

Table of Contents

i

T

A B L E

O F

 C

O N T E N T S

ROXEN INTRODUCTORY GUIDE 1

CHAPTER 1 WELCOME TO ROXEN!

3

Getting in touch with us

3

Roxen, the Story

4
Spider 4
Spinner 5
Roxen 5

Creators 6
Programming 6
Manual 6
Quality Control 6
Project Managers 6

Hardware requirements 7
Memory 7
CPU 7
Hard disk space 7

Detta dokument har framställts med FrameMaker 4.0.4

ii

Table of Contents

Software requirements

7

Operating Systems

7

About the manual

7

CHAPTER 2 I

NSTALLING

 R

OXEN

9

Installing a binary distribution

9

Installing the source distribution

10

Finishing the installation

11

Example installation session

11

Troubleshooting

12

Done installing?

13

CHAPTER 3 C

ONFIGURING

 R

OXEN

 –

THE

FIRST

STEPS

15

Basic configuring

15

The configuration interface

16

The fold / unfold principle and focusing

17

Colour encoding

17

Your first changes

18

Adding a new virtual server.

19

Configure the virtual server.

19

Adding modules

20

CHAPTER 4 S

ETTING

UP

 V

IRTUAL

 S

ERVERS

23

A few examples of virtual interfaces

23

On a Linux machine

23

On a Solaris machine

24

On a FreeBSD machine

24

SGI’s running IRIX 5.3

24

General stuff

25

Table of Contents

iii

CHAPTER 5 M

IGRATING

TO

 R

OXEN

FROM

OTHER

S

ERVERS

27

Imagemaps

27

NCSA Image map tip

27

Server Side Includes

27

CGI

28

ROXEN USER’S GUIDE 29

CHAPTER 6 HTML - A SHORT REFERENCE 31

HTML Introduction 31
Essential HTML 32
Characters (styles) 33
Paragraphs 34
Lists 35
Tables 36
Links 37
Forms 38
Miscellaneous 40
Special characters 42

CHAPTER 7 RXML - THE ROXEN MACRO
LANGUAGE 43

Introduction to RXML 43
RXML tags 44

<ACCESSED> 44
<ACONF> 46
<APRE> 47

iv

Table of Contents

<CLIENTNAME>

48

<COMMENT>

49

<DATE>

49

<DEFINE> AND <INSERT>

49

<DOC>

52

<HEADER>

52

<IF>, <ELSE> and <OTHERWISE>

52

<LANGUAGE>

57

<MODIFIED>

58

<QUOTE>

58

<RANDOM>

58

<REFERER>

59

<REMOVE_COOKIE>

59

<RETURN>

59

<RIGHT>

59

<SET_COOKIE>

60

<SIGNATURE>

60

<SMALLCAPS>

60

<SOURCE>

61

<TABLIFY>

61

<TABLIST>

61

<USER>

62

<XIMG>

63

<ICONS>

63

<ICON>

63

 <PICTURE>

63

 <BLINK>

63

 <LYSATOR>

63

<ITEM>

64

<ENDTABLE>

64

<FOT>

64

<COMMENT>

64

Table of Contents

v

<H>

64

Attributes related to time and dates

65

Examples of HTML and RXML

65

CHAPTER 8 I

MAGE

 M

APS

73

Introduction to image maps

73

How to insert an image map on a page

73

Roxen and Image Maps

74

Image map file formats

74

CERN

75

NCSA/Apache

76

Roxen

76

Client-side image maps

77

How to include client-side image maps

77

How to describe the different areas

78

CHAPTER 9 S

CRIPTING

WITH

 R

OXEN

81

Pike scripts

81

Contents of request_id

82

Returning data

86

Important notes

88

Example Script

89

The

parse()

 function

90

CGI

90

vi

Table of Contents

ROXEN ADMINISTRATOR’S GUIDE 91

CHAPTER 10 GENERAL INFORMATION 93

The Roxen Concept 93
Variables 94

Configuration interface Variables 94
Proxy Disk Cache Variables 95
Logging Variables 96
General global Variables 97
Server specific logging variables 99
Server messages 100
General virtual server variables 101
Builtin module variables 102
Module Security VariableS 103

Server Status 104
Virtual Server Status 104

CHAPTER 11 MODULES 105

Available modules 105
CGI executable support 106
Client logger 108
Explicit Clock 108
Connect method implementation 109
ContentTypes 109
Deep Thought 110
FileSystem 110
Ftp gateway 112
Gopher gateway 113
HTTP-Proxy 113
Language module 114

Table of Contents

vii

ISMAP Image-maps

116

Indirect href

116

Redirect module v2.0

117

HTTP-relay

118

Secure filesystem module

119

Fast directory parsing

120

Directory parsing

120

Status Monitor

121

Main RXML Parser

122

Timestamp

123

µ

LPC script support

123

User Database and Security

124

User filesystem

125

BOFH module

126

X Image Tag

126

WAIS gateway

127

Tab list

127

.htaccess support

127

User logger

128

FastCGI

128

Tablify

129

Index files

129

Logging disabler

129

Configuration interface

130

Lysator specific parsing

130

Secure sockets layer, SSL

131

.htaccess

132

Secure transmission

132

How to restrict access

132

viii

Table of Contents

ROXEN PROGRAMMER’S GUIDE 135

CHAPTER 12 THE PIKE QUICK GUIDE 137

Introduction 137
Printing text 137

Improving our program 139
Choices aren’t hard to make 139

Further improvements 139
Data Types 141

Int 142
Float 142
Array 142
String 143
Mapping 143
Multiset 143

A more elaborate example 144
Taking care of input 146
Communicating with files 148
Completing the program 152
Final notes 153

CHAPTER 13 HOW TO MAKE YOUR OWN ROXEN
MODULE 155

Module types 155
Roxen flowchart description 157

How to write a module 159
The fundamentals of a module 160
Callback functions 162
The complete module 168
Returning values 170

Table of Contents

ix

Module variables

176

Start using your new module

179

ROXEN MANUAL APPENDICES 181

APPENDIX A REGULAR EXPRESSIONS 183

Introduction 183
Expression Meaning 183

APPENDIX B A PIKE RECORD DATABASE 185

APPENDIX C TABLES 193

RXML tags 193
Header response lines 195
HTTP result codes 196
Available modules 199

x

Table of Contents

R

O X E N

I

N T R O D U C T O R Y

G

U I D E

Detta dokument har framställts med FrameMaker 4.0.4

Roxen Introductory Guide

3

CHAPTER 1

W

ELCOME

TO

 R

OXEN

!

Congratulations on your acquisition of Roxen, the best information ma-
nagement tool you can find on the market today! In this part of the guide
we will try to safely guide you through the possible intricacies of instal-
ling and setting up Roxen, no matter what your previous experience of
web server software is.

GETTING IN TOUCH WITH US

If you need to get in touch with us or simply wish to express your opini-
ons of Roxen, the easiest way is by sending an e-mail to us at

info@in-
fovav.se

, or if it specifically concerns Roxen, to

roxen@infovav.se

. Of
course you can send us ordinary mail too:

InformationsVävarna AB
Skolgatan 10
S-582 35 Linköping
SWEDEN

If you have bought support and live in the USA, call 800-345-0046 and
ask for ”Collect to Sweden 013-37 68 10”. If you live in Sweden, you
can call 013-37 68 10 directly.
By the way; as you can see in our domain name the short form of

Info-
mationsVävarna

 is

Infovav

. This abbreviation will be used hereafter in
the manual

Welcome to Roxen!

4

Roxen Introductory Guide

ROXEN, THE STORY

In the beginning there weren’t many webservers around (quite natural-
ly!) and those there were, weren’t very good. The growth of the World
Wide Web (WWW) interested and attracted a large number of members
of the Lysator Computer Society at the Linköping University. Lysator set
up the world’s tenth WWW-server, a server which today has around
500,000 accesses per day (September, 1996).

SPIDER

One member was Per Hedbor. He wasn’t satisfied with the performance
of other servers and, accordingly, he wrote his own, a very small, very
buggy, but working C program, launched from inetd

1

. Per named his
creation Spider.
After a while, he moved on to LPC4, a language with excellent string and
socket support, which made it ideal for writing WWW-servers. This lang-
uage was also created by a member of Lysator, initially intended for use
as a tool when building muds.
As Spider evolved, it became more and more complex, and even more
features were added. It might be said that this program is, in the same
way as the NCSA httpd and the CERN-server, suffering from a severe
case of feeping creaturism

2

, but in a more pronounced way. The program
has been conceived with extensibility in mind; it is quite easy to extend
the functionality of Roxen.
The first version went on-line in November 1993. Back then it was a
quick and dirty hack, but it worked, and it had a few extra features that
were used at Lysator, like certain special pathnames, i.e.

