.bi.sdk.dac.relational.query.sapq

Interfaces that help represent a WHERE
condition in tree form

com.sap.ip.bi.sdk.dac.relational.query.tree

For API documentation, refer to the Javadocs for these packages via the links in the table above, or start with the
Javadocs overview pages:

• SDK Javadocs overview page: see Relational Query API group

• CWM Javadocs overview page

Relational Command Processor

The Relational Command Processor hides the complexity of the CWM Expressions package, which forms the basis of
the Relational Query Model and assists in instantiating valid query instances. You can rely on the Relational
Command Processor for most of your relational querying needs.

Creating Queries

Query APIs

96

Consult the CWM Expressions package for additional underlying information about the Relational Query Model, or
read additional background information below.

SQL Subset

The Relational Query Model corresponds with the following subset of SQL (specified as a grammar in Backus Naur
Form):

Relational Query Model SQL subset (in Backus-Naur Form):

<single-row-select> → <select-clause> <from-clause> [<where-clause>] [<group-by-clause>]
[<order-by-clause>] [<having-clause>]

<select-clause> → SELECT [<select-item>,*]<select-item>

<select-item> → <single-column> | <all-columns>

<single-column> → <scalar-expr> AS <column>

<all-columns> → [<range-var>.]*

<scalar-expr> → <column-ref> | <aggr-func-ref> |<quoted-value> | <numeric-value>

<aggr-func-ref> → <count-aggr-func-ref> | <min-aggr-func-ref> | <max-aggr-func-ref> | <avg-
aggr-func-ref>

<count-aggr-func-ref> → COUNT(<column-ref>)

<min-aggr-func-ref> → MIN(<column-ref>)

<max-aggr-func-ref> → MAX(<column-ref>)

<avg-aggr-func-ref> → AVG(<column-ref>)

<column-ref> → [<column-quantifier>.]<column>

<where-clause> → WHERE <cond-expr>

<group-by-clause> → GROUP BY [<column-ref>,*]<column-ref>

<order-by-clause> → ORDER BY [<order-item>,*]<order-item>

<order-item> → <column>[<order-dir>]

<order-dir> → ASCENDING | DESCENDING

<having-clause> → HAVING <cond-expr>

<from-clause> → FROM [<table-ref>,*]<table-ref>

<table-ref> → <table>[<range-var>]

<catalog> → <catalog>

<schema> → [<catalog>.]<schema>

<table> → [<schema>.]<table>

<range-var> → <rangevar>

<column-quantifier> → <table>|<range-var>

Creating Queries

Query APIs

97

<column> → <column>

<cond-expr> → [<cond-term> OR]<cond-term>

<cond-term> → [<cond-term> AND]<cond-factor>

<cond-factor> → [NOT]<cond-test>

<cond-test> → <cond-primary>[IS NULL]

<cond-primary> → <simple-cond> | (<cond-expr>)

<simple-cond> → <comparison-cond> | <between-cond> | <like-cond> | <in-cond> | <test-for-
null-cond>

<comparison-cond> → <row-constructor> <comparison-operator> <row-constructor>

<comparison-operator> → <equals-operator> | <less-than-operator> | <greater-than-operator> | <less-
equals-operator> | <greater-equals-operator>

<equals-operator> → =

<less-than-operator> → <

<greater-than-operator> → >

<less-equals-operator> → <=

<greater-equals-operator> → >=

<between-cond> → <row-constructor> BETWEEN <row-constructor> AND <row-constructor>

<like-cond> → <row-constructor> LIKE <row-constructor>

<escape> → ESCAPE <escape>

<in-cond> → <in-cond-list> | <in-cond-sub-select>

<in-cond-list> → <row-constructor> IN ([<row-constructor>,*]<row-constructor>)

<in-cond-sub-select> → <row-constructor> IN <single-row-select>

<test-for-null-cond> → <row-constructor> IS NULL

<row-constructor> → <scalar-expr>

<quoted-value> → <quoted>

<numeric-value> → <numeric>

Notes:

1. Non-terminals are in italics, for example: <non-terminal-symbol>.

2. Terminals are in bold, for example: <terminal-symbol>.

3. Keywords are in bold, for example: KEYWORD.

4. "|" separates alternative grammar productions.

5. "[…]" encloses optional grammar productions.

6. "*" specifies that the preceding grammar production can occur an arbitrary number of times.

7. The terminal symbols have the following meaning:

Creating Queries

Query APIs

98

Terminal Symbols

Terminal Symbol Corresponding Java Type

<catalog> String (valid catalog name, if supported)

<schema> String (valid schema name, if supported)

<table> String (valid table name)

<rangevar> String (valid range-var string)

<column> String (valid column name)

<escape> char

<quoted> String surrounded by single quotes

<numeric> int, double

8. The semantics of a query instance correspond with their SQL counterpart.

9. While WHERE conditions are tree-like expressions (Backus-Naur Form, referenced above, implies binary logical
operators and enclosing parentheses), the Relational Command Processor implies a sequential model of query
generation and manipulation, hence the WHERE is formulated using a logically equivalent postfix representation
(a stack-based approach). In other words, the predicates are pushed onto an implied WHERE stack followed by
the logical operators. Refer to the Javadoc for the Relational Command Processor for more information.

SAP Query Interfaces

SAP Query is a reporting tool for systems running SAP Web Application Server, and is also accessible via an ABAP
BAPI. This package provides interfaces to the data structures used when accessing SAP Query via this BAPI
(Functiongroup RSAQ).

Metadata Mapping

SAP Query uses the following metadata objects:

 Functional area

A functional area describes a data source (field list and methods for data access). The
access methods are can be SQL statements, logical databases and ABAP reports and are
hidden for users of the functional area.

 Query

A query uses a functional area to select the fields which are to read from the data source
described by functional area. Each query must use exactly one functional area; a

Creating Queries

Query APIs

99

combination of functional areas like joins is not possible. Additionally, a query is connected
with a user group.

 User group

A user group is a container for queries and an authorization mechanism for using SAP Query.
User groups are not used in the BAPI and as support for them will be dropped, their use is
not recommended.

These objects have been mapped to the relational model used in the SDK in the following manner:

SAP query / Relational Model Mapping

SAP Query SDK Relational Model Description

SAPQUERY Catalog placeholder catalog

SAPQUERY Schema placeholder schema

Functional Area Table

Functional Area Fields Column

Usergroups could have been a potential candidate for either catalog or schema, but as their support will be
discontinued, this was not chosen.

As the results of generic queries in SAP Query can be far more complex than the mapping to a relational table would
allow (for example, several separate results as the result of one query) this was not feasible within the framework of
the relational query model of the SDK. Therefore, Functional Area was chosen as the representation of a relational
table instead, still allowing full access to the entities offered within SAP Query, with the restriction however that
queries need to be generated for a Functional Area via the SDK.

SAP Query does not support queries involving more than one functional area at once (in other words, JOINs are not
possible).

SELECT-OPTIONS

As SAP Query uses the runtime of the underlying SAP Web Application Server and provides access not only to
relational tables, but also to Logical Databases and Reports via the same BAPI, query selections and restrictions
(specified as WHERE conditions in SQL) are limited to a subset of the expressions permissible in the relational model.
Where possible, WHERE conditions are translated to their equivalent representation in SAP Query called SELECT-
OPTIONS, or else an exception is raised. Details of the subset are can be found in the SAP Query sub-package API
documentation of the Relational Query API package group, as well as in the SAP online help for the SAP Web
Application Server at the following link:

http://help.sap.com/saphelp_webas620/helpdata/en/9f/dba71f35c111d1829f0000e829fbfe/frameset.htm

http://help.sap.com/saphelp_webas620/helpdata/en/9f/dba71f35c111d1829f0000e829fbfe/frameset.htm

Creating Queries

Query APIs

100

Query Execution

SAP Query query execution supported via the SDK consists of the following phases:

1. SAP Query query based on the functional area and metadata provided (fieldlist for the selection, etc.) is
generated on the fly. SAP Query query is executed with the SELECT-OPTIONS restrictions (converted from
the original relational form of the relational query).

2. SAP Query result is retrieved (simple text-based JCo table) and converted to a relational result set (SDK
implementation of java.sql.ResultSet) and returned. Due to the implementation of the BAPI, the entire result of
such a query is retrieved at once (even though java.sql.ResultSet would allow a cursor-based fetch model).

Tree-Form Representation

With the Relational Query API, logical expressions used to specify WHERE conditions can be represented as trees
containing the logical operations AND, OR, and NOT as internal nodes and predicates, such as a=1, as the leaves.

The predicates usually are of the form:

<column> <oper> <value>

In the above case, <value> can be one of the following:

• a literal value containing digits or a string (for example: 1, '01-01-2004', 'text')

• another column (to create joins)

• a sub-select

For example:

Figure 31 — Tree Form Representation

Creating Queries

Examples

101

The where condition specified by the above tree is:

((a=1) OR (b=2)) AND (NOT (c=3))

This tree could be implemented using the following code:

 Column a = ...;

 Column b = ...;

 Column c = ...;

 BIWhereTree tree = new BIWhereTree();

 tree.push(a, IBISQLComparisonOperator.EQUALS), new Integer(1));

 tree.push(b, IBISQLComparisonOperator.EQUALS), new Integer(2));

 tree.push(IBISQLLogicalOperator.OR);

 tree.push(c, IBISQLComparisonOperator.EQUALS), new Integer(3));

 tree.push(IBISQLLogicalOperator.NOT);

 tree.push(IBISQLLogicalOperator.AND);

 tree.popRoot();

Examples

Although most of the SDK’s examples create queries in some way, the examples below focus in particular on query
functionality.

OLAP Queries

 Olap_2.java – Direct execution of MDX statement:

Demonstrates how to retrieve a result set by directly executing an MDX statement, then shows how to display the
result set as an HTML table.

 Olap_3.java – Pivoting / changing layout of an OLAP query:

Illustrates the process of changing the layout of a query by moving dimensions between axes and then by swapping
axes. Renders the output of each into two separate HTML tables.

To help visualize the effects of pivoting dimensions on axes, we illustrate the process in a series of four diagrams
below:

Creating Queries

Examples

102

Figure 32 — Operation: New Query

MDX: SELECT FROM Sales Cube

Figure 33 — Operation: moveDimensionToColumns

MDX: SELECT {[Measures].[Revenue]} ON
COLUMNS FROM SalesCube

Figure 34 — Operation: moveDimensionToRows

MDX: SELECT {[Measures].[Revenue]} ON
COLUMNS, {[Regions].[All]} FROM SalesCube

Figure 35 — Operation: addMember

MDX: SELECT {[Measures].[Revenue]} ON
COLUMNS, {[Regions].[All]} FROM
SalesCube WHERE ([Time].[Q1])

As diagrammed in the series above, the result of a query in its initial state (see Figure 32 — Operation: New Query,
above) orients all dimensions on the slicer axis with their respective default members of default hierarchies selected.

Creating Queries

Examples

103

In this state, the result of the query selects a single cell from the cube. The MDX statement, more specifically, is
equivalent to:

SELECT FROM Sales Cube WHERE ([Region].[All],[Time].[All],[Measures].[Revenue]).

To display a certain dimension in the report, we must move it from the slicer axis to one of the other axes (columns or
rows) (see Figure 33 — Operation: moveDimensionToColumns, above). The result of this operation moves the
measures dimension to the columns axis and selects its default member, which is Revenue.

Next, we move a different measures dimension to rows (see Figure 34 — Operation: moveDimensionToRows,
above). Now the Region dimension is moved to the rows axis and selects the default member. The data set in this
state is a typical crosstab, however it displays only a single member on each axis.

Finally, to finish refining our result, we use the addMember operation (see
Figure 35 — Operation: addMember, above). In this figure, a member is added to the member set of the Time
dimension on the slicer axis. This results in the specification of a filter value in the WHERE clause, and rounds out a
specific result set with which we are concerned.

 Olap_4.java – Selecting dimension attributes:

Selects a dimension attribute, and renders the result set into an HTML table.

 Olap_5.java – Sorting by measure value:

Renders the default result set into an HTML table, sorts the data according to a measure value in ascending order,
and then renders the data into a second HTML table for comparison.

 Olap_6.java – Sorting by dimension attribute:

Illustrates how to select a dimension attribute for display, and to sort by a dimension attribute.

 Olap_7.java – Filtering:

Illustrates both a ranking filter and a condition-based filter. Renders the result of a query without any filtering, then
filters the set of Sold-To parties using a ranking filter and re-renders the result. Changes the filter to a condition-based
filter to restrict by quantity, and re-renders the result for comparison.

 Olap_8.java – Hierarchy navigation – member drill operations:

This example illustrates the two different versions of hierarchy navigation: zooming and drilling.

Creating Queries

Examples

104

When zooming in on a member, the member itself is discarded and only the children are displayed. The advantage of
this method is that the result sets remain simple. The disadvantage is that the context of where the members belong
in the hierarchy is lost. When drilling down on a member, the member itself is retained and its children are added to
the result set.

In this example, we apply the following operations in sequence to an initial data set:

1. Zoom in

2. Zoom out

3. Drill down

4. Drill up

After each operation, the result set is rendered again for comparison.

 Olap_9.java – Calculated members:

Creates a calculated measure - cost per item - by dividing the total cost by the number of items sold.