/~{name}

, i.e.
automagically

3

 generated information for the user

{name}

. This was
done without CGI scripts. As a matter of fact, CGI didn’t even exist, or

1. A daemon in the Unix operating system.
2. This is a hacker term for a steadily increasing amount of features and the pro-

blems this entails.
3. Since programmers like to accomplish complicated feats of programming this

term has arisen to signify something that the program does automatically,
something so immensely complicated that to the layman it can be likened to
magic. Oh well.

Roxen, the Story

Roxen Introductory Guide

5

it had at least not been publically announced.
This, and the fact that a lot of the information published by Lysator and
its members had to be preprocessed

4

 made it hard to adapt an existing
server. Therefore, Per continued his work, and other people became in-
terest in the development as well. Soon, Spider 2 was born, containing
even more features and also the occasional bug fix.

SPINNER

By the end of 1994, Per decided to make a new version from scratch. He
left LPC4 in favour of

µ

LPC, a language inspired by LPC4. Pike is a lot
more general and even better suited for network programming than
LPC4. Another reason was that LPC4 has very restrictive rules concer-
ning its use in commercial products. Pike is a professional programming
language with many features that make it extremely easy to learn and use
in a professional way.
Instead of using one huge executable file, Spider 3 would be based on
modules. When the first version of Spider 3 went online, everyone was
surprised by it’s extreme speed, compared to Spider 2.
In the first part of 1995, Spider 3 changed name to Spinner and the
graphical WWW based configuration interface started to work, although
it was a pain to use it, especially when a lot of changes had to be made.
As 1995 progressed, we (InformationsVävarna) became aware of Spin-
ner’s probable market potential. Since then, Per and a host of other pro-
grammers have been developing Spinner, steadily making it more stable
and versatile.

ROXEN

When nearing the release date we unfortunately had to change the name
again, this time due to the abundance of software and software-related
products named Spinner, not to mention copyright-related issues. We de-
cided to rename Spinner to Roxen.
In addition we have made available a new version of

µ

LPC and changed

4. Dynamic pages are easier to administer. You let the server process a few pages
and some accessory data instead of maintaining huge amounts of static
HTML pages yourself.

Welcome to Roxen!

6

Roxen Introductory Guide

that name too; Pike is the new one.
Now you hold the first commercial release of Roxen in your hands. The
graphical configuration interface has been rewritten from scratch and the
bugs have been exterminated. Many routines have been rewritten in C,
for reasons of speed.
Welcome, and good luck!

CREATORS

PROGRAMMING

Per Hedbor, David Hedbor, Mattias Wingstedt, Pontus Hagland and Pe-
ter Bortas.
For the extremely useful XIMG module we’d like to thank Peter Holzer.
Many others, too many to mention, have also contributed. Thank you!
Roxen is mostly written in Pike, a language designed and developed by
Fredrik Hübinette.

MANUAL

Per Hedbor, David Hedbor, Johan Mellberg, Tobias Karlsson, Peter Bor-
tas and Fredrik Hübinette.
Many thanks to those who took the time to comment on the first versions
of this document; Frankie ”Kinkie” Chiemollie, Karin Fransson, Linus
Tolke, everyone at Infovav, Ceci H.,

QUALITY CONTROL

Erik Persson.

PROJECT MANAGERS

Johan Mellberg, Lars Mårelius.

Hardware requirements

Roxen Introductory Guide

7

HARDWARE REQUIREMENTS

MEMORY

To run Roxen you should have at least 8MB of real memory available,
not counting swap.

CPU

At least a 386/33 or equivalent (e.g. a Sun3/200) is recommended to
experience acceptably smooth performance. This depends heavily on the
amount of traffic you need to take care of. At Infovav we have a 512 kbps
connection to the Internet. Running Roxen on a Sun Sparcstation 4 un-
der Solaris 5.1 we can theoretically serve around 3 million people per day.
The limit is the operating system network routines, not Roxen itself.

HARD DISK SPACE

The binary distribution of Roxen requires around 3MB of disk space, and
the full source version approximately 6MB. While compiling you will
probably need about another 3MB

SOFTWARE REQUIREMENTS

OPERATING SYSTEMS

Most SysV or BSD Unixes, including Solaris 1.0 or later, Linux 1.1.57 or
later and SGI Irix.

ABOUT THE MANUAL

Text with fixed width is used extensively throughout the manual to re-
present

examples of code

,

lead text in the configuration
interface

 and

variable values

 here and there.
Bolded text represents

URL

:s,

e-mail

 addresses and

paths

.

Welcome to Roxen!

8

Roxen Introductory Guide

When you have to fill in a value we almost always indicate this by writing
a dummy value between »...«. Replace the dummy value and the »...«
with the proper value.
Buttons are written using

SMALLCAPS

.
The first time we use a word or concept it will be in

italic

.

Roxen Introductory Guide

9

CHAPTER 2

I

NSTALLING

 R

OXEN

If there is a binary distribution available for your computer, get that and
move on to “Installing a binary distribution”. Otherwise, get the source
distribution and move on to “Installing the source distribution”.

INSTALLING A BINARY DISTRIBUTION

•

cd

 to the directory where you want Roxen to be installed and place
the archive there, typically

/usr/

 or

/usr/www/

. The server will
run from anywhere in the filesystem, though.

•

Issue the command to unpack the archive, depending on the exten-
sion of the archive:

°

.tar.gz

If you have GNU tar;

tar xzf »roxen-archive-name«

If you don’t have GNU tar;

gunzip < »roxen-archive-name«|tar xf -
° .tar.Z

uncompress < »roxen-archive-name«|tar xf -
° .tar

tar xf »roxen-archive-name«

Installing Roxen

10

Roxen Introductory Guide

Now move on to the section on finishing the installation on page 11.

INSTALLING THE SOURCE DISTRIBUTION

•

Issue the command to unpack the archive, depending on the exten-
sion of the archive:

°

.tar.gz

If you have GNU tar;

tar xzf »roxen-archive-name«

If you don’t have GNU tar:

gunzip < »roxen-archive-name«|tar xf

-

°

.tar.Z
uncompress < »roxen-archive-name«|tar xf

-

° .tar
tar xf »roxen-archive-name«

•

Type

cd Roxen1.0

 to change to the new directory. This directory
should contain at least four directories:

server/

 (Roxen server
source),

pike/

 (the Pike intepretator),

extern/

 (miscellaneous pro-
grams used by Roxen) and

tools/

 (miscellaneous tools).

•

Type

./configure --prefix=»desired roxen loca-
tion«

followed by

make

and then

make install

to build the binaries and copy them to the correct place. If you get a
message saying that

bison

 couldn’t be found, you need to get, com-
pile and install

bison

, available from

ftp://roxen.com/

.

Bison

 is
necessary for Pike to compile.

When the compilation has been completed successfully, continue with
the section on finishing the installation on page 11.

Finishing the installation

Roxen Introductory Guide

11

FINISHING THE INSTALLATION

•

Type

cd /path_to_roxen/roxen/server/

 and start the
install script by typing

./install

.

•

The installation script will find a free port for the configuration inter-
face and ask you if you are happy with the default values for machine
name and IP number. Answer the questions posed by the script.

•

If everything worked, connect to the configuration interface and
configure the server, otherwise move on to the troubleshooting sec-
tion, see page 12. For a brief description of a basic configuration see
“Configuring Roxen – the first steps” on page 15.

•

If you want Roxen to start automatically when the computer has
rebooted, add this to one of the startup files:

cd /path_to_roxen/roxen/server/;./start

To shut down Roxen, just use the K

ILL

button in the configuration
interface.
If you use a flavour of System V Unix, sample start-up scripts are
included with your distribution. These scripts use

/etc/init.d

. You
can find the scripts in

roxen/tools/init.d_roxen

.

EXAMPLE INSTALLATION SESSION

bash$ tar xzf Roxen.tar.gz
bash$ cd Roxen1.0
bash$ mkdir solaris
bash$ cd solaris
bash$../configure --prefix=/usr/www
<Lots and lots of checks...>
bash$ make
<Lots and lots of compilations>
bash$ make install
<Lots and lots of compilations>
bash$ cd /usr/www/roxen/server
bash$./install
<Answer a few questions>

Note that it will take quite some time to compile everything. On a Sun
Sparc 5 with 128 Mbytes of memory it took around half an hour. Just let

FIGURE 2.1 The button
for shutting Roxen down

Installing Roxen

12

Roxen Introductory Guide

the compiler run its course. Have some coffee, relax or learn how to pro-
gram in Pike while waiting.

TROUBLESHOOTING

There may be several reasons why Roxen doesn’t work. Listed below are
some of the things to check and try in order to diagnose the nature and
source of the problem.

1.

First do a

ps -ax

 or

ps -ef

.

If you see processes called:

bin/pike -m etc/master.pike roxen
/bin/roxen

then the server is running.

2.

You have to connect to a default port on your machine.

The default port is given by the install script (usually 18830). You
connect by entering the URL:

http://your.machine.name:18830

.
Notice that you can change the global variable

Configuration
port

. Study the installation walkthrough earlier in this chapter, and
the configuration tutorial in “Configuring Roxen – the first steps” on
page 15.

3.

Make sure you have configured at least one virtual server.

Roxen does not automatically start serving pages. Instead it serves
them through one or several virtual servers. In order to get Roxen to
send pages to clients you must configure at least one virtual server.
Read more in “Adding a new virtual server.” on page 19.

4.

Make sure you have a filesystem module installed.

One of the possible default settings of a virtual server does not
include a filesystem. However, there must be at least one filesystem
module installed and properly configured under one of the virtual
servers or Roxen will not respond to any incoming requests. The rea-
son is that without the filesystem module, there is no indication of
from where Roxen should get the pages to send.

Done installing?

Roxen Introductory Guide

13

5.

Check the Roxen log files.

The log files reside in

roxen/logs/debug/default.x

, where x
is a number between 1 and 3. If any errors are noted, check the sear-
chable mailinglist archive (

http://www.roxen.com/

)to see if
someone else has had the same problem. If you can’t seem to find a
solution, please send a bug report (

roxen-bug@infovav.se

) or ask
on the Roxen mailinglist (

roxen@infovav.se

).

DONE INSTALLING?

Once you have installed the server, consider joining the Roxen mailinglist
by sending an e-mail to

roxen-request@infovav.se

 with the word

sub-
scribe

 on the

Subject

 line. Apart from this, the message should be
empty.

Installing Roxen

14

Roxen Introductory Guide

Roxen Introductory Guide

15

CHAPTER 3

C

ONFIGURING

 R

OXEN

–

THE

FIRST

STEPS

This chapter is a step-by-step instruction on how to configure Roxen at
its most basic level, i.e. to set up a running Roxen server without any ex-
ceptional features. By the end of this tutorial, you should also be able to
customize Roxen’s functionality even further all on your own, using the
configuration interface to add or remove modules.

BASIC CONFIGURING

If you haven’t run the install script yet, please do so now, see page 11.
Start by filling in the text fields on the first page, see figure 3.1 on
page 16. The

username

 and

password

 are needed to stop unauthorized
people from accessing the configuration interface. The

IP-pattern

 makes
it possible to limit configuration access to a few well-known computers ,
thus ensuring higher security.
Fill in the proper values and press U

SE

THESE

VALUES

 to continue. You
will now be prompted for username

and password. Fill them in, and press
O

K

 to continue. If you are not happy with what you have entered here
you can redo it by following the link in the documentary text of the pass-
word field under Global Variables/Configuration Interface
As you can see in the example, it is possible to use pattern matching in
the IP number. The IP-pattern in figure 3.1 would only allow you to ac-

Configuring Roxen – the first steps

16

Roxen Introductory Guide

cess the configuration interface from computers in the domain whose IP
numbers begin with 194.52.182.

THE CONFIGURATION INTERFACE

Roxen is now ready to be configured. What follows is a brief explanation
of the configuration interface.
The configuration interface looks like a Macintosh directory listing. In
figure 3.3 you can see what the top of the screen contains. Except for the
S

AVE

 button and possibly some of the images, which you can configure
not to be used by setting

Compact layout

, under G

LOBAL

 V

ARIABLES

,
in

Configuration interface...

 to

Yes

, this is what you will see
on all pages of the configuration interface. Clicking on a tab, S

ERVERS

 for
example, shows you the associated information.

FIGURE 3.1

The first contact with the Roxen configuration interface.

FIGURE 3.2

The dialog that should greet you before you gain access to the
configuration interface proper.

Basic configuring

Roxen Introductory Guide

17

THE FOLD / UNFOLD PRINCIPLE AND FOCUSING

The arrows (, , ,) are fold/unfold buttons. If you click

on one of the arrows pointing right it will change into a down-pointing
arrow and all the underlying sub-menus with the associated variables be-
come visible; they

unfold

. Clicking on a down-pointing arrow will fold
the menu again.
As you can see it is also possible to click on the main menu items, not only
unfold them. Doing this is called

focusing

. Sometimes focusing is neces-
sary to access certain functions, for example when you wish to add new
modules to a virtual server you have to focus on the virtual server, or the
button N

EW

 M

ODULE

 won’t appear, see figure 3.10. We consider every
clickable item a so-called

node

.

When you have focused, you will see this button: beside that which

is now the top-most visible header. Clicking on it will get you back up
one level in the configuration interface. Clicking on the active panel
(S

ERVERS

 for example) gets you back to an unfocused state.
When you have made several changes or descended deep into the confi-
guration hierarchy you can fold all the unfolded sub menus by clicking
on F

OLD

 A

LL

.

COLOUR ENCODING

As you already have noticed, some arrows are red and some are blue. This
colour encoding is a great help when you configure Roxen. The red co-
lour is meant to catch your attention, showing you where unsaved chan-
ges have been made. If you click the S

AVE

 button, you’ll notice that all

FIGURE 3.3

Top view of the configuration interface.

FIGURE 3.4 When lots of
nodes are unfolded, press

this button.

FIGURE 3.5 The Save
button.

Configuring Roxen – the first steps

18

Roxen Introductory Guide

the arrows turn blue instead. Clicking on this button saves any changes
that you’ve made.

YOUR FIRST CHANGES

Now when you have begun using the configuration interface, why not try
to change something? If you run Roxen as

root

, it might be a good idea
to change the

User ID

 (uid) and

Group ID

 (gid) of the server, after it has
started. To do this, unfold

Change uid and gid

 under the

Global Variab-
les..

. menu, see figure 3.6.

As you might know, only the root of a system is allowed to open the ports
up to port 1024. The port used by the http protocol is port 80, thus it
has to be opened by someone with root privileges. However, it is not a
good idea to have Roxen actually run as root, having access to everything
on the system. But if you change

uid:gid

 to something else (which is
highly recommended), you will have to hit R

ESTART

 to ensure that newly
added virtual server(s) can use this port.
The user and group id:s must be numerical values, which means that you
cannot use symbolical values (for example www:www). The reason for
this is that the change is made before any modules are called, i.e. before
Roxen is given the ability ro resolve symbolic id:s.
The server has to be able to write logfiles and save configurations. In or-
der to ensure this, do (as root and in the

 server/

 directory):

chown -R »uid« configurations logs

and possibly also

chgrp -R »gid« configurations logs

where

uid

 and

gid

 are the values you set before.
Another thing you might want to change is the

configuration port

 which
defaults to the one assigned by the install script. The main reason for
changing is that it might be hard to remember to use something like port

FIGURE 3.6 Changing the user and group id’s.

FIGURE 3.7 The Restart
button.

Basic configuring

Roxen Introductory Guide

19

number 18391.
Press S

AVE

 to save the changes. Notice that you will have to change the
URL to the configuration interface manually (i.e. from

http://www.whatever.domain:oldport/

 to

http://www.whate-
ver.domain:newport/

), to be able to continue configuring. If you for-
get to change the configuration URL Roxen will protest.
Do not change the port unless you know for sure that the new port isn’t
busy. If that is the case, Roxen will stop and you will not be able to con-
tinue configuring. For now, the easy workaround is to install a new Rox-
en and try to use the desired port for this copy. If the install script doesn’t
protest, K

ILL

 and remove this temporary Roxen, then connect to the
configuration interface of the copy of Roxen whose configuration port
you wish to change and change to the port number you found.

ADDING A NEW VIRTUAL SERVER.