 Olap_10.java – SAP variable complex value selection:

Illustrates two ways to define a complex value selection for an SAP variable:

1. Using the OLAP Command Processor

2. Directly manipulating the OLAP Query Model

Relational Queries

 Relational_3.java – Direct execution of SQL statement:

Demonstrates how to retrieve a result set by directly executing a SQL statement, then shows how to display the result
set as an HTML table.

 Relational_4.java – Simple relational query:

Demonstrates how to retrieve a result set by creating a simple query, then shows how to display the result set as an
HTML table.

 Relational_5.java – More complex relational query:

Creating Queries

Examples

105

This example in particular demonstrates the benefit of the SDK’s query APIs and how you can build a lengthy,
complicated SQL query without having to key it all in yourself and validate its syntax.

 Caution:

This example finds all tables in your database starting with a particular prefix. This could retrieve a great
deal of data and cause performance issues if there are a large number of tables in your database and
the prefix is not restrictive enough.

Here, we retrieve a result set by creating a more complex query with the following features:

1. Field selections

2. Joins

3. Sorting

Note:

See Appendix B: Examples for the full index of examples and instructions on getting your system up and
running with them.

106

Chapter 5: Retrieving Result Sets
Overview

In the analytical applications you create with the SDK, the ultimate goal of connecting to a data source, browsing its
metadata, and creating a query upon it is to render a result, or result set. To create this result set, and to assist you in
navigating and rendering it, the SDK provides the ResultSet API and the OLAP Table Model. This chapter describes
the following components:

• ResultSet API

 Key Features

 OLAP Result Sets

 Relational Result Sets

• OLAP Table Model

API Documentation

Refer to the Javadocs for the ResultSet API in the following package of the SDK:

com.sap.ip.bi.sdk.dac.result

Refer to the Javadocs for the OLAP Table Model in the following package of the SDK:

com.sap.ip.bi.sdk.dac.result.model

ResultSet API

The BI Java SDK needs to be able to represent result sets for the diverse queries that can be defined using the SDK’s
Query APIs. These result sets can have any geometry (for example, crosstabs with nested dimensions) and can
contain any data type (for example, Time, Date, Timestamp, Double, String, and Integer), and can be
relational or OLAP result sets.

It’s the job of the SDK’s Resultset API to provide applications with a complete set of interfaces to access these result
sets, delivering a relational result set from a relational data source, and an OLAP result set from an OLAP data
source.

Retrieving Result Sets

ResultSet API

107

The ResultSet API is based on Sun’s established java.sql.ResultSet interface, which is part of the Java
Database Connectivity (JDBC) API. Only a few lightweight interfaces have been added to facilitate a multidimensional
representation.

Key Features

Key features of the ResultSet API include:

• Relational support
The ResultSet API’s basis in JDBC is grounded in supporting the representation of relational query results and
is by nature tabular, supporting access to columns and navigation on the rows.

• Multidimensional support
The ResultSet API has additional elements that facilitate a multidimensional presentation. Although any result
set can be represented as a flat table, it’s too great a burden on OLAP applications to decompose such a
representation to create a multidimensional rendering. To support multidimensional results, we have therefore
added elements such as axes that correspond to the elements of a multidimensional query.

• Performance
The result space represented by a query can be very large. It can be impossible for an application to deliver so
much data to a UI all at once. To avoid this, the ResultSet API allows an application to fetch only a part of the
data that is represented by a query.

• Hierarchies
The API facilitates the rendition of hierarchies by providing information about hierarchy levels such as
parent/child relations and number of children.

• Cells
The API supports provider-specific cell properties, such as currency/unit and numeric formatting information.
The API supports empty cells and cells in which errors occurred, such as overflows.

• Compatibility
The API has been engineered to be compatible with a variety of data sources, supported by the SDK’s ODBO,
XMLA, JDBC, and SAP Query connectors. Since java.sql.ResultSet is not the native format for retrieving
results from data sources that are not JDBC-compliant, support in the non-JDBC connectors for JDBC’s
features depends on the data source. For example, JDBC-specific data types such as BLOB are not supported.

Note:

We have inherited some functionality from java.sql.ResultSet that is not implemented in this
version of the SDK:

 The java.sql.ResultSet API provides update, insert, and delete functionality which is not
supported in the current implementation of the SDK.

 The API provides an association with the query. In other words, the API provides a means of
navigating back to the query from which the ResultSet was created.

Retrieving Result Sets

ResultSet API

108

OLAP Result Sets

A data set is a multidimensional result set returned by an OLAP server. It is a complex data object that can be
conceptually represented by two components: cell data and axis data. The IBIDataset interface provides the
methods to access the information contained in a data set, supporting the concept of cursors (instances of
java.sql.ResultSet) for each axis and dimension.

The data set representation conforms closely to conventions in Microsoft's OLE DB for OLAP (ODBO) Programmer's
Reference. We’ve made adjustments in structures and naming to comply with Java naming conventions as well as for
simplification.

The root interface for accessing a data set is the IBIDataset interface. A reference to IBIDataset is returned
either by calling the getDataset() method on a query object that has been executed, or by executing an MDX
command directly, using the method on an instance of the IBIConnection interface. IBIDataSet provides access
to the list of axis-cursors. These in turn provide access to DimensionCursors which can contain
DimensionAttributeCursors.

All cursors implement IBIResultSet (extending java.sql.ResultSet) , thus we have a very symmetric and
simple design. The DimensionCursor provides a mechanism for separating axis data for the different dimensions
and does not support row navigation. Instead, a DimensionCursor governs only a single row that corresponds to
the current position of the AxisCursor.

In addition, we defined a mechanism to support basic manipulations of a data set, such as update of cell values,
insertion and deletion of rows, and features like conditional sum or zero suppression. The concept of pluggable filters
provides a good separation of such functions from the basic infrastructure of representing a general dataset. We’ve
also retained the insert, update, and delete methods of java.sql.ResultSet, for basic manipulations of an in-
memory-instantiated data set.

Finally, similar to ActiveX Data Objects (ADO) design, we have added a properties collection to the base
IBIResultSet interface that will allow us the flexibly to add information about the quality of an instance of a
ResultSet.

IBIDataset extends java.sql.ResultSet to provide direct access to the cell data (cell cursor) as well as to
provide methods to retrieve the list of axes (axis cursors). IBIAxisCursor extends IBIResultSet, hence
providing access to and navigation on the contents of each axis. The AxisCursors in turn contain
DimensionCursors (one for each dimension) which in turn can contain DimensionAttributeCursors (for
attributes of a dimension). For example, the dimension Product might have attributes Color and Size.

This relationship between axis, dimension, and cell cursors is schematically depicted below:

Retrieving Result Sets

ResultSet API

109

C
olum

n (A
xis-)cursor

Cell Cursor

Row (Axis-)cursor

Dimension cursors

Figure 36 — ResultSet API Cursor Model

Major Interfaces Summary

The IBIDataSet interface provides the following features:

• Extends IBIResultSet to allow access to the cell data (referred to as a cell set).
• Provides that the cell set is access-only result set (as navigation is prompted by navigation of the axis

cursors).

• Provides access to all axes.

• Provides synchronization between cell set and all the axes. When navigating along an axis, the cell set is
positioned accordingly.

The IBIAxisCursor interface provides the following features:

• Extends IBIResultSet to allow navigation along each individual axis (navigation-only resultset).
• Contains dimensions (naming convention of columns to discern between dimensions, or dimension-specific

prefix – also known as dimension cursors).

Retrieving Result Sets

ResultSet API

110

• Provides synchronization between cell set and axis cursor.

The IBIDimensionCursor interface provides the following features:

• Extends IBIResultSet to provide access to dimension data (access-only result set).
• Provides for the access-only result set (navigation is handled via enclosing AxisCursor).
• Contains (optional) dimension attributes (naming convention to discern between attributes, or attribute

specific prefix – also known as dimension attribute cursors).

The IBIDimensionAttributeCursor interface provides the following features:

• Extends IBIResultSet to provide access to dimension attribute data.
• Provides for the access-only result-set (navigation is handled via enclosing AxisCursor).

Metadata Access

Since IBIDataSet extends IBIResultSet, which in turn extends java.sql.ResultSet, it provides the same
mechanism to access metadata describing the result set. Metadata (java.sql.ResultSetMetadata) is retrieved
via the getMetadata() method, which provides the following information:

• Catalog, schema, and table name (applicable in the relational domain where possible – no table name is
available if the result set is the result of a JOIN query)

• Number of columns in the result set

• Captions and names of the columns

• Column type information (data type and precision, length, and so on, where applicable)

• Additional features of the column (for example, can the column contain NULL values, is it writeable, and so
on)

Metadata is provided for and needs to be retrieved separately from each component of the IBIDataSet instance – in
other words, from the cell set, axis cursors, dimension cursors and dimension attribute cursors – via the same method
on each cursor.

Navigational Aspects

As mentioned above, IBIDataSet supports navigation along each of the axis cursors, with automatic
synchronization of the cell cursor, which eliminates the need to calculate the current position in the cell set based on
the current positions in each of the axis cursors. To ensure consistency, the cell cursor does not allow the use of any

Retrieving Result Sets

ResultSet API

111

of the java.sql.ResultSet navigation methods (attempts to use these would result in a
java.sql.SQLException).

IBIDataset provides (via java.sql.ResultSet) a simple and effective navigation model (a cursor-based
approach) supporting blockwise data fetching, including:

• Relative and absolute positioning via row index
• Simple stepping to next and previous row
• Defined reset of the navigation state (position after last, before first, on first and on last row)
• Fetchsize can be recommended (set-/getFetchsize method)
• Automatic synchronization of cell and axis cursors on change of navigation state

Data Access

IBIDataSet provides (via java.sql.ResultSet) typed access to the contents of the columns of the current row,
provided the current row is valid (in other words, not before first or after last row). The column requested can be
specified either by index (1-based – the first column has index 1, the second has index 2, and so on), or by column
name.

Information on number and names of the columns is contained in the metadata of the result set. The data contained in
each column can be retrieved by specifying the return type – getString(int) (column specified by index) and
getString(String) (column specified by name).

IBIDataSet supports (via java.sql.ResultSet) access for all primitive data types, such as boolean, int, and
char, as well as for a large collection of commonly-used classes, such as String, Double, Float, Date, and
Time. The implementation of java.sql.ResultSet is responsible for converting the underlying data provided by
the data source to the requested type and returning an appropriate value – in other words, for mapping the data type
in the data source to a corresponding Java data type.

IBIAxisCursor, IBIDimensionCursor and IBIDimensionAttributeCursor, like IBIDataset, are
extensions of java.sql.ResultSet and all provide the same interface for metadata access, navigation and data
access.

Multidimensional Results in Two Dimensions

There are two basic approaches to representing multidimensional datasets in tables of two dimensions: data set
flattening, and data set decomposition. The ResultSet API uses the data set decomposition approach. We compare
the two and explain our motivation below.

Retrieving Result Sets

ResultSet API

112

Data Set Flattening

Flattening represents any result set as a flat table, and the process that renders such a representation of an OLAP
data set is known as data set flattening. The ODBO flattening algorithm defines the construction of column names and
also the rendition of hierarchy information in such a flattened data set.

The screenshot below shows an example of a flattened data set as returned by an ODBO provider:

Figure 37 — Flattened Data Set

The creation of such a flattened data set comes with significant overhead for the provider. It also puts the burden of
decomposing this representation on the OLAP application. The rationale for this approach is rooted in the legacy of
some BI tools which initially were pure relational reporting tools, and then later added OLAP support. For such tools, a
tabular representation was the easiest way to load data into their native data stores.

Data Set Decomposition

The SDK instead uses data set decomposition as its approach to rendering multidimensional result sets.
Decomposition is the basic underlying concept of the ODBO IMDDataset interface and the ADO MD cellset object.
In this approach, we decompose a data set into cell data and axis data, which we in turn represent by tabular views.

The figure below shows a sample dataset that consists of two axes – a columns axis and a rows axis:

Figure 38 — Sample Data Set

Retrieving Result Sets

ResultSet API

113

Note that the concept allows for more than two axes, however a two-dimensional, table-like data set makes the
example easy to illustrate. On the columns axis, two members (“Store Cost” and ”Store Sales”) of the measures
dimension have been selected; on the rows axis, three members (“Berlin,” ”Hamburg,” and ”Munich”) of the City level
of a geographical hierarchy. The dataset has six cells:

Cells provide four mandatory properties:

• Value — supports all common column types, for example:

o numeric types

o dates

o time values

o strings

o null

• Data type — int value describing the data-type (see java.sql.Types)

• Status — state of the cell (for example, error or null)

• Formatted value — a string representation of value

For example, the cell with the ordinal 1 has the value "159167.84" and the formatted value “€159,167.84.” Additional
properties of a cell are modeled as a properties collection of a cell.

The following figure now describes this information within the context of the decomposition of the data set into axis
data, cell data, and collections:

Retrieving Result Sets

ResultSet API

114

Figure 39 — Decomposed Data Set

The data set has been decomposed into three tabular views or collections:

1. Cell data

2. Members on the columns axis

3. Members projected along the rows axis

The example is fairly simple, insofar as there are no nested dimensions or attributes on either of the axes, and no
additional properties for the cell data beyond the value and a formatted value. However, the extension of this model to
more complex result sets with such properties is straightforward.

Retrieving Result Sets

ResultSet API

115

Relational Result Sets

The relational result set (IBIResultSet) is based on java.sql.ResultSet, from Sun’s established standard. It
supports all common data types and blockwise fetching of tabular data within a Java API.