Roxen makes it possible to easily have any number of virtual servers,
bound to different ports and/or different network interfaces. See “Set-
ting up Virtual Servers” on page 23.
To add a new virtual server, go to the Servers page by clicking on the

S

ER-
VERS

 panel, instead of clicking on the arrow to just unfold its configura-
tion. Focusing is necessary to make certain actions available. This is true
in several cases.
As you haven’t added any configurations, the page you come to should
be empty. Click on N

EW

 V

IRTUAL

 S

ERVER

 to add a new one.
You will be prompted to enter a name of the new virtual server. Enter so-
mething appropriate. You will also have to chose the configuration type,
whereupon you should press return or click A

DD

IT

!. The configuration
type tells Roxen which modules, if any, should be installed initially in the
new virtual server.
You will now be able to see the Servers page again, which should have a
new entry - the one you just created.

CONFIGURE THE VIRTUAL SERVER.

The first thing you should do is configure the

Server specific variables

.
Most of these variables should be correct by default. However, it is a
good idea to check them all, especially

Server URL

,

Listen ports

 and

Do-

FIGURE 3.8 Hit this
button to add a new

virtual server.

Configuring Roxen – the first steps

20

Roxen Introductory Guide

main

.
We want our server to run on the default WWW port number, which is
80. As we noted earlier, Roxen has to run as root to be able to open this
port. If you’re using the uid/gid feature, restart Roxen now by hitting
the R

ESTART

 button.
N.B.: Sometimes, it may be necessary to restart Roxen in order to pro-
perly make use of port 80. Also, when you’ve made changes and they
don’t seem to stick in spite of having clicked on the

SAVE

 button it do-
esn’t hurt hitting R

ESTART

 as a first remedial action.

ADDING MODULES

To be able to add modules (filesystems for example), you need to focus
on the virtual server. You do this by clicking on the name of the server,
i.e. you focus on it.
As you can see, two new buttons appears at the bottom of the page; N

EW

M

ODULE

 and Z

AP

 V

IRTUAL

 S

ERVER

. There is also the U

NFOCUS

 button

() next to the name of the virtual server. This button will be present

every time you have focused on a menu item (node).
If you click on Z

AP

 V

IRTUAL

 S

ERVER

, the whole virtual server is deleted.
If this sounds dangerous, relax; Roxen will ask you to confirm your choi-
ce before executing this potentially destructive command.
To add a new module, click N

EW

 M

ODULE

. You will now get a list of all
available modules, each with a short description attached, as in

FIGURE 3.9

Adding a virtual server

FIGURE 3.10 The main
buttons when working with

virtual servers.

Basic configuring

Roxen Introductory Guide

21

figure 3.12. Read the module documentation for more information

about the modules shipped with Roxen, see “Available modules” on
page 105.
By default there are several modules enabled, among them the

RXML
Parser

,

Content-type

, and the

Filesystem

modules. N.B.: The Filesystem
module is not present if you choose a bare bones configuration. In fact
no module at all is there. Unless you have very specialised needs, choose
the standard configuration.

Looking in figure 3.12 you see that it is not possible to add a

Fast Direc-
tory Module

 due to the fact that there can only be one module of this type
enabled at the same time in any one virtual server. See the chapter on
modules.
Now let’s assume that you wish to add a new filesystem module or that
you have installed a bare bones Roxen.
To add a module, click N

EW

 M

ODULE

 and choose

Filesystem Module

 by
clicking on the button, see figure 3.12. When the module has been added
you will be returned to the configuration interface. If there are any vari-

FIGURE 3.11

Roxen lets you confirm your decision.

FIGURE 3.12

Example of an entry in the long list of available modules to add.

Configuring Roxen – the first steps

22

Roxen Introductory Guide

ables that perhaps should be changed, they will be unfolded and all you
have to do is to change them and press S

AVE

. The variable to change in
the filesystem module is the search path. Set it to what it should be, i.e.
the path in the real filesystem where the server’s HTML files reside, and
press S

AVE

. If you try to enter an invalid path, Roxen notices this and
complains. Enter a valid path, and try again.

Press the S

AVE

 button when you’re done and the fileystem is thereby
configured. You should now try using your newly configured server, by
connecting to your server’s URL. If everything went well, you now have
a working WWW-server!
This is the end of the tutorial. You should now be able to add and confi-
gure more modules on your own. We would appreciate if you send us
mail (

roxen@infovav.se

) with your thoughts and comments about this
tutorial. Of course you can use the normal address too, see the first chap-
ter.

FIGURE 3.13

Roxen protests. Loudly.

Roxen Introductory Guide

23

CHAPTER 4

S

ETTING

UP

 V

IRTUAL

S

ERVERS

Some operating systems have support for ”virtual net interfaces”, mea-
ning that one computer can have many IP-addresses on the same physical
ethernet interface. When using Roxen this means that you can easily have
many virtual servers, with different IP numbers on the same computer.

A FEW EXAMPLES OF VIRTUAL INTERFACES

ON A LINUX MACHINE

If you have a recent Linux kernel it is a simple task to set up a virtual in-
terface. Do this from the command line or in a startup script.

/sbin/ifconfig eth0:0 »IP-NUMBER« netmask »NET-
MASK« broadcast »BCAST«
/sbin/route add -host »IP-NUMBER« dev eth0:0

You might not need to provide the

netmask

 and

broadcast

 parame-
ters. To add more virtual interfaces, simply use

eth0:1

,

eth0:2

 etc
If you use Linux you can read more in

/usr/src/linux/Documenta-
tion/networking/alias.txt

 in the kernel source tree.

Setting up Virtual Servers

24

Roxen Introductory Guide

ON A SOLARIS MACHINE

ifconfig leY:X »IP-ADDRESS« broadcast »BCAST« net-
mask »NETMASK« up

Y is the number of the ethernet interface, X is a number between 1 and
255 (the virtual interface number).
To automate the process instead of having to enter the line from the com-
mand line after booting you can do like this:

•

Create a file named

hostname.»interface«:»copyNo«

 in

/etc/

containing nothing but the name of the computer.

•

Put this name in

/etc/hosts
Example 4.1)

The file

/etc/hostname.le0:1

 contains the single line

roxen.com

The line

194.152.182.74 roxen.com

is then added to

/etc/hosts

.
Why do this then? Well, the next time you boot, the interface is added
automatically. Quite nice, eh?

ON A FREEBSD MACHINE

ifconfig le0 »IP-ADDRESS« alias netmask 0xffffffff

can be entered from the command line or entered into a startup script.

SGI’S RUNNING IRIX 5.3

First, get patch 797 and install it. This allows the virtual host functiona-
lity.
Now there are two different methods. First, the standard command line
method:

 # ifconfig ec3 alias »IP_ADDRESS«

However, the best way to do it is using the IRIX configuration state
checker which has an option for IPaddress aliases. Turn this option on
with the following command:

 # chkconfig ipaliases on

 Then, edit

/etc/config/ipaliases.options

 which is a self-documenting

General stuff

Roxen Introductory Guide

25

file which contains the list of hosts or IP addresses to be used as IP
address aliases. The format of this file is simply:

interface host1 [netmask addr] [broadcast addr]
interface host2 [netmask addr] [broadcast addr]

Where

host?

 is either a valid name in

/etc/hosts

, or an IP address in
dot notation.

netmask addr

 and

broadcast addr

 are optional. For
example:

ec3 205.160.174.9

That’s it. Reboot the machine, and the aliases will be correctly configured
after the machine is up and running.

GENERAL STUFF

Don’t forget to add the names in your DNS configuration!
Selected reading concerning this issue is ”Two Servers, One interface”,

http://www.thesphere.com/~dlp/TwoServers/

If you have an ifconfig that supports the alias option you can use:

ifconfig le0 »IP-ADDRESS« alias

Try reading the manual pages for

ifconfig

 on your system.

Setting up Virtual Servers

26

Roxen Introductory Guide

Roxen Introductory Guide

27

CHAPTER 5

M

IGRATING

TO

 R

OXEN

FROM

OTHER

 S

ERVERS

Roxen can take care of many of the special features of other well-known
servers. Basically it is quite painless to switch to Roxen. However, for the
moment there isn’t any easy way of moving the configurations of another
web server to Roxen. Below you’ll find the most common special features
of other servers and how Roxen treats them.

IMAGEMAPS

NCSA IMAGE MAP TIP

By adding a redirect from

/your_cgi-bin_dir/imagemap/

 to

/

, Roxen
will handle all files using the NSCA imagemap script internally. This me-
ans that you won’t have to change any links to get your old imagemaps
to work with Roxen.

SERVER SIDE INCLUDES

Roxen is compatible with NCSA/Apache style Server Side Includes, SSI.
However, we suggest that you rewrite your files to take advantage of

Migrating to Roxen from other Servers

28

Roxen Introductory Guide

Roxen’s native features instead, features that can accomplish the same
things, but faster, mainly the various RXML commands.
If you already use SSI you know how it works. If this is the first time you
encounter it and wish to use it despite the existence of equivalent Roxen-
native alternatives, take a look att

http://hoohoo.nc-
sa.uiuc.edu/docs/tutorials/includes.html

.
By default, support for the execute script command

<!--#exec -->

 is
turned off, while the others are on. This is controlled in the Main RXML
parser, see page 122.

CGI

All your existing CGI scripts should work but be sure to read the section
on the CGI script module, page 106.

R

O X E N

 U

S E R

’

S

G

U I D E

Detta dokument har framställts med FrameMaker 4.0.4

Roxen User’s Guide

31

CHAPTER 6

HTML -

A

SHORT

REFERENCE

What follows is a short reference for you, the user of Roxen, so that you
can write your Roxen-enhanced HTML pages without having to have se-
parate manuals for the RoXen Macro Language (RXML) and HyperText
Markup Language (HTML). Note that this guide only provides you with
some basic HTML. If you need to know more we encourage you to seek
out a dedicated instruction, preferably on the Internet.
Examples on using several of the tags, both RXML and HTML, are at
the end of the next chapter.

HTML INTRODUCTION

An HTML file consists only of text. This might seem surprising since you
can display pictures, play sounds and even let users interact with the con-
tent; in short, present a rich, interactive, multimedia environment on a
page. Now this is possible since you can embed ”commands” in the text
which will tell the browser to react in different interesting ways.
One basic example is the inclusion of images. When you order your
browser to go find a WWW-page (by either clicking on a link or typing
in a location) it will go fetch that page and read through it. The ”com-
mands” will cause the browser to display text in various fashions, like
bold or italic and when it comes upon an instruction to display an image

HTML - a short reference

32

Roxen User’s Guide

it looks at the URL (the location of the image) and then goes to fetch the
image referred to and inserts it on the page where the instruction was
found. The same procedure is used for every non-text file you wish to in-
clude on a page; they are loaded separately, after the HTML-file itself.
In short, HTML is a way of describing the contents of a page but not the
exact layout of the page.

ESSENTIAL HTML

Now, for an HTML-file to be recognised as such there has to be some
easily recognisable feature. In this case it means certain HTML-codes, or
tags:

<HTML>
<BODY> The text the document consists of.</BODY>
</HTML>

These are necessary but it is also a good idea to give the document a title
by including the following between

<HTML>

 and

<BODY>

 in the above
piece of code:

<HEAD>
<TITLE>Title of the document</TITLE>
</HEAD>

Since this title is what ends up in the lists of bookmarks (or on the hotlist)
of the user’s browser as well as in the window title it is a nice touch to
provide a title that gives some kind of clue as to the contents of your pa-
ge. People may thank you for doing this!
You can control the colours of your page through the

attributes

 of the

<BODY>

-tag;

•

bgcolor=”#xxxxxx”

; background colour.

•

text=”#xxxxxx”

; colour of normal text.

•

link=”#xxxxxx”

; colour of link text.

•

vlink=”#xxxxxx”

; colour of followed link.

•

alink=”#xxxxxx”

; colour of an active link.
Note that since the person reading your page can order his or her client
to not care about your settings you do not have complete control over
the result of your page. Since different browsers display HTML different-

Characters (styles)

Roxen User’s Guide

33

ly it is not sure what your page will look like. Get used to it!

xxxxxx

 is any hexadecimal number (base 16).

000000

 gives the colour
black and

ffffff

 gives you white, while

ffff00

 results in light gray.
Instead of using one background colour, you can tell the client to use a
certain image file as background:

•

background=”images/background.gif”

; the browser will
tile this image repeatedly in the background.

Most tags have a starting tag and an ending tag (

<BODY>...</BODY>

for example). We refer to this type of tag as a

container

. In some cases the
end is

implied

 which means that it doesn’t matter if you include the final
tag or not. You will soon come across this type of tag.

CHARACTERS (STYLES)

...

The enclosed text will show up bold.

<I>...</I>

The enclosed text will show up italicised.

...

In most browsers the enclosed text becomes bold. is a

logi-
cal

 tag where it is up to the browser to display the text in a way that gives
an impression of, well, something important.

...

This is also a logical style which most browsers display as italic. It is in-
tended to convey emphasis.

<TT>...</TT>

Gives you typewriter text, i.e. text with fixed character width.

HTML - a short reference

34

Roxen User’s Guide

... AND <BASEFONT>...</BASEFONT>

These tags affect the way text is displayed. The most common use for the-
se tags is to change size by using the attribute

SIZE=(+/-)N

where

 N

lies between 1 and 7 where 1 is smallest and 7 largest. The bulk of the
text is by default considered to be size 3 which then corresponds to the
fontsize set in the browser’s preferences. This default value can be chan-
ged with the

<BASEFONT>

-tag. The

-tag on the other hand only
changes the size, not the

default

 size.
If you use

N=+

value

 or

N=-

value

 you change size relative to the ba-
sefont size (normally 3). See an example of using the

 tag in “Ex-
amples of HTML and RXML” on page 65.
By using the attribute

color=”#xxxxxx”

 you can have different text
colours.
As you may or may not know, there has been little or no possibility to dis-
play different typefaces up until now. However, the Microsoft Internet
Explorer makes use of the

face

 attribute. As this is not yet even remotely
standardised, we recommend you to avoid it for now.

PARAGRAPHS

<P>...</P>

A paragraph of normal text

begins

 with <P>. The ending </P> isn’t ne-
cessary (it is implied). Paragraphs are separated by one empty line.
Attributes:

•

align=left|center|right

; How the paragraph text should be
aligned on the page.

<HN>...</HN>

This is the container for a heading.

N

 kan be between 1 and 6 where 1 is
largest and 6 smallest (note the difference from the size-attribute of the
font-tags). See “Examples of HTML and RXML” on page 65 for examp-
les. The text is considered a closed paragraph.
Attributes:

Lists

Roxen User’s Guide

35

•

align=left|center|right

; How the header should be aligned
on the page.

LISTS

With HTML you can display three kinds of lists;

unordered

 (with discs,
circles or squares as bullets for the elements),

ordered

 (with numbers, ro-
man numbers or letters as counters for the elements) and

definition

 lists.
The definition list element consists of one term and then a definition for
that term. Of course it doesn’t have to be like this. If you intend to pre-
sent a group of people and some facts about them this list type might be
appropriate. Lists can be nested and the bullets change depending on the
indentation level.

... AND ...

Containers for unordered and ordered lists respectively.
Attributes:

•

type=disc|circle|square

 (unordered list); you can order the
browser to change the bullet independent of indentation level.

•

type=A|a|I|i|1

 (ordered list); large/small letters, large/small
roman numerals or ordinary numerals.

The start of a new list item in both ordered and unordered lists. Since, as
long you are in a list, a new

 means that the previous list item ends,
the

 is unnecessary. The end is

implied

. There can be any number
of other tags within a list item.

<DL>...</DL>

Container for a definition list.

<DT>

The term to be defined. Ending tag is unnecessary since it is considered
to end when the definition tag (

<DD>

) comes along.

HTML - a short reference

36

Roxen User’s Guide

<DD>

The definition. It is usually displayed indented relative to the term itself.

TABLES

Tables are not handled by all browsers but many browsers display them
correctly. Just watch out for the attributes since they might be Netscape-
specific.

<TABLE>...</TABLE>

Contains the table.

<CAPTION>...</CAPTION>

The title of the table. Must be placed within the

<TABLE>

-container but
not within any row or cell.
Attributes

•

align=top|bottom

; places the title either above or below the
table. Default is top.

<TR>...</TR>

The container for a row in the table.

<TD>...</TD>

The individual cell. Can only be placed within the row container.

<TH>...</TH>

Identical to the

<TD>

-tag but the text is automatically bold and centered.
TH is short for Table Header.
Attributes common to <TR>, <TD> and <TH>:

•

align=left|center|right

; alignment of a cell’s contents.

•

valign=top|middle|bottom

; vertical alignment of contents.
Default values are center and middle.