Part of the set JDBC APIs, java.sql.ResultSet’s implementation is the responsibility of the JDBC driver
implementers. We provide our own implementation for such cases where no JDBC driver is available, for example in
the case of the BI OLAP and SAP Query connectors.

The ResultSet API’s IBIResultSet extends java.sql.ResultSet, adding the capability to synchronize the
navigation of multiple result sets for use in OLAP result sets. We also support the need to provide additional features,
such as conditional zero suppression or summation and calculated keyfigures (additional columns based on data
contained in the result set itself). To achieve this, IBIResultSet supports pluggable filters which follow the
“decorator” design pattern, forwarding IBIResultSet calls to another IBIResultSet and adding the required
functionality.

By reusing the ResultSet interface and all data types of the java.sql package, our design required adding only a
few lightweight interfaces. In this way, we gain interoperability with the existing ecosystem for
java.sql.ResultSet.

Metadata Access

As IBIResultSet extends java.sql.ResultSet, the standard means for accessing metadata of a result set is
identical in both cases. The getMetadata method returns an instance of ResultSetMetadata, which provides
information about:

• Catalog, schema, and table name (where applicable – and table name is “” when the result set is the result of

a JOIN of multiple tables)
• Number of columns in the result set
• Caption and name of each column
• Additional features of the column (for example, can the column contain NULL values, is it writeable, and so

on)

Navigational Aspects

As above, IBIResultSet (via java.sql.ResultSet) supports cursor-based navigation with
• Absolute and relative positioning via row index (1-based – the first row has index 1, the second has index 2,

and so on)
• Single stepping forwards and backwards (next and previous row)
• Setting of specific positional states (before first, on first, on last, after last row)
• Querying of the current position (is the current row before first, after last, on the first, on the last row, and so

on)

Retrieving Result Sets

OLAP Table Model

116

Data Access

As above, IBIResultSet (via java.sql.ResultSet) provides access to the contents of the current row (if it is
valid, or not positioned before the first or after the last row). The contents of a column of the current row can be
retrieved either via its index (1-based) or its column name.

IBIResultSet provides typed access to the data for all primitive types, such as boolean, int, and char, as well
as to most common classes such as String, Date, and Time.

The mapping of data source types to Java language types is described in the JDBC specification (see
http://java.sun.com/products/jdbc/).

OLAP Table Model

The OLAP Table Model is a helper class that facilitates the rendering of a multidimensional dataset into a two-
dimensional matrix. The SDK examples use this table model, BIDataSetTableModel, to render datasets into the
HTML result pages. The method, renderDataset, is provided by the Helpers class in the
com.sap.bi.sdk.samples package.

API Documentation

Refer to the API documentation for the OLAP Table Model in the following package:

com.sap.ip.bi.sdk.dac.result.model

Rendering Algorithm

BIDataSetTableModel is constructed from IBIDataSet, and exposes three methods that are required for
rendering a table:

• getColumnCount()

• getRowCount()

• getValueAt(int rowIndex, int columnIndex)

http://java.sun.com/products/jdbc/

Retrieving Result Sets

OLAP Table Model

117

These methods provide a projection of the data set into a two-dimensional matrix. Additional advanced data set
features are supported – for example, crossjoins, dimension properties, and in particular, the hierarchical display of
the data set, which can be set to on or off by the isDisplayHierarchy parameter in the constructor.

The strategy of the algorithm is diagrammed below:

Figure 40 — OLAP Table Model Algorithm

The output table represented by this model is divided into four sections:

I. Row and column labels (captions)

II. Column headers

III. Row headers

IV. Cell data

Retrieving Result Sets

Examples

118

Examples

Most of the SDK’s examples are designed to deliver result sets. Examples with OLAP result sets rely on the OLAP
Table Model to format multidimensional data in two dimensions. When constructing BIDataSetTableModel from
IBIDataSet, the columns and rows information are retrieved from the IBIDataSet.

Functionality of the OLAP Table Model is delivered to the examples via the Helpers.java class.

Below we provide an example of how to use the OLAP Table Model, and then we explain what the Helpers.java
class provides to the examples.

 Retrieving rows information with the OLAP Table Model:

This code sample illustrates how to use the OLAP Table Model to get rows information, though the columns
information is similar. It also demonstrates how you could further extend the table model interface,
BIDataSetTableModel, for more complicated OLAP result sets.

We need the following information for the table model:

 // number of dimensions on rows
 private int _dimRows = 0;

 // arrays for the count of properties for each dimension on rows
 private int[] _rowPropCount = null;

 // variables for the number of header rows of the output grid
 private int _nHeaderRows = 0;

 // these variables describe the size of the output grid and depend on the
 // chosen representation
 private int _nTotalRows = 0;

 // these variables are used for the actual data set coordinates
 private int _actualRow = 0;

First, get column axis cursor and row axis cursor from the data set:

 _rows = dataset.getAxisCursor(IBIDataSet.ROWS);

The total rows are the sum of header rows and number of rows on the data set:

 _nTotalRows = rowNum + _nHeaderRows;

Retrieving Result Sets

Examples

119

To get the number of rows on the data set:

 _rows.last();
 rowNum = _rows.getRow();

For _nHeaderRows, there are a few additional considerations. If properties have been selected for the dimensions,
these should be displayed (regardless of the axis; on rows and columns alike). In addition, hierarchy on a dimension
may be displayed to an extent that multiple levels need to be taken into account.

For the calculation of the number of nHeaderRows, see the following documentation from the
BIDataSetTableModel Javadoc:

 * Row# Dimension Property
 * 1 Customer caption Mayer
 * 2 Customer Zip Code 94025
 * 3 Measures caption Sales Count

In this case, we have two dimensions on the columns axis: customers and measures. Customers has the property zip
code selected. There are no properties selected for measures. The resulting number of header rows in this case is 3.

To account for the dimension properties, we get the number of attributes from each dimension on an axis, and
accumulate the number of properties that are selected.

The header row represents the number of dimensions on the columns axis:

 _dimCols = _cols.getDimensionCursor().size();
 _nHeaderRows = _dimCols;

Add the number of dimension properties for each dimension on the columns axis:

 _nHeaderRows = _nHeaderRows + _colPropCount[dimNum];

The number of dimension properties can be retrieved from DimensionAttributeCursor, and this need to be done
for every dimension on the columns axis:

Retrieving Result Sets

Examples

120

 // number of properties on cols
 dimNum = 0;
 for (Iterator h = _cols.getDimensionCursor().iterator(); h.hasNext();) {
 IBIDimensionCursor dim = (IBIDimensionCursor) h.next();
 _colPropCount[dimNum] = dim.getDimensionAttributeCursor().size();
 _nHeaderRows = _nHeaderRows + _colPropCount[dimNum];
 dimNum++;
 }

In this way, we calculate the number of header rows and columns.

Now, one additional complexity comes into play because of the hierarchies. First, we describe the type of graphical
representation we choose to display hierarchies in the output table and how this influences our table model.

A Hierarchy on the rows axis should be displayed in the following way:

 * #1: Caption | #2: property 1 |
 * All Customers |
 * |-------------- |
 * | USA |
 * | Canada |
 * | |------------|
 * | | Vancouver | 94025
 * | | Montreal |
 * | France |

Note that the separation of the different levels is done exclusively using indentation and vertical and horizontal lines in
the cell UI. What's key here is that for each dimension on the rows axis we use a single column, plus the columns
needed for the properties.

A Hierarchy on the columns should be displayed in the following way:

 * | All Products__| #1: Caption lvl 1
 * | | Food | Office | Outdoor | #2: Caption lvl 2
 * | | Guido | Uwe | Jenny | #3: property 1
 * ---

Using this representation, we would need one header row per visible level. The different levels are separated using a
horizontal line, which is part of the cell UI.

To make the display more flexible, this model provides the option to handle the hierarchy in a different way, in which
you can switch the hierarchical display completely off. In this case, one dimension on the columns axis is displayed on
a single row, and one dimension on the rows axis is displayed using a single column. The variable that indicates
whether the hierarchy is on or off is the Boolean isDisplayHierarchy:

Retrieving Result Sets

Examples

121

 //apply the correction to the header rows count
 if (_isDisplayingHierarchy) {
 for (int i = 0; i < _dimCols; i++)
 _nHeaderRows += _colLvlInfo[i][1];
 }

The _colLvlInfo is retrieved from method getLevelInfo of BIDataSetTableModel, and its definition
follows:

 // level info for columns and rows
 // [#][0] = minimum level for dimension #
 // [#][1] = number of levels between minimum level and maximum level for dimension #
 // [#][2] = number of levels + number of dimension properties for dimension #
 // [#][3] = accumulated Header Positions
 private int[][] _colLvlInfo = null;

When a client requests a cell using getValueAt(int rowIndex, int colIndex), we ascertain to which of the
four sections this cell belongs:

 if ((rowIndex < _nHeaderRows) && (columnIndex >= _nHeaderCols)) {
 return BIDataSetTableModel.SECTION_COLUMN_HEADERS;
 } else if ((columnIndex < _nHeaderCols) && (rowIndex >= _nHeaderRows)) {
 return BIDataSetTableModel.SECTION_ROW_HEADERS;
 } else if ((rowIndex >= _nHeaderRows) && (columnIndex >= _nHeaderCols)) {
 return BIDataSetTableModel.SECTION_CELLS;
 } else {
 return BIDataSetTableModel.SECTION_LABELS;
 }

If it belongs to "IV: cells," the supplied rowIndex and colIndex are transformed into the actual coordinates of the
data set actualCol and actualRow:

 _actualCol = colIndex - _nHeaderCols;
 _actualRow = rowIndex - _nHeaderRows;

The formatted value, actual value, and data type of this cell is wrapped into an object of type BICellData, which is
further wrapped into BITableItem. BITableItem also contains section and other information for hierarchical
rendering (for details, see the Javadoc for BITableItem):

Retrieving Result Sets

Examples

122

 _cols.absolute(_actualCol + 1);
 if (_rows != null)
 _rows.absolute(_actualRow + 1);
 String formattedValue = "";
 Object value = null;
 int type = Types.NULL;
 try {
 formattedValue =
 _dataset.getString(
 IBICursorColumn.FORMATTED_VALUE.toString());
 type = _dataset.getInt(IBICursorColumn.DATATYPE.toString());
 value =
 _dataset.getObject(IBICursorColumn.VALUE.toString());
 } catch (SQLException e) {
 //no cell data, but it is valid DataSet.
 formattedValue = "";
 value = "";
 type = Types.NULL;
 }
 return new BITableItem(
 SECTION_CELLS,
 new BICellData(formattedValue, type, value));

If it belongs to “II row header”, the rows axis cursor is positioned to the actual coordinate of actualRow, and the
selected dimension cursor is retrieved:

 _rows.absolute(_actualRow + 1);
 dimCursorIterator = _rows.getDimensionCursor().iterator();

 //move dimensionCursor
 for (int i = 0; dimCursorIterator.hasNext(); i++) {
 dim = (IBIDimensionCursor) dimCursorIterator.next();

 if (i == _colInfo[colIndex][0]) {
 break;
 }
 }

The column header information is collected into _colInfo via method setHeaderPositionInfo of
BIDataSetTableModel, and its definition follows:

 // rowInfo contains information to what dimension a column header row belongs
 // and what property of that dimension it displays
 // 0 = caption
 // # = property with index #+1
 // these arrays contain two pieces of information
 // I : colsInfo[#][0] = dimension number on the axis
 // II : colsInfo[#][1] = caption or property for the dimension specified in 1
 private int[][] _rowInfo = null;

Retrieving Result Sets

Examples

123

If the selected cell is a dimension member, the IBIDimensionCursor Object is wrapped into the BITableItem
Object. If the selected cell is a dimension property, the property name is retrieved from the
DimensionAttributeCursor and wrapped into the BITableItem Object:

 switch (_colInfo[colIndex][1]) {
 //member caption
 case -1 :
 return new BITableItem(
 SECTION_ROW_HEADERS,
 dim,
 _rowLvlInfo[_colInfo[colIndex][0]]);
 //member properties
 default :
 List rc = dim.getDimensionAttributeCursor();
 Iterator rci = rc.iterator();
 IBIDimensionAttributeCursor ac = null;
 //move dimensionAttributeCursor
 for (int j = 0; rci.hasNext(); j++) {
 ac = (IBIDimensionAttributeCursor) rci.next();

 if (j == _colInfo[colIndex][1])
 break;
 }
 // output dimension attributes
 return new BITableItem(
 SECTION_ROW_HEADERS,
 ac.getString(IBICursorColumn.NAME.toString()),
 _rowLvlInfo[_colInfo[colIndex][0]]);
 }

Helpers.java – OLAP Table Model functionality:

An example of how to use the OLAP Table Model is shown in the helper method renderDataSet in
Helpers.java. The code is straightforward and self-explanatory. It simply uses a nested loop over all rows and
columns, and outputs the string value returned by getValueAt for each cell of the projection. Note the special
handling in the code for the hierarchical display.

Helpers.java – HTML stylesheet:

Helpers.java also helps you format result sets into HTML tables by providing an HTML doctype definition and a
stylesheet. The examples use this to format tables with distinct styles for table headers and striped cell data rows.

Note:

See Appendix B: Examples for the full index of examples and instructions on getting your system up and
running with them.

124

Chapter 6: Exceptions
Overview

This chapter describes the SDK’s exception framework, which provides classes and interfaces for handling exceptions
thrown by the SDK layer.

API Documentation:

Refer to the Javadocs for the exception framework in the following package of the SDK:

com.sap.ip.bi.sdk.exception

Exception Handling

All exceptions thrown by the SDK interfaces implement the IBaseException interface in order to comply with SAP
solution production standards. This also provides integration with SAP's Java logging and tracing framework used for
instrumenting the code in case of error situations.

The SDK exceptions either directly implement the IBaseException interface, as in the case of
BIResourceException, or they extend exceptions in the package com.sap.exception, as with
BaseException.

Legacy exceptions, which are exceptions that are thrown by components outside the SDK, do not implement the
IBaseException interface but are handled by providing wrapper exceptions. These wrappers have exactly the
same semantics as the underlying legacy exception and simply add the implementation of IBaseException. For
example, the legacy exception BIResourceException wraps exceptions of the type
javax.resource.ResourceException.

The diagram below illustrates how the BI Java SDK exceptions relate to legacy exceptions such as
javax.resource.RescourceException and the SAP Exception Framework base exceptions:

Exceptions

Exception Handling

125

Figure 41 — BI Java SDK Exception Framework

Note:

For general information on writing exceptions, see Sun’s exceptions tutorial:
http://java.sun.com/docs/books/tutorial/essential/exceptions/index.html

Exception Translation

Exceptions evoked on the BI Java SDK layer are localized into all languages supported by SAP BI. To set the
language for SDK exceptions, use the language property of your BI Java Connector in your connection specification.
For the list of languages supported by SAP BI, see the following link in the SAP Service Marketplace:
http://service.sap.com/~form/sapnet?_SHORTKEY=01100035870000523354&

See BI Java Connectors in Appendix A: Installation for more information about the connectors and their connection
properties.

http://java.sun.com/docs/books/tutorial/essential/exceptions/index.html
http://service.sap.com/~form/sapnet?_SHORTKEY=01100035870000523354&

A–1

Appendix A: Installation
Overview

This appendix describes the installation process and requirements for the BI Java SDK and briefly introduces the BI
Java Connectors, in the following sections:

• System Requirements

• Classpath Configuration

• Logging and Tracing, JARM

• Using the BI XMLA Connector in a non-managed environment

• Documentation

• BI Java Connectors

 Tip:

Be sure to check the release notes for information about new or enhanced functionality and bugs
addressed between releases of the BI Java SDK. These notes are located in the docs folder in the
unzipped SDK archive, in release_notes.html; or simply choose Release Notes from the menu in the
home page for the SDK documentation set (index.html in the docs folder of the unzipped archive).

System Requirements

See the table below for the key system requirements for the BI Java SDK:

System requirements and details

Requirement Details

Operating system Developing with the BI ODBO Connector requires Windows
NT/2000/XP. Otherwise, there are no operating system
restrictions.

Java Development Kit 1.4+

Web browser To view this documentation set, including the Javadocs, we
recommend Internet Explorer 5 or Netscape 6 and above, or
compatible frames-capable browsers such as Mozilla, Opera 7+,
and Safari.

Installation

Classpath Configuration

A–2

Requirement Details

Adobe Acrobat Viewer To view the Developer's Guide (PDF), Adobe's Acrobat Viewer is
required.

Memory Recommended: at least 256MB

Disk space Recommended: at least 50MB

Processor Recommended: at least 300MHz

JDBC If you are developing with the BI JDBC connector, you need to
ensure that the JAR files of your database provider's JDBC driver
are available in your classpath.

ODBO If you are developing with the BI ODBO Connector, copy the JNI
library sapbiado.dll from the lib folder into a location in your
system path (for example, into your WINNT\system32 directory).

SAP Query If you are developing with the BI SAP Query Connector, you need
to be sure your system is properly configured with SAP JCo. JCo
is available on the SAP Service Marketplace at:
http://service.sap.com/connectors/ SAP Java Connector
Tools & Services.
We recommend version 2.1.x.

XMLA If you are developing with the BI XMLA Connector, no additional
configuration is necessary. See Using the BI XMLA Connector in a
non-managed environment, below.

BI Java Connector To deploy applications created with the SDK onto the J2EE server,
you need the appropriate BI Java Connector (see BI Java
Connectors, below).

Classpath Configuration

Configure your CLASSPATH for the SDK by adding the SDK's libraries. These are located in the /lib/ folder in the
folder in which you have unpackaged the SDK. This folder contains all the libraries required by the SDK for
development.

Logging and Tracing, JARM

Optionally, you may configure instrumentation for logging and tracing, and JARM. See the util package in the API
documentation for instructions on using methods together with properties files to activate these features in a non-
managed environment.

http://service.sap.com/connectors/

Installation

Using the BI XMLA Connector in a non-managed environment

A–3

API Documentation:

For code samples, and for more information, see the instructions in the package documentation for the SDK’s util
package:

com.sap.ip.bi.sdk.util

Using the BI XMLA Connector in a non-managed
environment

Since the BI XMLA Connector relies upon the SAP XML Parser package (SAPXMLToolkit.jar) and SAP SOAP
package (webservices_lib.jar) normally present in a managed (J2EE) environment, some guidelines are helpful
when using the XMLA connector in a non-managed environment (in the absence of SAP's J2EE server). In this case,
you need to manually configure the correct reference to SAP's XML Parser and SOAP packages in the host
application.

We provide some guidelines below on how to configure the correct parser reference. Please note that these
guidelines are intended just for reference, and don't address, for example, scenarios where an application defines its
own class loading mechanisms or refers to a default XML parser. In those cases, please consult the documentation of
the host application on how to configure a reference to the third party XML Parser (in this case, the SAP XML Parser
and SAP SOAP packages).

To manually configure your parser reference:

...

1. Ensure that the SAP XML Parser and SAP SOAP packages (SAPXMLToolkit.jar and
webservices_lib.jar) are in your classpath.

2. If there are other XML parser packages in the classpath, move them behind the SAP XML Parser and SAP
SOAP packages in your classpath sequence, or remove them if possible.

3. Configure your system property. For example, use the following code to set the reference to SAP packages:

System.setProperty("javax.xml.parsers.SAXParserFactory",
"com.sap.engine.lib.jaxp.SAXParserFactoryImpl");
System.setProperty("javax.xml.soap.MessageFactory",
"com.sap.engine.services.webservices.jaxm.soap.MessageFactoryImpl");
System.setProperty("javax.xml.parsers.DocumentBuilderFactory",
"com.sap.engine.lib.jaxp.DocumentBuilderFactory");
System.setProperty("javax.xml.transform.TransformerFactory",
"com.sap.engine.lib.jaxp.TransformerFactoryImpl");
System.setProperty("javax.xml.soap.SOAPConnectionFactory",
"com.sap.engine.services.webservices.jaxm.soap.SOAPConnectionFactoryImpl");

Installation

Documentation

A–4

Use this option with caution, however, since the system property might affect other code, especially if the other
code is using different XML Parser.

Some common error messages that may appear when the parser package is not configured correctly:

class not found exception:
com.sap.engine.services.webservices.jaxm.soap.MessageFactoryImpl not found

class not found exception: org.apache.crimson.jaxp.DocumentBuilderFactoryImpl not
found

javax.xml.parsers.FactoryConfigurationError: Provider
org.apache.crimson.jaxp.DocumentBuilderFactoryImpl not found at
javax.xml.parsers.DocumentBuilderFactory.newInstance(DocumentBuilderFactory.java:109)

Documentation

In addition to this Guide, the BI Java SDK package provides Javadocs and additional documentation in HTML format.
As an entry point, use index.html in the docs folder of the folder in which you unzipped the SDK archive:

<installation drive>/<installation directory>/docs/index.html

 Caution:

In many cases, this Guide provides links to other components of the documentation set, for example, to
Javadoc packages, so that you can easily navigate to them. These links are set relative to the original
location of the Guide, in the docs/devguide folder of the distribution package, and will not resolve if
the devguide.pdf file is removed from this folder.

The links have been tested on Windows systems only, and may not work on other systems.

How-To Guides

Three How-To Guides ship in the BI Java SDK documentation set, and you can access these from the Documentation
page in the SDK package. The How-To Guides include:

• How To Use the BI Java SDK in a Portal iView
This document provides detailed instructions on how to use the BI Java SDK and its BI Java Connectors in an
Portal iView. It contains step-by-step instructions for creating an iView which uses the BI Java SDK’s BI
XMLA Connector to connect to an SAP BI system and retrieve a list of schemas.

Installation

BI Java Connectors

A–5

• How To Use the BI Java SDK in a J2EE Application
This document provides detailed instructions on how to use the BI Java SDK and its BI Java Connectors in a
J2EE application. It contains step-by-step instructions for creating a servlet that uses the BI XMLA Connector
to connect to an SAP BI system.

• How To Use the BI Java SDK in a Web Dynpro Application
This document provides detailed instructions on how to use the BI Java SDK and its BI Java Connectors in a
Web Dynpro Application. It contains step-by-step instructions for adding the required library references to use
the BI Java SDK, and for establishing a connection using one of the BI Java Connectors in the Web Dynpro
and J2EE environment.

BI Java Connectors

The BI Java Connectors are a group of four JCA (J2EE Connector Architecture)-compliant resource adapters that
implement the BI Java SDK's APIs and allow you to connect the applications you build with the SDK to
heterogeneous data sources. The BI Java Connectors may be deployed onto SAP NetWeaver '04 - Web Application
Server version 6.40.

The BI Java SDK contains the JAR files you need to develop applications using any of the BI Java Connectors and to
use them in an unmanaged scenario, but to use your application with a data source in the managed environment of
the J2EE server, you need to deploy the appropriate BI Java Connector.

Note:

The BI Java Connectors are distributed separately from the BI Java SDK, deployed with NetWeaver’s
optional BI UDI component.

The BI Java Connectors are packaged in resource adapter archives, or RAR files. Each RAR file includes class
libraries and dependencies, a deployment descriptor, and connector properties documentation in the form of a
howto.html file. General system guidelines are listed below in the Connector Overview section.

Note:

The connectors’ howto.html files are also included in the SDK distribution package for your reference.
See index.html in the docs folder of the package, then select Connectors.

Four BI Java Connectors are available, listed below with the name of the resource adapter archive in which they are
deployed:

• BI JDBC Connector : bi_sdk_jdbc.rar

• BI ODBO Connector : bi_sdk_odbo.rar

• BI SAP Query Connector : bi_sdk_sapq.rar

Installation

BI Java Connectors

A–6

• BI XMLA Connector : bi_sdk_xmla.rar or bi_sdk_xmla_proxy.rar (see Note in BI Java Connectors
Overview, below)

BI Java Connectors Overview

The following table provides an overview of the BI Java Connectors:

BI Java Connectors and details

Connector Access to Technology based on System requirements

BI JDBC Connector Relational data sources: over
170 JDBC drivers

Examples:

Teradata, Oracle, Microsoft
SQL Server, Microsoft
Access, DB2, Microsoft
Excel, text files such as CSV

Sun's JDBC (Java
Database Connectivity) –
the standard Java API for
relational database
management systems
(RDBMS).

JDBC driver

BI ODBO Connector OLAP data sources: ODBO-
compliant data sources

Examples:

Microsoft Analysis Services,
SAS, Microsoft PivotTable
Services

Microsoft's ODBO (OLE
DB for OLAP) – the
established industry-
standard OLAP API for the
Windows platform.

Microsoft Windows
2000 / NT / XP

OLE DB for OLAP
(ODBO) driver for your
data source

BI SAP Query Connector SAP operational applications

Examples:

data in transactional systems
such as R/3, Ad-Hoc, and
Operational Reporting

SAP Query – a component
of SAP's Web Application
Server that allows you to
create custom reports
without any ABAP
programming knowledge.

SAP JCo

BI XMLA Connector OLAP data sources

Examples:

MS Analysis Services,
Hyperion, MicroStrategy, and
BW 3.x

Microsoft's XMLA (XML for
Analysis) – Web services-
based, platform-
independent access to
OLAP providers.
Exchanges analytical data
between a client
application and a data
provider working over the
Web, using a SOAP-based
XML communication API.

none

Installation

BI Java Connectors

A–7

Testing the BI Java Connectors

We provide servlets with which to test the configuration of the BI Java Connectors. For usage information, see Testing
the Connections in the connector package documentation in the Javadocs at:

com.sap.ip.bi.sdk.dac.connector

For Additional Information

• For connector properties configuration information, refer to the howto.html file inside the resource adapter
archive (RAR file). The howto.html files for each connector also included in the SDK distribution package for
your reference. See index.html in the docs folder of the package, then select Connectors.

• For the SDK's connection architecture API documentation, refer to the Connection Interfaces Javadoc package,
at: com.sap.ip.bi.sdk.dac.connector.

• For more on the SDK's connection architecture, see Connection Architecture.

B–1

Appendix B: Examples
Overview

The BI Java SDK package provides the source code for several example servlets that are described throughout this
Guide. This appendix introduces the examples and helps get you up and running, in the following sections:

• Finding the examples

• Configuring your system

• Index of examples

Finding the Examples

You can find the full source code of the examples in the following path after unzipping the BI Java SDK distribution
archive:

<installation drive>/<installation directory>/docs/examples/

The files are also linked from the included HTML documentation, starting at index.html in the docs folder of the
unzipped archive; choose the Examples link.