Links

Roxen User’s Guide

37

LINKS

Making hypertext links is the thing about the web that is so fascinating,
i.e. being able to refer to any document on any computer connected to
the Internet.

LINKED TEXT

When the user clicks on the words ”Linked text” the browser sends a re-
quest to the relevant computer for the document referred to by the URL.
URL is an acronym standing for Uniform Resource Locator. This is what
we today use to refer to resources on the Internet.
If the document referred to resides in the same web server as the docu-
ment containing the link, the URL need not include the web server’s na-
me. To refer to a document anywhere, the full form is

http://some.server.somewhere/my_documents/info.html

. This is
an absolute URL. The part

/my_documents/info.html

 is the absolute
path to the document in the part of the real file system that is visible to
the web server. By visible, we imply that outsiders do not have access to
the complete filesystem of the machine that runs the web server. The real
absolute path may be

/usr/www/vinnies_server/my_documents/in-
fo.html

. By only providing a file name, the file is supposed to be in the
same server and directory as the referring document. You can also use the
standard way of referring to directories relative to the present directory
by using

 ../

 to refer to the directory above and so on.

THE ANCHORED TEXT
LINKED TEXT

Sometimes you wish to refer to a specific place in a document. This is
done by first defining an anchor (the end of the link) as in the first header
line above. Then you can refer to this exact location within an HTML do-
cument by just adding

 #anchorname

 as in line two, to the URL of the
document containing the anchor. If you refer to an anchor in the same
document you don’t need to provide a URL, i.e. it is sufficient with

HREF=”#ANCHORNAME”

. Don’t forget the hash sign, though.

HTML - a short reference

38

Roxen User’s Guide

FORMS

A form is a way of letting the viewer provide data to your server, a way of
implementing a certain interactivity on your pages.

<FORM>...</FORM>

This is the container for a form. Between <FORM>...</FORM> there
may be many possible fields to fill in.
Attributes

•

ACTION=”URL”

; The URL is the location of the program that
should take care of the form data, for example an Pike script.

•

METHOD=GET|POST

; GET appends the form data to the URL (i.e.
the action) like this:

action?name=value&name=value&name=value

As you can see, the URL is separated from form data by a question
mark and the name=value pairs are separated by ampersands. Every
pair corresponds to a field and the value entered by the user.
POST sends the data in a separate block of data and is thus better
when there is a lot of data to send.

•

ENCTYPE=”application/x-www-form-urlenco-
ded”|”multipart/form-data”

; The first is when you have an
ordinary form and the second is when one of the fields corresponds
to a file, i.e. the user can upload files using his or her favourite brow-
ser.

The only attribute that may be omitted from the

<FORM>

 tag is

ENCTY-
PE

.

<INPUT>

This tag just displays a simple field.
Attributes

•

TYPE=”type”

; the type of the field.

Type

 must be one of these:

°

text

: a text entry field, the default.

°

password

; a text entry field, but the characters entered are dis-
played as asterisks.

Forms

Roxen User’s Guide

39

°

checkbox

; displays a single ”button”, where the value is either
true or false.

°

radio

; This is also a button as the checkbox, but if you have
several fields of the same name they are grouped together, i.e.
only one can be chosen at the same time.

°

submit

; displays a pushbutton that causes the form data to be
sent according to the action and method defined in the

<FORM>

.

°

reset

; displays a pushbutton that returns all the form fields to
their initial values.

•

NAME=name

; the name used for the field when sending the data, not
displayed by the browser on the page. Use normal HTML to put
text by fields on the page. Required for all types except

submit

 and

reset

.

•

VALUE=value

; can be used to put a default value in a field. Text
entry fields display the value, checkboxes and radiobuttons are only
relevant when they are ”on” as the form is submitted. If

value

 is
specified for a pushbutton it specifies the label on the button.

•

CHECKED

; Turns checkboxes and radiobuttons

on

.

•

SIZE=size

; The displayed size of the field in characters; thus appli-
cable only on textentry fields.

•

MAXLENGTH=maxlength

; The maximum number of characters
allowed to be entered in a textentry field.

<SELECT>

This is a container that allows you to provide multiple choice fields. No
HTML except

<OPTION>

 is allowed within this container. The display is
either option menus or scrolled lists.
Attributes

•

NAME=name

; the symbolic name of the field, cf. the

name

 attribute
of the

<INPUT>

 tag.

•

SIZE=size

; Determines how many selectable items are displayed.
If

SIZE=1

 or

SIZE

 is not present the display is an option menu,
otherwise a scrollable list.

•

MULTIPLE

; allows the selection of multiple options. If present it for-
ces the display to be a scrolled list, regardless of the value of

SIZE

.

HTML - a short reference

40

Roxen User’s Guide

<OPTION>

The tag that specifies an option within a

<SELECT>

 container. It works
like a list item in a list.
Attributes

•

SELECTED

; This option is the one selected by default. Unless the

MULTIPLE

 attribute of the

<SELECT>

 is set, only one option can be
selected.

<TEXTAREA>...</TEXTAREA>

This container allows the user to enter multiple lines of text. The font is
of fixed width.
Attributes

•

NAME=name

; symbolic name of field.

•

ROWS=rows

; Number of rows displayed on screen.

•

COLS=cols

; Number of columns displayed.
If you enter any text between the starting and ending tags it will be dis-
played in the textarea field by default.

MISCELLANEOUS

Insert an image.
Attributes

•

SRC=”URL”

; specifies where the image file resides.

•

ALT=”Text”

; If there is a failure in the transfer of the image, or if
the person browsing the page on which the picture should be dis-
played is using a text-only browser (and the image is a link), this text
will be shown instead. It is a nice thing to do to provide this text. If
the image is nothing more than decoration, text-only browsers will
treat them as non-existant.

•

ISMAP

; Instructs the browser to treat this as an image with hot spots
defined. See “Image Maps” on page 73.

Miscellaneous

Roxen User’s Guide

41

•

SRC=”URL”

; If this one is lacking, no image will be fetched since the
”URL” string is the location of the image you desire to display.

Note that there are many more attributes but these are the most interes-
ting ones. Netscape Navigator and the Microsoft Internet Explorer also
support an attribute called

USEMAP

 which allows you to use client-side
image maps. More on this in “Image Maps” on page 73.

<HR>

Insert a horizontal line (ruler). You can set its thickness by adding the att-
ribute

SIZE=x

, where x is a number of pixels. You can also direct the
browser to display a ruler of smaller length by adding

WIDTH=x

, where
x might be a fixed pixel value or a percentage of the window size. If you
then have a ruler smaller than the actual window you can align it by set-
ting

ALIGN=left|center|right

.

<PRE>...</PRE>

In case you wish to retain spaces and newlines you use this tag which will
make the textblock look exactly like you wrote it instead of the browser’s
compacting any kind of whitespace (tab, newline and space) into one
single space. Text is displayed using a fixed-width font.

This tag gives you a linebreak, and only a linebreak, no empty line as with
paragraphs. Inserting linebreaks, no matter how many in a row, does not
give you a new paragraph.

<CENTER>...</CENTER>

Instead of using the align-attribute of the

<P>

 and

<Hn>

 tags you can
center text using this tag. The advantage of this tag is that it is more flex-
ible than the the

align

 attribute and you can center anything. It’s ori-
ginally a Netscape-specific tag.

HTML - a short reference

42

Roxen User’s Guide

SPECIAL CHARACTERS

Since the browser interprets lesser than (<) and greater than (>) as a kind
of signal, these characters have to be coded to displayed correctly;

•

lesser than:

<

•

greater than:

>

Do not forget the trailing semicolons! As you understand, this means that
the ampersand is also a special character and the code for the ampersand
is

&

. There are many more of these but they aren’t all that impor-
tant.
In HTML tutorials originating from mainly the USA, you will find that
they sincerely believe that no characters other than a-z and A-Z can be
diplayed by browsers without resorting to abominations like ä for
ä, Ö for Ö and so on. This is not true! It may have been once but
today there are perfectly valid eight bit character sets used on computers
everywhere. Use the letter itself, not some horrible code. Using these co-
des make your source harder to read, especially if you are using a lot of
national characters.
Note that the Macintosh uses a slightly different eight bit set, wherefore
the eight-bit characters may show up strange in the browser when loo-
king at local files. Don’t worry, when you place your page on a server, it
will display correctly. If it doesn’t, your system administrator doesn’t
know his or her job properly.
If you want proof that this indeed works, look at our pages at

http://www.infovav.se/

. Nowhere do we use these character codes
and we guarantee you that we do not use any ”server side tricks”.
Also, beware of programs generating HTML. Some of them translate
those eight bit characters into their corresponding HTML code.

Roxen User’s Guide

43

CHAPTER 7

RXML - T

HE

 R

O

X

EN

M

ACRO

 L

ANGUAGE

Right! Now that you know how to make ”standard” web pages, let’s get
on with using Roxen to easily customise your web site to provide a dyna-
mic content.

INTRODUCTION TO RXML

Roxen tags are used in the same way as normal HTML tags. Before files
are sent, they are parsed by your Roxen’s

Main RXML parser

, cf. “Avai-
lable modules” on page 105. The RXML tags are then replaced by so-
mething suitable whereupon the file is sent out as a normal HTML-file.
This of course means that Roxen is not the fastest webserver around, but
it is infinitely customisable thanks to the module concept. It also kicks
some serious butt with many smaller web servers.
Note that this parsing is not the same thing as server side includes (SSI),
although Roxen supports that too in order to facilitate an upgrade from
another server without having to immediately upgrade your pages.

Detta dokument har framställts med FrameMaker 4.0.4

RXML - The RoXen Macro Language

44

Roxen User’s Guide

RXML TAGS

These are the RXML tags included with Roxen. They are quite sufficient
for most purposes but if you have specialised needs you can also write
your own. Refer to the chapter on programming your own modules for
an introduction to this topic.

Refer to the last section of this chapter, “Examples of HTML and
RXML” on page 65, for a somewhat larger exampe of how to use several
of the tags.

For easy reference you will find all the available tags in table C.1 on
page 193 with references to the page where the description may be
found.

<ACCESSED>

This is a basic access counter. Instead of using a CGI-script, you just in-
sert

<accessed>

. To use this tag you have to activate it in the RXML
parser module.

Attributes

•

add

; Add one to the number of accesses of the file that is accessed,
or, in the case of no file, the current document.

•

addreal

; If you use

cheat

 or other modifiers to the count, this
attribute adds the correct count as a comment in the HTML code,
like this:

<!-- (4711) -->

.

•

capitalize

; Capitalize the string.

•

cheat=num

; Add

num

 to the actual number of accesses.

•

factor=mult_factor

; Multiply the actual number of accesses by

mult_factor

.

•

file=filename

; Show the number of times the file

filename

has been accessed instead of how many times the current page has
been accessed. If

filename

 does not begin with ”

/

”, it is assumed
to be a URL relative to the directory containing the file in which the

<accessed>

 tag was found. Note that you will have to type in the

RXML tags

Roxen User’s Guide

45

full name of the file. If there is a file named

tmp/index.html

, you
cannot shorten the name to

tmp/

, even if you’ve set Roxen up to
use

index.html

as a default page.
One limitation is that you cannot reference a file that does not have
it’s own

<accessed>

 tag. It suffices to enter this in a comment in
the file, i.e. you do not need to display it in everyone of these files:

<!-- <accessed> -->

This is done for reasons of efficiency, since it would be very costly to
automatically log accesses for all files..

•

lang=language

; When using

type=string

, the number string
is replaced by the string in the language indicated by this attribute.
This also affects the

since

 and

part

 attributes. Available languages
are Swedish (se), Finnish (fi), German (de), Catala (ca or es_CA),
Dutch (du), Spanish (es), French (fr), English (en, default) and Nor-
wegian (no).

•

lower

; Lowercase the string.

•

per=second|minute|hour|day|week|month

; how many
accesses per unit of time.

•

prec=number

; Round the number of accesses. The result is an inte-
ger with

number

 valid digits. If

prec=2

, show

12000

 instead of

12149

.

•

precision=number

; exactly the same as above.

•

reset

; Resets the access counter. Hint: Only do this under special
conditions, i.e. within an

<if>...</if>

. Otherwise, why use

<accessed>

 at all, if you reset it every time someone accesses the
page?

•

silent

; do not show the count.

•

since

; Insert the date that the accessed number is counted from.
The language will depend on the ’lang’ tag, default is english.

•

type=string|roman|mcdonalds|linus|number

; This attri-
bute allows you to specify how the accesscounting should print; as a
number (default), as a roman numeral or something else

1

. Try them!

•

upper

; Uppercase the string.

See also: “<DATE>” on page 49 and “<MODIFIED>” on page 58.

RXML - The RoXen Macro Language

46

Roxen User’s Guide

<ACONF>

Works like

<apre>

 below but is used for turning on and off configura-
tions for individuals using

cookies

2

. This is done by preceding the name
of the configuration type with a plus sign (+) to turn it on or a minus sign
(-) to turn it off. Without the

href

 attribute it is just a link to the same
page. Note that the user won’t see the change until he has requested the
page again due to the way cookies work.

Example 7.2)

<html>
<if config=bg>
<body background=foo.jpg>
<otherwise>
<body>
</if>

Welcome to my page on the web.
<hr>

1. The type

linus

 demands some kind of explanation; Linus is the name of a
member of the Lysator Academic Computer Society of the university of Lin-
köping. In Roxen’s infancy (as Spider2) there were problems with the access
database crashing all time. This meant that the access counter was reset to
zero - not very good. Someone decided to temporarily hide this problem by
providing a random number between 1000 and 2000 instead of reading the
access log. Now, Linus changed the behaviour again by rewriting the module
to not only show the low access count of the access log, but also since when
this count was made, i.e. since the database last crashed. The problem with his
solution was the abominably inflexible way of displaying the information. His
punishment for this is to forever be included in the

<accessed>

 tag.
2. A cookie is a way of keeping information about someone by saving informa-

tion at the client side of the http exchange. As a simple example you could
have a cookie named counter and give one to everyone accessing your page
for the first time and then increasing its value by one everytime they request
the page, thereby keeping an individual access count. Supported by the Nets-
cape Navigator and the Microsoft Internet Explorer.

RXML tags

Roxen User’s Guide

47

<if config=bg>
<aconf -bg>[Turn off background]</aconf>
<otherwise>
<aconf +bg>[Turn on background]</aconf>
</if>

...Some HTML...
</body></html>

In this example we first check if ”background mode” is on. If this is the
case we send the

<body>

 tag with the background attribute, otherwise
without. Below that we define two links of which only one is sent. If
”background mode” is on we give the user the possibility of turning it off
and vice versa. The configurations are present in the URL in the same
way as prestates are except that they are between <...>, cf. footnote 3. on
page 47 and

<apre>

 below.

<APRE>

<apre href=URL>...</apre>

 is used instead of

...

 to make it possible to add

prestate-relative

links

3

. If used without

href

, it’s just a link to the same page.

Example 7.3)

Suppose we have requested the following URL:

http://www.foo.com/(sv,img)/index.html

. If the source looks like
this:

<if prestate=sv>
Du har valt svensk text
</if>
<else>
You don’t want swedish text
</else>
<apre -sv>I want english text!</apre>
<apre sv -img href=images.html>
Show me the image-index, w/o indexpictures and in

3. A prestate is part of the URL and is a way of setting variables so that you can
for example use <if> to change the layout of a page without having to make
multiple files. The prestate is part of the URL, but it isn’t a separate directory.

RXML - The RoXen Macro Language

48

Roxen User’s Guide

swedish
</apre>

the text ”Du har valt svensk text” will be sent to us and also two links;
the ”not swedish” link and the ”image index in swedish but no images”
link. Clicking on the first will request the URL

http://www.foo.com/(img)/index.html

 (i.e. the same page). The
page that is sent contains the text ”You don’t want swedish text” and the
same links. Clicking on the second will request the URL

http://www.foo.com/(sv)/images.html

.
As you might understand, the parenthesised part is the prestate. It is part
of the URL, but Roxen removes the prestate(s) when choosing the page
to send, remembering them while parsing the page so that you can check
them using

<if>

 in order to customise the page.
N.B.: Prestate links only work with URL:s within the server, absolute
URL:s do not work.

Example 7.4)

<apre -sv href=”http://your.own.domain/”>HO-
ME</apre>

does not work, but

<apre -sv href=”/”>HOME</apre>

does. Of course you may use the ordinary anchor tag with a ”manual”
prestate insertion

HOME

to achieve the same thing.

See also “<IF>, <ELSE> and <OTHERWISE>” on page 52.

<CLIENTNAME>

The name of the client used, in case the user forgets.

Attributes

•

full

: Insert the full name of the client instead of just the first part of
it. For Netscape Navigator, as an example, the full name is ’Mozilla
<version> <platform> <OS full version>’, and the short name is
’Mozilla <version>’.