The filenames of the examples are constructed according to the following naming conventions:

• Tutorial_*.java examples used in the Getting Started tutorials

• Olap_*.java examples for working with OLAP data sources

• Relational_*.java examples for working with relational data sources

In the above, * simply iterates the number of the example.

Along with the example Java source code, we provide corresponding HTML files which render the source code in
HTML format for easy visibility. These files are named as follows:

 *.java.html

In the above, * is the name of the example.

Examples

Configuring your System

B–2

In addition, we provide the rendered result of the servlet in HTML format:

 *_1.result.html

Again, * is the name of the example.

 Tip:

Although most of our examples are servlets that render the data sets and additional explanatory
information into an HTML stream, the SDK libraries can be used in other scenarios, such as to build
standalone Java applications.

Configuring your System

First, be sure you've consulted the SDK installation instructions in Appendix A: Installation, and then follow with the
sections below to get up and running with the examples.

Data Sources

You can view the example source code and HTML results, but to actually work with and run the examples, you need
the following data sources:

• OLAP examples:
SAP BI system, release 2.0 or higher, with the SAP demo InfoCube SAP Demo Sales and Distribution:
Overview, and the query 0D_SD_C03/0D_SD_C03_Q009 Order and Sales values activated.

• Relational examples:
An active JDBC data source for which you have a valid user name and password, with its JDBC drivers
properly configured in your classpath.

Note:

The relational examples are configured to work with a JDBC database present on your own system.
The output we include in the documentation set shows results against just one example JDBC database,
so your results will vary.

Examples

Index of Examples

B–3

Rendering to File

The examples implement a minimal HTTP servlet, which generates HTML for easy viewing of results. By default,
running the main method without a parameter will write the HTML to the console. To write it to an HTML file instead,
specify a filename, with full path and .html extension, as the parameter.

Connection Properties

Four properties files, one for each BI Java Connector, provide connection properties to the connectors and are
included in the examples folder, nested in the com.sap.ip.bi.sdk.samples package with the Java source files:

• Helpers.jdbc.properties: connection information for the BI JDBC Connector

• Helpers.odbo.properties: connection information for the BI ODBO Connector

• Helpers.sapq.properties: connection information for the BI SAP Query Connector

• Helpers.xmla.properties: connection information for the BI XMLA Connector

Edit the existing properties, or create new files to locally override the properties, named
Helpers.nnnn.local.properties (where "nnnn" corresponds to the four-letter connector name). The examples
will first look for the local file, and if not found, will take the original properties files.

For connection property configuration information, refer to the howto.html file that ships inside of each resource
adapter archive. The howto.html files for each connector are also included in the SDK distribution package for your
reference. See index.html in the docs folder of the package, then select Connectors.

Index of Examples

The following table provides an overview of the examples included in the BI Java SDK package:

BI Java SDK examples

Example Description

Tutorial_1.java Getting Started - OLAP Tutorial

Contains a complete end-to-end scenario, demonstrating how to connect to an
SAP BI system using the BI XMLA Connector, retrieve a cube from the data
source, create a query, execute it, and render the result set into an HTML table.

Tutorial_2.java Getting Started - Relational Tutorial

Contains a complete end-to-end scenario, demonstrating how to connect to a
JDBC database using the BI JDBC Connector, retrieve a table from the data

Examples

Index of Examples

B–4

Example Description
source, create a query, execute it, and render the result set into an HTML table.

Olap_1.java OLAP 1 - Accessing OLAP metadata

Demonstrates four different ways to retrieve OLAP metadata:

1. Via connection-level methods

2. Via ObjectFinder methods

3. Via JMI methods

4. Via member data access methods

Olap_2.java OLAP 2 - Direct execution of MDX statement

Demonstrates how to retrieve a result set by directly executing an MDX statement,
then shows how to display the result set as an HTML table.

Olap_3.java OLAP 3 - Pivoting / changing layout of an OLAP query

Illustrates the process of changing the layout of a query by moving dimensions
between axes and then by swapping axes. Renders the output of each into two
separate HTML tables.

Olap_4.java OLAP 4 - Selecting dimension attributes

Selects a dimension attribute, and renders the result set into an HTML table.

Olap_5.java OLAP 5 - Sorting by measure value

Renders the default result set into an HTML table, sorts the data according to a
measure value in ascending order, and then renders the data into a second HTML
table for comparison.

Olap_6.java OLAP 6 - Sorting by dimension attribute

Illustrates how to select a dimension attribute for display, and to sort by a
dimension attribute.

Olap_7.java OLAP 7 - Filtering

Illustrates both a ranking filter and a condition-based filter. Renders the result of a
query without any filtering, then filters the set of Sold-To parties using a ranking
filter and re-renders the result. Changes the filter to a condition-based filter to
restrict by quantity, and re-renders the result for comparison.

Olap_8.java OLAP 8 - Hierarchy navigation - member drill operations

Illustrates hierarchy navigation by applying the following operations in sequence to
an initial data set:

1. Zoom in

2. Zoom out

3. Drill down

4. Drill up

After each operation, the result set is rendered again for comparison.

Olap_9.java OLAP 9 - Calculated members

Creates a calculated measure - cost per item - by dividing the total cost by the

Examples

Index of Examples

B–5

Example Description
number of items sold.

Olap_10.java OLAP 10 - SAP variable selection and editing

Illustrates retrieval of and effect of editing an SAP variable. Sets a value for an
optional SAP variable, renders the result of the default query into a table, searches
for a specific optional SAP variable using the OLAP object finder, changes its
value, and then re-renders the result into a new table for comparison.

Relational_1.java Relational 1 - Accessing relational metadata

Illustrates the process of retrieving relational metadata from catalog to column from
a JDBC data source.

Relational_2.java Relational 2 - Accessing relational metadata: 2

Demonstrates three different ways to retrieve relational metadata:

1. Via connection-level methods

2. Via ObjectFinder methods

3. Via JMI methods

Relational_3.java Relational 3 - Direct execution of SQL statement

Demonstrates how to retrieve a result set by directly executing a SQL statement,
then shows how to display the result set as an HTML table.

Relational_4.java Relational 4 - Simple relational query

Demonstrates how to retrieve a result set by creating a simple query, then shows
how to display the result set as an HTML table.

Relational_5.java Relational 5 - More complex relational query

Demonstrates how to retrieve a result set by creating a more complex query with
the following features:

1. Field selections

2. Joins

3. Sorting

Helpers.java Helper methods

Provides static helper methods that facilitate connecting to data sources and
rendering result sets.

C–1

Appendix C: Additional Resources
Web References

SAP JCo and JCo-OS specific downloads:

• http://service.sap.com/connectors

SAP Query:

• http://help.sap.com/saphelp_nw04/helpdata/en/d2/CB3EFB455611D189710000E8322D00/frameset.htm

SAP UD Connect:

• http://help.sap.com/saphelp_nw04/helpdata/en/78/EF1441A509064ABEE6FFD6F38278FD/frameset.htm

SAP Web Application Server’s Visual Administrator:

• http://help.sap.com/saphelp_nw04/helpdata/en/39/83682615CD4F8197D0612529F2165F/frameset.htm

SAP Web Application Server’s Logging API:

• http://help.sap.com/saphelp_nw04/helpdata/en/4A/C3953FF1353C17E10000000A114084/frameset.htm

SAP’s chapters on SAP Variables:

• http://help.sap.com/saphelp_nw04/helpdata/en/E2/17533D6DD60610E10000000A114084/frameset.htm

Sun’s JDBC:

• JDBC Technology – http://java.sun.com/products/jdbc/index.html

• JDBC Drivers – http://industry.java.sun.com/products/jdbc/drivers

Sun’s JCA:

• Links to the specification and other downloads – http://java.sun.com/j2ee/connector/.

• JCA Specification – http://www.jcp.org/en/jsr/detail?id=16

Sun’s exceptions tutorial:

• http://java.sun.com/docs/books/tutorial/essential/exceptions/index.html

XMLA and related topics:

• XMLA Council – http://www.xmla.org/

http://service.sap.com/connectors
http://help.sap.com/saphelp_nw04/helpdata/en/d2/CB3EFB455611D189710000E8322D00/frameset.htm
http://help.sap.com/saphelp_nw04/helpdata/en/78/EF1441A509064ABEE6FFD6F38278FD/frameset.htm
http://help.sap.com/saphelp_nw04/helpdata/en/39/83682615CD4F8197D0612529F2165F/frameset.htm
http://help.sap.com/saphelp_nw04/helpdata/en/4A/C3953FF1353C17E10000000A114084/frameset.htm
http://help.sap.com/saphelp_nw04/helpdata/en/E2/17533D6DD60610E10000000A114084/frameset.htm
http://java.sun.com/products/jdbc/index.html
http://industry.java.sun.com/products/jdbc/drivers
http://java.sun.com/j2ee/connector/
http://www.jcp.org/en/jsr/detail?id=16
http://java.sun.com/docs/books/tutorial/essential/exceptions/index.html
http://www.xmla.org/

Additional Resources

Web References

C–2

• World Wide Web Consortium (W3C) specification for SOAP – http://www.w3.org/TR/SOAP/

• W3C information on Extensible Markup Language (XML) – http://www.w3.org/XML/

• Microsoft on XMLA – http://msdn.microsoft.com/library/default.asp?URL=/library/techart/XMLAnalysis.htm

OMG’s CWM and MOF standards:

• http://www.omg.org/cwm/.

MOF 1.3 specification:

• http://www.omg.org/cgi-bin/doc?formal/00-04-03.pdf

XMI:

• http://www.omg.org/technology/documents/formal/xmi.htm

JMI – the 1.0 release of the JMI specification:

• http://jcp.org/jsr/detail/40.jsp.

Microsoft's documentation on MDX:

• http://msdn.microsoft.com/library/default.asp?url=/library/en-us/olapdmad/agmdxbasics_04qg.asp?frame=true

Microsoft's "Comparison of SQL and MDX":

• http://msdn.microsoft.com/library/default.asp?url=/library/en-us/olapdmad/agmdxbasics_90qg.asp

Microsoft's Data Access Components (MDAC) SDK Overview:

• http://msdn.microsoft.com/library/default.asp?URL=/library/psdk/dasdk/mdac3sc7.htm

Microsoft Universal Data Access (UDA) – OLE DB, ADO and XML for Analysis are part of Microsoft’s Universal Data
Access Architecture. See http://www.microsoft.com/data/default.htm as the general entry point into Microsoft UDA.

http://www.w3.org/TR/SOAP/
http://www.w3.org/XML/
http://msdn.microsoft.com/library/default.asp?URL=/library/techart/XMLAnalysis.htm
http://www.omg.org/cwm/
http://www.omg.org/cgi-bin/doc?formal/00-04-03.pdf
http://www.omg.org/technology/documents/formal/xmi.htm
http://jcp.org/jsr/detail/40.jsp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/olapdmad/agmdxbasics_04qg.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/olapdmad/agmdxbasics_90qg.asp
http://msdn.microsoft.com/library/default.asp?URL=/library/psdk/dasdk/mdac3sc7.htm
http://www.microsoft.com/data/default.htm

Additional Resources

Books

C–3

Books

Kimball, Ralph. The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses. Wiley
Computer Publishing, John Wiley & Sons, Inc., 1996.

SAP BW Reporting Made Easy, Release 2.0B/2.1C. Palo Alto: SAP Labs, Inc., 2001.

Gamma, Erich; et. al. Design Patterns. Addison-Wesley Pub Co; 1st edition (January 15, 1995)

D–1

Appendix D: Glossary

ActiveX Data Objects (ADO)

A logical object model for programmatically accessing a variety of data sources through OLE DB interfaces. ADO,
provided by Microsoft, is the foundation for Microsoft's ADO MD extension, upon which the BI ODBO Connector is
based.

ActiveX Data Objects Multidimensional (ADO MD)

A logical object model provided by Microsoft that facilitates easy access to multidimensional data by extending ADO
with objects specific to multidimensional data, such as cubes and cellsets. Like ADO, ADO MD uses an underlying
OLE DB provider to gain access to data. The BI ODBO Connector uses ADO MD to support connectivity to OLAP
data sources.

ADO

Acronym for ActiveX Data Objects.

ADO MD

Acronym for ActiveX Data Objects Multidimensional.

BI Java Connector

One of a set of four JCA (J2EE Connector Architecture)-compliant resource adapters that allow you to connect
applications built with the BI Java SDK to heterogeneous data sources:

• BI JDBC Connector (for relational JDBC-compliant data sources)

• BI ODBO Connector (for ODBO-compliant OLAP data sources)

• BI SAP Query Connector (a component of the SAP Web Application Server Basis)

• BI XMLA Connector (for OLAP data sources such as SAP BW 3.x)

You can also use the Connectors to make external data sources available in SAP BI, via SAP BI's UD Connect.

In the SDK, the term connector is synonymous with resource adapter.

Glossary

BI Java SDK

D–2

BI Java SDK

Abbreviation for SAP's Business Intelligence Java Software Development Kit.

BI JDBC Connector

A resource adapter for the Business Intelligence domain based on Sun's Java Database Connectivity (JDBC), which
is the standard Java API for relational database management systems (RDBMS). The BI JDBC Connector may be
deployed into SAP's Web Application Server, and allows you to connect applications built with the BI Java SDK to
over 170 JDBC drivers, supporting data sources such as Teradata, Oracle, Microsoft SQL Server, Microsoft Access,
DB2, Microsoft Excel, and text files such as CSV.

You can also use the BI JDBC Connector to make these data sources available in SAP BI, via SAP BI's UD Connect.

The JDBC Connector implements the BI Java SDK's IBIRelational interface.

BI ODBO Connector

A resource adapter for the Business Intelligence domain based on Microsoft's OLE DB for OLAP (ODBO), which is
the established industry-standard OLAP API for the Windows platform. The BI ODBO Connector may be deployed
into SAP's Web Application Server, and allows you to connect applications built with the BI Java SDK to ODBO-
compliant OLAP data sources such as Microsoft Analysis Services, SAS, and Microsoft PivotTable Services.

You can also use the BI ODBO Connector to make these data sources available in SAP BI, via SAP BI's UD Connect.

The ODBO Connector implements the BI Java SDK's IBIOlap interface.

BI SAP Query Connector

A resource adapter for the Business Intelligence domain based on SAP Query, which is a component of SAP's Web
Application Server that allows you to create custom reports without any ABAP programming knowledge. The BI SAP
Query Connector uses SAP Query to allow applications created with the BI Java SDK to access data from these SAP
operational applications.

You can also use the BI SAP Query Connector to make these data sources available in SAP BI, via SAP BI's UD
Connect.

The SAP Query Connector implements the BI Java SDK's IBIRelational interface.

BI XMLA Connector

A resource adapter for the Business Intelligence domain based on Microsoft's XML for Analysis (XMLA), that
facilitates Web services-based, platform-independent access to OLAP providers. The BI XMLA Connector may be
deployed into SAP's Web Application Server, and enables the exchange of analytical data between a client
application and a data provider working over the Web, using a SOAP-based XML communication API.

Glossary

Business Intelligence Java Software Development Kit (BI Java SDK)

D–3

The BI XMLA Connector allows you to connect applications built with the BI Java SDK to data sources such as
Microsoft Analysis Services, Hyperion, MicroStrategy, MIS, and BW 3.x.

You can also use the BI XMLA Connector to make these data sources available in SAP BI, via SAP BI's UD Connect.

The BI XMLA Connector implements the BI Java SDK's IBIOlap interface.

Business Intelligence Java Software Development Kit (BI Java SDK)

A Java software development kit with which you can build analytical applications that access, manipulate, and display
both multidimensional (Online Analytical Processing, or OLAP) and tabular (relational) data. The BI Java SDK
consists of:

• Java APIs for accessing, manipulating, and displaying data from diverse data sources

• Documentation

• Examples

column

An element of a table that describes its structure and the types of its rows. A column has a name, a data type, and an
implicit order (ordinal) based on the order chosen when defining the table. Columns can also belong to indexes, which
are used to ensure uniqueness (set property) of rows in the table.

command processor

Part of each of the BI Java SDK's query APIs, interfaces that make it easier to use the underlying query models by
hiding the complexity of these models. With the command processors, you can create and manipulate complex
queries with simple commands. You can think of the individual methods of the command processors in terms of
macros that consist of several method calls manipulating the structures of queries.

The SDK provides two command processors:

• OLAP Command Processor, for manipulating OLAP queries

• Relational Command Processor, for manipulating relational queries

Common Client Interface (CCI)

An API defined by Sun's JCA specification that is common across heterogeneous EISs. It is designed to be "toolable"
– that is, it leverages the Java Beans architecture so that development tools can incorporate the CCI into their
architecture.

Note that the BI Java Connectors implement only the connection interfaces defined by the CCI. The CCI's interaction
interfaces, data interfaces, and metadata interfaces, however, are not implemented by the BI Java SDK. BI-specific
client APIs that are tailored for OLAP interactions are provided by the BI Java Connectors.

Glossary

Common Warehouse Metamodel (CWM)

D–4

Common Warehouse Metamodel (CWM)

An Object Management Group (OMG) standard that provides for a common understanding of metadata in order to
exchange it between heterogeneous systems. CWM describes the exchange of metadata in the data warehousing
and analysis, business intelligence, knowledge management, and portal technologies domains. CWM is MOF is the
modeling language for CWM, UML is its modeling notation, and XMI is used to interchange the metadata.

CWM is capable of modeling a wide spectrum of OLAP and relational providers. The SDK uses CWM to represent
relational and OLAP data in the Relational and OLAP Metadata Models.

For more information about CWM, see http://www.omg.org/cwm/.

connector

Synonym for resource adapter. See more at BI Java Connector.

Connector Gateway

An SAP NetWeaver Portal service that provides instances of connections to Portal components.

cube

In the OLAP domain, set of data organized as a multidimensional structure defined according to dimensions and
measures. Related SAP BI concepts include InfoCube and query.

CWM

Acronym for Common Warehouse Metamodel.

deployment descriptor

Assists in deploying a resource adapter (known as connector in the SDK) by defining the contract between a resource
adapter provider and a deployer. The deployment descriptor file contains information about which classes implement
the interfaces with which the application server interacts.

dimension

In the OLAP domain, a collection of similar data which, together with other such collections, forms the structure of a
cube. Typical dimensions include time, product, and geography. Each dimension may be organized into a basic

http://www.omg.org/cwm/

Glossary

Enterprise Information System (EIS)

D–5

parent-child hierarchy or, if supported by the data source, a hierarchy of levels. For example, a geography dimension
might include levels for continent, country, state, and city.

Note that in SAP BI, InfoObject (characteristic) is a related term, but "dimension" means something entirely different
in SAP BI than it does in the OLAP domain.

Enterprise Information System (EIS)

A system such as an ERP (Enterprise Resource Planning), database, or mainframe transaction processing system
which forms the information infrastructure of an enterprise system.

filter

A set of criteria that restricts the set of records returned as the result of a query. With filters, you define which subset
of data appears in the result set.

hierarchy

A logical tree structure that organizes the members of a dimension into a parent-child relationship. If supported by the
data source, the hierarchy consists of levels, where the top level is an aggregate of all members and each subsequent
level has zero or more child members.

IBIOlap

An interface provided by the BI Java SDK and implemented by all OLAP connectors which serves as an entry point to
interfaces that support access to multidimensional metadata and queries.

IBIRelational

An interface provided by the BI Java SDK and implemented by all relational connectors which serves as a point of
entry to a set of interfaces that provide access to relational metadata and queries.

INative

An optional interface defined in the Portal Connection Framework API which can be implemented by a connector.
INative enables you to access the connected EIS via an API that is tailored specifically for that underlying EIS. The
interface returned depends on the connected EIS.

Glossary

J2EE Connector Architecture (JCA)

D–6

J2EE Connector Architecture (JCA)

A standard architecture from Sun designed for connecting J2EE servers with EISs. The architecture defines a set of
contracts, such as transactions, security, and connection management, that a connector has to support to plug in to
an application server.

JCA provides an API for connecting to heterogeneous data sources in a consistent manner. The BI Java Connectors
are JCA-compliant.

Java Metadata Interface (JMI)

An extensible metadata service for the Java platform that provides a common Java programming model for accessing
metadata. JMI defines a Java mapping for the Meta Object Facility (MOF) specification from the Object Management
Group (OMG). The SDK uses JMI mapping to render its query and metadata models into Java APIs.

For more information, see http://jcp.org/jsr/detail/40.jsp.

JCA

Acronym for J2EE Connector Architecture

JCo (SAP Java Connector)

SAP's toolkit that allows a Java application to communicate with any SAP system. It is used by the BI SAP Query
Connector to interact with SAP Web Application Server instances.

For more information about JCo, visit the SAP Service Marketplace at:
http://service.sap.com/connectors/

JDBC (Java Database Connectivity)

Provides an API that lets you access relational databases using the Java programming language. It provides cross-
DBMS connectivity to a wide range of SQL databases, and also provides access to tabular data sources such as
spreadsheets or flat files.

For more information, see http://java.sun.com/products/jdbc/index.html.

JMI

Acronym for Java Metadata Interface.

http://jcp.org/jsr/detail/40.jsp
http://service.sap.com/connectors/
http://java.sun.com/products/jdbc/index.html

Glossary

JMI service (Java Metadata Interface Service)

D–7

JMI service (Java Metadata Interface Service)

Any system that provides a JMI-compliant API to access its public metadata. The BI Java Connectors expose
metadata of the underlying EIS via JMI services.

level

A set of nodes (members) in a tree hierarchy in supporting data sources that are at the same distance from the root of
the tree. For example, in a geography hierarchy, the top level might be all places, the second level might be
continents, the third level might be countries, and the fourth level might be cities.

MDX (Multidimensional Expressions)

Microsoft's SQL-like query language used to retrieve and manipulate multidimensional data.

measure

One category of values – usually numeric – used to define a cube. These values are derived from one or more
columns in the cube's fact table and are the basis for aggregation and analysis. In SAP BI, related terms include key
figure and structure element.

member

An element of a dimension that represents one or more occurrences of data. A member can be unique (it occurs only
once) or non-unique (it may occur more than once in its dimension). For example, in a geography dimension that
includes cities in the US, the member Portland could be non-unique, since there is a city called Portland in the state of
Oregon and in the state of Maine.

In SAP BI, members are referred to as instances of characteristics.

Meta Object Facility (MOF)

An OMG (Object Management Group) standard for the specification of interoperable metamodels. MOF defines
language rules (syntax and semantics) for constructing metamodels and provides programming tools for saving and
accessing metadata in repositories. The MOF standard is integrated in XMI, and CWM uses MOF as its modeling
language.

MOF can also refer to any metadata service which abides by the MOF specifications. CWM is a MOF-compliant
metamodel.

Glossary

metadata API

D–8

metadata API

A set of interfaces provided by the BI Java SDK which expose the metadata of a given data source. The SDK includes
two metadata APIs, both generated via JMI from their respective metadata models:

• OLAP Metadata API, for exposing metadata in an OLAP data source

• Relational Metadata API, for exposing metadata in a relational data source

metadata model

An abstract language for expressing metadata. The BI Java SDK leverages CWM metadata models (metamodels),
and the following two CWM packages in particular:

• org.omg.cwm.analysis.olap basis of the SDK's OLAP Metadata Model, for expressing the metadata of a
multidimensional data source

• org.omg.cwm.resource.relational basis of the SDK's Relational Metadata Model, for expressing the metadata
of a relational data source

The SDK's metadata models also rely upon reference classes from CWM's Foundation and Objectmodel layers.

metadata repository

Contains the different classes of metadata and is capable of persisting and retrieving MOF-compliant objects,
resulting in a consistent and homogeneous data model across all source systems. Metadata repository is a general
term used by the Object Management Group (OMG).The Metamodel Repository is SAP's implementation of the
metadata repository.

Metamodel Repository (MMR)

SAP's implementation of a metamodel and metadata repository. It is named after the metamodel layer (the meta-
meta-data, or m2 layer) of the OMG's Meta Object Facility (MOF), which is the main focus in SAP BI.

MOF

Acronym for Meta Object Facility

multidimensional data

Data in dimensional models suitable for business analytics. In this documentation, we use the term "multidimensional
data" synonymously with "OLAP data."

Glossary

Object Linking and Embedding Database (OLE DB)

D–9

Object Linking and Embedding Database (OLE DB)

Microsoft's set of Component Object Model (COM) interfaces that provide applications with uniform access to data
stored in diverse information sources. OLE DB also provides the ability to implement additional database services.

Object Management Group (OMG)

An open membership, not-for-profit consortium that produces and maintains computer industry specifications for
interoperable enterprise applications.

For more information, see http://www.omg.org/.

ODBO

Acronym for OLE DB for OLAP.

OLAP

Acronym for online analytical processing.

OLAP Command Processor

Part of the OLAP Query API, an interface that makes it easier to use the API by hiding the complexity of the
underlying OLAP Query Model. With this interface, you can create and manipulate complex multidimensional queries
with simple commands.

OLAP data provider (ODP)

Provides data in multidimensional views and metadata compatible with the OLAP Metadata Model.

OLAP Metadata API

A set of interfaces provided by the BI Java SDK for accessing the metadata of an OLAP data source. Generated via
JMI from the SDK's OLAP Metadata Model.

http://www.omg.org/

Glossary

OLAP Metadata Model

D–10

OLAP Metadata Model

A model provided by the BI Java SDK that exposes business data in a multidimensional format which specifically
supports data analysis. Based on the CWM OLAP package.

OLAP Query API

A set of interfaces provided by the BI Java SDK that let you define queries against an OLAP server. The API is
generated via JMI from the OLAP Query Model, based on metadata provided by the OLAP Metadata Model, and
includes the simplified OLAP Command Processor.

OLAP Query Model

An abstraction layer, or model, in the BI Java SDK designed for formulating OLAP queries independently of data
source-specific query APIs. The model is based on the CWM-compliant metadata provided by the OLAP Metadata
Model.

OLAP Table Model

A companion to the BI Java SDK's ResultSet API that facilitates the rendering of a multidimensional dataset into a
two-dimensional matrix.

OLE DB

Acronym for Object Linking and Embedding Database.

OLE DB for OLAP (ODBO)

Microsoft's set of objects and interfaces that extend the ability of OLE DB to provide access to multidimensional data
sources on the Windows platform. Providers of OLAP data can implement the interfaces described with OLE DB for
OLAP to allow all OLAP clients to access their data.

OLTP

Acronym for online transactional processing.

Glossary

OMG

D–11

OMG

Acronym for Object Management Group.

online analytical processing (OLAP)

A system of organizing data in a multidimensional model that is suitable for decision support. OLAP is the analytical
counterpart of OLTP, or online transactional processing. SAP's BI is an OLAP system.

online transactional processing (OLTP)

A system of organizing data in a highly normalized relational model that is suitable for transactional support with
frequent update operations. SAP's R/3 is an OLTP system.

Portal Connection Framework

Part of the SAP NetWeaver Portal, provides a set of APIs which extend the standard JCA interfaces and are used to
build Portal-compliant connectors. The BI Java Connectors are compliant with the Portal Connection Framework.

query API

Sets of interfaces provided by the BI Java SDK for creating queries against data sources. They are generated via JMI
from the SDK's query models, providing methods to create and execute complex OLAP or relational queries based on
the metadata in the SDK's CWM-based metadata models.

The SDK provides two query APIs:

• OLAP Query API, for defining queries against an OLAP server

• Relational Query API, for defining queries upon relational data sources

query model

An object-oriented abstraction layer, or model, upon which to formulate queries on a variety of resources without
being tied to a specific protocol or query language, such as MDX or SQL. The query models are the basis of their
respective query APIs. Two query models are provided by the SDK:

• OLAP Query Model

• Relational Query Model

Glossary

RDBMS

D–12

RDBMS

Acronym for relational database management system.

Relational Command Processor

Part of the SDK's Relational Query API, an interface that makes it easier to use the API by hiding the complexity of
the underlying Relational Query Model. With this interface, you can create and manipulate complex relational queries
with simple commands.

relational data

Data stored in tables, and hence often also referred to as tabular data. Synonymous with tabular data.

relational data provider (RDP)

Provides data in relational, or tabular, views and metadata compatible with the Relational Metadata Model.

relational database

A repository for typically large amounts of information, structured in accordance with the relational model, in tables
with columns. A relational database is created and administered by a relational database management system
(RDBMS).

relational database management system (RDBMS)

A system that allows you to create and administer relational databases. With an RDBMS, you define storage
structures for data and mechanisms for its manipulation and retrieval (typically via SQL). An RDBMS must also
provide a system for safeguarding in case of events such as system crashes and unauthorized access.

Relational Metadata API

A set of interfaces provided by the BI Java SDK for accessing the metadata of a relational data source. Generated via
JMI from the SDK's Relational Metadata Model.

Glossary

Relational Metadata Model

D–13

Relational Metadata Model

A model provided by the BI Java SDK that describes data accessible through a relational interface such as JDBC.
Based on the CWM Relational Package.

Relational Query API

A set of interfaces provided by the BI Java SDK that let you define queries against a relational data source. The API is
generated via JMI from the Relational Query Model, based on metadata provided by the Relational Metadata Model,
and includes the simplified Relational Command Processor.

Relational Query Model

An abstraction layer, or model, in the BI Java SDK designed for formulating relational queries independently of data
source-specific query APIs. The model is based on the CWM Expressions package and the CWM-compliant metadata
provided by the Relational Metadata Model.

resource adapter

As defined by the JCA specification, a system-level software driver component used to connect to an EIS. The BI
Java SDK and UD Connect use resource adapters called BI Java Connectors.

resource adapter archive (RAR)

Complete resource adapter modules, which as defined by the JCA specification consist of the required Java classes,
documentation, native libraries, and deployment descriptors necessary to distribute a given resource adapter
(connector). The BI Java Connectors are distributed in RAR files.

resource adapter module

A complete resource adapter which, as specified by the JCA, is represented physically by a RAR file.

ResultSet API

A set of interfaces that provide applications created with the BI Java SDK with access to the results of a query. The
ResultSet API provides access to a relational result set from a relational data source, and an OLAP result set from an
OLAP data source.

Glossary

row

D–14

row

A set of fields within a table that contains the data for one specific entry in the table. Each row in a given table has the
same structure, predefined for a particular table.

SAP Query

A component of SAP's Web Application Server that allows you to create custom reports without any ABAP
programming knowledge. The BI SAP Query Connector uses SAP Query to allow applications created with the BI
Java SDK to access data from these SAP operational applications.

For more information about SAP Query, refer to the SAP Help Portal documentation:
http://help.sap.com/saphelp_nw04/helpdata/en/d2/CB3EFB455611D189710000E8322D00/frameset.htm

SDK

Software development kit. As applied throughout this documentation, the term "SDK" refers specifically to the BI Java
SDK, unless otherwise specified.

Service Provider Interface (SPI)

Defined by the JCA, a standard interface for integrating the transaction, security, and connection management
facilities of an application server with those of a transactional resource manager.

System Landscape

A service of the SAP NetWeaver Portal that provides the functionality to persist connection information.

table

A set of rows, also known as a relation. The table is the central object of the relational model.

tabular data

Synonym for relational data.

http://help.sap.com/saphelp_nw04/helpdata/en/d2/CB3EFB455611D189710000E8322D00/frameset.htm

Glossary

UD Connect (UDC)

D–15

UD Connect (UDC)

Component of SAP BI that, together with the SAP Web AS J2EE server, provides connectivity to virtually all relational
and multidimensional data sources. UDC uses the BI Java Connectors as resource adapters for establishing
connections to data sources. The data can either be loaded into BI, or accessed directly via a RemoteCube.

Read about UD Connect on the SAP Help Portal at:

http://help.sap.com/saphelp_nw04/helpdata/en/78/EF1441A509064ABEE6FFD6F38278FD/frameset.htm

XML Metadata Interchange (XMI)

OMG's XML-based standard for interchanging metadata between UML-based modeling tools and MOF-based
metadata repositories in distributed, heterogeneous development environments. The exchange takes place in the
form of data streams or files, essentially formally mapping MOF to XML.

XMI, together with UML and MOF, forms the core of the OMG's metadata repository architecture and allows
developers of distributed systems to share object models and other metadata over the Internet. The SDK supports
XMI to interchange and persist metadata objects in a platform independent manner.

For more information, see http://www.omg.org/technology/documents/formal/xmi.htm.

XML for Analysis (XMLA)

An XML-messaging-based protocol specified by Microsoft for exchanging analytical data between client applications
and servers (for example, OLAP providers) using HTTP and SOAP as a service on the Web. XMLA advances OLE
DB concepts such as schema rowsets and MDX by providing standardized universal data access without the need to
deploy client components that expose COM interfaces. XML for analysis is not restricted to any particular platform,
application, or development language.

For more information, see http://www.xmla.org/.

http://help.sap.com/saphelp_nw04/helpdata/en/78/EF1441A509064ABEE6FFD6F38278FD/frameset.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.xmla.org/

Index
Page numbers in bold indicate glossary pages.

Page numbers in italics indicate diagrams.

A

ABAP, 40

ActiveX Data Objects, 39, 108, D–1

ActiveX Data Objects Multidimensional, 39, D–1

adapter classes, 87

addMember, 102

ADO. See ActiveX Data Objects

ADO MD. See ActiveX Data Objects Multidimensional

aggregate, 60

ALL level, 49

ALL member, 49

APIs

BI Java SDK, 2

APIs of the BI Java SDK, 2–3

attribute, 52

Attribute, 72, 83, 93

attributes

and CWM, 52

metadata mapping, 54

axis cursors, 108

AxisDimension, 72

B

Backus-Naur Form, 96, 98

BEx query mapping, 56

BEx result set, 14

BI Java Connector, D–1

BI Java Connectors, 2, 5, 7, 32, 34, 37–40, A–5–A–7

BI JDBC Connector, 39

BI ODBO Connector, 39

BI SAP Query Connector, 40

BI XMLA Connector, 40

language property, 125

testing, A–7

BI Java SDK, D–3

APIs, 2

open standards, 5–10

overview, 1

BI JDBC Connector, 4, 7, 39, D–2

BI ODBO Connector, 4, 39, 53, D–2

BI SAP Query Connector, 4, 40, D–2

BI XMLA Connector

note on using in non-managed environment, A–3

BI XMLA Connector, 5, 40, 53

BI XMLA Connector, D–2

BIDataSetTableModel, 116

BIException, 125

BIResourceException, 125

BIRuntimeException, 125

Business Information Warehouse, 1, 5, 40

supported version, 11

business intelligence, 1

Index

C

calculated members, 104

cartesian product, 59

catalogs, 58

CCI. See Common Client Interface

cell cursor, 108

characteristic, D–7

classpath configuration, A–2

column, D–3

columns, 58

command processor, D–3

command processors, 64

Common Client Interface, 32, 33, D–3

Common Warehouse Metamodel, 5, 8, 42–43, D–4

Javadocs, 45

supported version, 11

complex value selection, 104

composite design pattern, 77

connection architecture, 32–40

connection interfaces, 2, 3

connection management, 32

ConnectionSpec, 36, 37

connectivity flow, 38

connector, D–4

Connector Gateway, D–4

CORBA, 9

cube, 47, 71, D–4

mapping notes, 55

cubes

metadata mapping, 53

cursor model, 109

cursors, 108

CWM. See Common Warehouse Metamodel

additional resources, C–2

and attributes, 52

and measures, 52

and members, 52

Javadocs, 45

CWM Expressions, 95

CWM Javadocs, 45

CWM OLAP model, 52

CWM OLAP Model, 51

CWM Relational, 60

CWM Relational Package, 61

D

data set, 108

decomposed, 114

flattened, 112

sample, 112

data set decomposition, 112, 114

data set flattening, 112

DataValue, 83

default members, 48

deployment descriptor, D–4

dimension, D–4

OLAP vs. SAP BI, D–5

Dimension, 83

dimension attributes, 103

and CWM, 52

dimensions, 47

metadata mapping, 53

documentation, A–4

resolving links, A–4

drill down, 50, 104

drill up, 50, 104

E

EIS. See Enterprise Information System

Enterprise Information System, 7, 32, D–5

examples, 4

configuring your system, B–2

connection properties, B–3

connector and data source requirements, B–2

Index

finding the examples, B–1

Helpers.java, 41, B–5

HTML stylesheet, 123

index, B–3

OLAP Table Model, 118

Helpers.java, 123

OLAP Tutorial, 14–23, 40

Olap_1.java, 62, B–4

Olap_10.java, 104, B–5

Olap_2.java, 101, B–4

Olap_3.java, 101, B–4

Olap_4.java, 103, B–4

Olap_5.java, 103, B–4

Olap_6.java, 103, B–4

Olap_7.java, 103, B–4

Olap_8.java, 103, B–4

Olap_9.java, B–4

Relational Tutorial, 23–30, 40

Relational_1.java, 63, B–5

Relational_2.java, 63, B–5

Relational_3.java, 104

Relational_3.java, B–5

Relational_4.java, 104

Relational_4.java, B–5

Relational_5.java, 104

Relational_5.java, B–5

rendering to file, B–3

Tutorial_1.java, B–3

Tutorial_2.java, B–3

exception framework, 124, 125

exceptions

specifying language, 125

F

Feature, 83

filter, D–5

filtering, 18, 103

G

generating interfaces with JMI, 43–45

getCatalog(), 63

getCube(), 62

getMemberData(), 62

getMemberData(List, List), 63

getMetadata(), 110

getSchema(), 62, 63

getTable(), 63

getTaggedValue(), 62

glossary, D–1–D–15

H

Helpers.java, 15, 41, 123, B–5

hierarchies, 48, 49

mapping notes, 57

member drill operations, 103

metadata mapping, 54

selecting members, 49

hierarchy, D–5

How-To Guides, A–4

howto.html files, 38, A–5, A–7

HTML stylesheet, 123

I

IBIAddition, 89

IBIAncestor, 85

IBIAnyDataValue, 83

IBIAttributeReference, 87

IBIAxis, 69, 70, 72

IBIAxisCursor, 109

IBIAxisDimension, 69, 72

IBIAxisDimensions, 71

IBICalculatedMember, 72, 83, 84

IBIChildren, 80

IBIClosingPeriod, 85

IBICommandProcessor, 65

IBICompositeMemberSetExpression, 75, 79

Index

IBICompositeTupleSetExpression, 75, 81

IBIConcatenation, 89

IBIConditionBasedFilter, 75

IBIConnection, 15, 24, 26, 32, 33

IBICousin, 85

IBICurrentMember, 83, 84

IBIDataset, 108

IBIDataSet, 20, 109

IBIDescendantsLevel, 80

IBIDimensionAttributeCursor, 110

IBIDimensionCursor, 110

IBIDimensionMembers, 80

IBIDivision, 89

IBIDrill, 79, 81

IBIDrillDirectonType, 90

IBIFilter, 75

IBIFirstChild, 85

IBIFirstSibling, 85

IBIHierarchyMembers, 80

IBIIdentifiable, 83

IBIInputReference, 72, 86, 87

IBIJoinType, 90

IBILag, 85

IBILastChild, 85

IBILastPeriods, 80

IBILastSibling, 85

IBILead, 85

IBILevelDrill, 79

IBILevelMembers, 80

IBILevelType, 90

IBILiteralReference, 87

IBIMember, 72, 82, 83, 85

IBIMemberDrill, 79

IBIMemberExpression, 83, 84, 85

IBIMemberList, 80

IBIMemberReference, 87

IBIMemberSelection, 79, 80

IBIMemberSet, 69, 73

IBIMemberSetExpression, 69, 73, 74, 75, 79

IBIMultiplication, 89

IBINextMember, 85

IBINumericValueFunction, 87

IBIOlap, 17, 32, 33, 39, 40, D–5

IBIOpeningPeriod, 85

IBIOperation, 87, 89

IBIParallelPeriod, 85

IBIParent, 85

IBIPeriodsToDate, 80

IBIPreviousMember, 85

IBIQuery, 18, 27, 69

IBIRange, 80

IBIRankingFilter, 75

IBIRankType, 90

IBIRelational, 26, 32, 33, 39, 40, D–5

IBIRelationalOperatorType, 90

IBISapHierarchyValue, 94

IBISapHierarchyVariable, 93

IBISapMemberValueRange, 94

IBISapMemberVariable, 93

IBISapNumericValueRange, 94

IBISapNumericVariable, 93

IBISapRangeSignType, 90

IBISapVariable, 93

IBISapVariableSelectionType, 90

IBISapVariableValue, 94

IBISapVariableValueRange, 94

IBISet, 69

IBISignInversion, 89

IBISort, 75

IBISortDirectionType, 90

IBISubtraction, 89

IBITimeSeries, 80

Index

IBITuple, 81

IBITupleDrill, 81

IBITupleList, 73, 81

IBITupleReference, 87

IBITupleSelection, 81

IBITupleSet, 69, 72

IBITupleSetExpression, 69, 73, 74, 75, 81

IConnectionSpec, 36

icons, iii

INative, 34, D–5

InfoCube, D–4

InfoObject (characteristic), D–5

InfoProvider

access to the data of an, 55

InputReference, 87

installation process, A–1

Instance, 83, 94

iViews, A–4

J

J2EE, 6, A–5

J2EE Connector Architecture, 7, 31, 32, D–6

supported version, 11

JARM, A–2

Java Application Responsetime Management, A–2

Java Database Connectivity, 1, 9, 39, 58, D–6

connection URL, 25

supported version, 11

Java Development Kit

supported version, 11

Java Metadata Interface, 5, 8, 43, D–6

generating interfaces with, 43–45

supported version, 11

java.sql.ResultSet, 107

Javadocs, 3

CWM, 45

JCA. See J2EE Connector Architecture

additional resources, C–1

JCo, 7, D–6

JDBC. See Java Database Connectivity

additional resources, C–1

JDBC connection URL, 25

JDK. See Java Development Kit

JMI. See Java Metadata Interface

additional resources, C–2

JMI process, 44

JMI service, 7, 8, 43, D–7

join types, 76, 91

K

key figure, D–7

key figures, 48

L

language property, 125

layout

changing, 19

legacy exceptions, 124

level, D–7

levels, 48, 49

ALL level, 49

mapping notes, 57

metadata mapping, 54

selecting members based on, 49

logging and tracing, A–2

M

Main Model, 68, 69, 93

managed application scenario, 35

managed environment, 34

mapping OLAP metadata, 51–57

mapping relational metadata, 60–62

MDX, 1, 5, 10, 12, D–7

additional resources, C–2

direct execution of a statement, 101

measure, 52, D–7

Index

measures, 48

and CWM, 52

mapping notes, 56

metadata mapping, 54

member, 52, D–7

ALL member, 49

default member, 49

Member, 82, 83

member selection, 49

member set expressions, 78

MemberExpression, 85

members, 48

ALL members, 49

and CWM, 52

metadata mapping, 55

selecting, 20, 49

MemberSelection, 80

MemberSetExpression, 75, 79

Meta Object Facility, 9, 44, D–7

supported version, 11

metadata

accessing OLAP, 62

accessing relational, 63

retrieving multidimensional, 18

retrieving relational, 27

metadata access

in OLAP result sets, 110

in relational result sets, 115

metadata API, D–8

metadata APIs, 42, 45

metadata instances, 45

metadata mapping, 53

metadata model, 42, D–8

metadata models, 45

metadata repository, D–8

Metamodel Repository, 7, 43, D–8

MMR. See Metamodel Repository

MOF. See Meta Object Facility

additional resources, C–2

moveDimensionToColumns, 102

moveDimensionToRows, 102

multidimensional data, D–8

multidimensional result set, 67

multidimensional result sets, 111

N

NetWeaver, 6

supported version, 11

NetWeaver Portal, 7, 34, A–4

non-managed environment, 35

NumericValueFunction, 88

NumericValueFunctions, 88

O

Object, 83

Object Linking and Embedding Database, D–9

Object Management Group, 8, 42, D–9

ObjectFinder, 18, 62, 63

ODBO. See OLE DB for OLAP

ODP. See OLAP data provider

OLAP. See Online Analytical Processing

OLAP BAPI, 53

OLAP Command Processor, 19, 64, 66, D–9

OLAP cube, 47

OLAP data provider, D–9

OLAP metadata

mapping of, 51–57

OLAP Metadata API, 2, 3, D–9

OLAP Metadata Model, 8, 46–57, 46, 66, D–10

OLAP queries

examples of, 101

OLAP Query API, 2, 3, 10, D–10

OLAP Query Model, 5, 65–92, D–10

Main Model, 68

Index

OLAP Result Sets, 108

OLAP systems, 46–50, 46

OLAP Table Model, 21, 116–17, D–10

algorithm, 117

OLAP Tutorial, 14–23

Olap_1.java, 62, B–4

Olap_10.java, 104, B–5

Olap_2.java, 101, B–4

Olap_3.java, 101, B–4

Olap_4.java, 103, B–4

Olap_5.java, 103, B–4

Olap_6.java, 103, B–4

Olap_7.java, 103, B–4

Olap_8.java, 103, B–4

Olap_9.java, B–4

OLE DB. See Object Linking and Embedding
Database

OLE DB for OLAP, 1, 4, 10, 39, 53, 108, D–10

OLTP. See Online Transactional Processing

OMG. See Object Management Group

Online Analytical Processing, 1, D–11

Online Transactional Processing, D–11

Open Analysis Interfaces, 1

OLAP BAPI, 1

OLE DB for OLAP, 1

XML for Analysis, 1

Open Database Connectivity, 58

open standards, 5–10

Operation, 89

Operations, 89

operators, 59

P

pivot, 50

pivoting layout, 101

Portal Connection Framework, 33, 34, D–11

project, 59

properties, 48

Q

query

creating multidimensional, 18

creating relational, 27

executing multidimensional, 20

executing relational, 28

new query operation, 102

query (SAP BI), D–4

query API, D–11

query model, D–11

R

R/3, 7

RAR. See resource adapter archive

RAR files, 38

RDBMS, 57, See relational database management
system

RDP. See relational data provider

references

books, C–3

relational

complex relational query, 104

operators, 59

simple relational query, 104

relational algebra, 59

Relational Command Processor, 27, 64, 95, D–12

relational data, D–12

relational data provider, D–12

relational database, D–12

relational database management system, D–12

relational databases, 57–58

relational metadata

mapping of, 60–62

Relational Metadata API, 2, 3, D–12

Relational Metadata Model, 8, 57–62, 57, D–13

relational operators

Index

aggregate, 60

cartesian product, 59

project, 59

rename, 59

select, 59

set difference, 59

sort, 60

union, 59

relational queries

examples of, 104

Relational Query API, 2, 3, D–13

Relational Query Model, 5, 95–101, D–13

SQL subset, 96

relational result sets, 115

Relational Tutorial, 23–30

Relational_1.java, 63, B–5

Relational_2.java, 63, B–5

Relational_3.java, 104, B–5

Relational_4.java, 104

Relational_4.java, B–5

Relational_5.java, 104

Relational_5.java, B–5

release notes, A–1

rename, 59

resource adapter, 32, 34, 37, D–13

resource adapter archive, D–13

resource adapter module, D–13

result set

rendering, 20, 29

ResultSet, 28

ResultSet API, 2, 3, 9, 106–16, D–13

cursor model, 109

OLAP data access, 111

OLAP metadata access, 110

OLAP navigational aspects, 110

relational data access, 116

relational metadata access, 115

relational navigational aspects, 115

row, D–14

rows, 58

S

sample data set, 112

SAP Exception Framework, 124

SAP Query, 2, 40, 98, D–14

additional resources, C–1

SAP Sales DemoCube: Overview, 55

SAP variables, 92, 104

additional resources, C–1

comples value selection, 94

complex value selection, 104

metadata mapping, 55

variable values, 94

schema

mapping notes, 55

schemas, 58

metadata mapping, 53

SDK, D–14

select, 59

selecting members, 49

SELECT-OPTIONS, 99

Service Provider Interface, 32, 34, D–14

set difference, 59

slicer, 19, 70

Slot, 69, 83, 93, 94

sort, 60

sorting

sort by dimension attribute, 103

sort by measure value, 103

SPI. See Service Provider Interface

SQL, 1, 8, 9, 12, 58, See also Structured Query
Language

direct execution of statement, 104

Index

StructuralFeature, 83, 93

structure element, D–7

Structured Query Language, 58, See also SQL

System Landscape, D–14

system requirements, A–1

T

table, 58, D–14

tabular data, D–14

testing

testing the BI Java Connectors, A–7

top N query, 50

tree-form representation, 100

tuple, 47, 58

tuples, 58

TupleSetExpression, 75, 81

tutorial

OLAP, 14–23

relational, 23–30

Tutorial 1 Result Set, 23

Tutorial 2 Sample Result Set, 30

Tutorial_1.java, 14–23, 40, B–3

Tutorial_2.java, 23–30, 40, B–3

types, 89

Types, 90

typographical conventions, iii

U

UD Connect, D–15

additional resources, C–1

UDC. See UD Connect

UML metadata, 45

Unified Modeling Language, 9, 44

union, 59

V

Variable Values, 94

variables, 92

Variables, 93

W

Web Application Server, 6, 34, 40

Web Dynpro applications, A–5

X

XMI. See XML Metadata Interchange

additional resources, C–2

XML for Analysis, 2, 10, 40, 53, D–15

XML Metadata Interchange, 9, D–15

supported version, 11

XMLA

BI XMLA Connector

note on using in non-managed environment, A–3

XMLA

additional resources, C–1

XMLA. See XML for Analysis

XMLA provider, 16

Z

zoom in, 104

zoom out, 104

	Table of Contents
	Detailed Table of Contents
	Introduction
	Overview of the BI Java SDK
	Components of the SDK
	Application Programming Interfaces
	Documentation
	Examples

	BI Java Connectors
	Architectural Overview
	Open Standards in the SDK
	The J2EE Platform and Java Development with SAP NetWeaver
	Common Warehouse Metamodel
	Java Metadata Interface
	Java Database Connectivity
	Meta Object Facility
	XML Metadata Interchange
	OLE DB for OLAP and XML for Analysis

	Foundation Technologies Versions

	Chapter 1: Getting Started
	Overview
	System Configuration
	Data Source Requirements
	Connection Properties
	Rendering the Servlets

	Hello MDX: First Example for a Multidimensional Data Source
	Step 1: Import Packages
	Step 2: Connect to an SAP BI System
	Step 3: Retrieve the Metadata
	Step 4: Create a Query
	Step 5: Change the Layout
	Step 6: Specify Selected Members
	Step 7: Execute the Query and Retrieve the Result Set
	Step 8: Render the Result Set
	The Output

	Hello SQL: First Example for a Relational Data Source
	Step 1: Import Packages
	Step 2: Connect to a JDBC Database
	Step 3: Retrieve the Metadata
	Step 4: Create a Query
	Step 5: Specify Table and Columns
	Step 6: Execute the Query and Retrieve the Result Set
	Step 7: Render the Result Set
	The Output

	Chapter 2: Connecting to Data Sources
	Overview
	Connection Architecture
	Client Interface
	Portal Connection Framework
	Service Provider Interface
	Managed Environment
	Non-managed Environment
	Connection Specification and Portal Service

	BI Java Connectors
	BI JDBC Connector
	BI ODBO Connector
	BI SAP Query Connector
	BI XMLA Connector

	Examples

	Chapter 3: Accessing Metadata
	Overview
	Common Warehouse Metamodel
	Generating Interfaces
	Metadata APIs
	OLAP Metadata Model
	OLAP Systems
	Query Operations
	Mapping of OLAP Metadata

	Relational Metadata Model
	Relational Databases
	Relational Query Operations
	Mapping of Relational Metadata

	Examples

	Chapter 4: Creating Queries
	Overview
	Query APIs
	OLAP Query Model
	Basics of OLAP Queries
	Main model
	TupleSetExpressions and MemberSetExpressions
	Member
	InputReferences
	Types
	SAP Variables

	Relational Query Model
	Relational Command Processor
	SQL Subset
	SAP Query Interfaces
	Tree-Form Representation

	Examples
	OLAP Queries
	Relational Queries

	Chapter 5: Retrieving Result Sets
	Overview
	ResultSet API
	Key Features
	OLAP Result Sets
	Major Interfaces Summary
	Metadata Access
	Navigational Aspects
	Data Access
	Multidimensional Results in Two Dimensions

	Relational Result Sets
	Metadata Access
	Navigational Aspects
	Data Access

	OLAP Table Model
	Rendering Algorithm

	Examples

	Chapter 6: Exceptions
	Overview
	Exception Handling
	Exception Translation

	Appendix A: Installation
	Overview
	System Requirements
	Classpath Configuration
	Logging and Tracing, JARM
	Using the BI XMLA Connector in a non-managed environment
	Documentation
	How-To Guides

	BI Java Connectors
	BI Java Connectors Overview
	Testing the BI Java Connectors
	For Additional Information

	Appendix B: Examples
	Overview
	Finding the Examples
	Configuring your System
	Data Sources
	Rendering to File
	Connection Properties

	Index of Examples

	Appendix C: Additional Resources
	Web References
	Books

	Appendix D: Glossary
	Index