RXML tags

Roxen User’s Guide

49

<COMMENT>

All text written in the comment container are comments. This means that
they will be removed before the file is sent to the client. Note that this is
not the same kind of comment as the HTML comment using

<-- blah
blah -->

 syntax.

<DATE>

Insert the (more or less) current date.

Attributes

•

day=(-)X

; Add (remove) X days to (from) the date.

•

hour=(-)X

; Dito, but add (remove) X hours instead.

•

minute=(-)X

; Dito, but add (remove) X minutes instead.

•

second=(-)X

; Dito, but add (remove) X seconds instead.

See also “<ACCESSED>” on page 44 and “<MODIFIED>” on page 58

<DEFINE> AND <INSERT>

Roxen has support for making macros. This is useful for making sitewide
definitions of titles or menu items, thus making it easier to create uni-
form-looking pages, not to mention changing the whole layout in one
fell swoop. It is possible to make a define in a define, and using

<insert
name=foo>

 inside a definition also works. Try what you like, it will pro-
bably work as you expect.

<DEFINE>

Define a macro to be used by

<insert>

 later on.

Attributes

•

name=macro

; Define this macro.

Example 7.5)

<define name=1>This is macro number one</define>

<INSERT>

Used to insert macros, variables, cookies (cf. footnote 2. on page 46) and
files. The format is as follows:

RXML - The RoXen Macro Language

50

Roxen User’s Guide

<insert name=name|variable=name|cookie=name|vari-
ables[=full]|cookies[=full]|file=path from-
word=toword>

Note the ”|” characters. You can only use one of the attributes in every

<insert>

. Replacing words is of course possible all the time. Only lo-
wercase character sequences can be replaced.

Attributes

•

cookie=name

; Insert the value of the cookie by name

name

.

•

cookies[=full]

; Insert the values of all cookies, more or less ver-
bose.

•

file=path

; Insert the file

path

. This file will then be fetched just
as if someone had tried to fetch it with an HTTP request. This makes
it possible to include things like Pike script results and such.
If

path

does not begin with ”/”, it is assumed to be a URL relative
to the directory containing the file that has the

<insert>

 tag in it,
i.e. the file where the inserted text is finally parsed.
N.B.: Included files will be parsed if they are named with the exten-
sion

 .html

 (or whatever extension the RXML parser should parse
according to configurations in the main RXML parser module). It’s
not a good idea to name include files like this, because it might ren-
der defines unusable. On the other hand, it could probably be useful
in some cases, depending on your intentions.

Example 7.6)

If we put

<insert file=”gazonk/foo”>

 in the file

bar.html

and

gazonk/foo

 contains

<insert file=fubar>

, Roxen will
look for

fubar

 in the directory where

bar.html

 is. If we change the
first

<insert>

 to

<insert file=”gazonk/foo.html”>

 and
rename

gazonk/foo

 to

gazonk/foo.html

, Roxen will instead look
for

fubar

 the directory

gazonk/

.

•

fromword=toword

; Replace

fromword

 with

to

word in the
macro or file.

•

name=macroname

; Insert this macro, which should have been defi-
ned by

<define>

 before it is used. If it resides in another file, you
have to

<insert file=filename>

 before you can insert the
macro.

RXML tags

Roxen User’s Guide

51

•

nocache;

 File includes are normally cached. If the nocache flag is
specified, that cache won’t be used. Useful when including dynamic
documents, like Pike-scripts.

•

variable=name

; Insert the value of the variable of name

name

.

•

variables[=full]

; Insert all variables, more or less verbose.

Example 7.7)

First we define a macro called

foo

:

<define name=foo>This is a foo</define>

Then we insert this macro somewhere:

<insert name=foo>

The text sent to the client is:

This is a foo

Example 7.8)

If we insert the above macro but tell Roxen to replace the word

foo

 with
the word

cat

:

<insert name=foo foo=cat>

we will get:

This is a cat

Example 7.9)

<insert name=foo a=the foo=”green door.”>

Result:

This is the green door.

Example 7.10)

<insert name=foo a=some foo=cats is=are>

Result:

Thare are some cats

Note that even parts of words become exchanged; ”This” becomes
”Thare”.

Example 7.11)

<insert file=/includes>

The result of this is that the contents of the file

/includes

 is inserted he-
re. Note that macros defined in this file are not inserted until they are cal-
led by

<insert name=macro>

. This is very useful for making site-
wide defines (like heads, titles etc.), used in all files in a server, thus simp-

RXML - The RoXen Macro Language

52

Roxen User’s Guide

lifying the code generation a lot.

<DOC>

This is useful for writing HTML-examples. It replaces &, < and > with

&

,

<

 and

>

Attributes

•

pre

; Enclose the section with

<pre>...</pre>

 as well.

<HEADER>

Add a header to the head of the response. When a browser sends a re-
quest for a file, the server returns a few lines of text that tells something
about the result of the request and what kind of file the browser reques-
ted. By using this tag you can extend and/or modify this header, telling
the browser, for example that the file demands authorization in order to
be viewed.

Attributes

•

Add »header name«:»value«

 to the response. See table C.2 for
suggestions of headers to add.

See also “<RETURN>” on page 59.
If you wish to see what the server returns try the following example.

Example 7.12)

telnet myserver.com 80

and you will see:

Trying 123.4.56.789... Connected to myserver.com.
Escape character is '^]'.

Next, make an http request. For example, enter:

HEAD /Mycompany/logo.gif HTTP/1.0

and see what you get back; these lines are the headers.

<IF>, <ELSE> AND <OTHERWISE>

Use

<if>

 to only show the enclosed section when certain conditions are
met. You can also use

<else>

 or

<otherwise>

 in order to suggest al-
ternative actions if the conditions do not evaluate to a true value.
These are perhaps the most useful tags in RXML. Among other things,

RXML tags

Roxen User’s Guide

53

it allows you to write HTML-code that is only showed to people with a
certain client. You can for example make a table, that if viewed on a non-
table compliant client uses preformatted text, or maybe even a completely
different text instead.
Note that the part(s) that should not be seen according to the conditions,
are not even sent which means that the person looking at your page won’t
even know that he/she isn’t seeing everything. This also makes it possible
to entertain the illusion of dynamic pages, without using scripts, through
clever use of RXML tags.
Below are the possible attributes to this tag. There are a lot of them and
they have been divided into

conditionals

 (the de facto checks) and

modi-
fiers

 (slight change in behaviour of the checks).
N.B.: If you don’t use

<if>

 before

<else>

, the result is unpredictable.

Example 7.13)

<if somecondition>
somecondition occurred
</if>
<else>
something else happened
</else>

is equivalent to

<if somecondition>
somecondition occurred
<otherwise>
something else happened
</if>

CONDITIONALS

•

accept=type1[,type2,...]

; The

type

 refers to content-type,
e.g.

image/jpeg

 or

text/html

. The values can contain * (for
several arbitrary characters) and ? (for any one character). Every
client tells the server what it thinks it can deal with so this is one way
of ensuring that nothing is sent that the browser can’t handle.

•

cookie=”name[is value]”

; Returns true if the cookie named

name

 exists. If you also include the part about value the expression is
of course only true if the cookie holds that value. The value can con-
tain * (for several arbitrary characters) and ? (for any one character).

RXML - The RoXen Macro Language

54

Roxen User’s Guide

•

date=yymmdd

; Show the enclosed section if the date is yymmdd.
Modifiers:

before

,

after

 and

inclusive

.

•

defined=definedmacro

; Show the enclosed section if the macro

definedmacro

 is defined. Wildcards work as for

cookie

.

•

domain=pattern[,pattern...]

; Show the enclosed section
only to hosts whose DNS name match these pattern(s). Note that
domain names are resolved asynchronously. This means that the first
time someone accesses this page, hostname will be the same as the IP
number.

•

host=pattern[,pattern...]

; Show the enclosed section only
to hosts whose IP number matches one of these pattern(s).

•

language=language1[,lang2, ...]

; True if the client can
handle the language(s) listed. * and ? may be used and work as for

cookie

. Available languages are Swedish (se), Finnish (fi), German
(de), Catala (ca or es_CA), Dutch (du), Spanish (es), French (fr),
English (en, default) and Norwegian (no).

•

name=pattern[,pattern,...]

; If the full name of the client
matches the given pattern, show the enclosed text.

•

prestate=state1[,state2, ...]

; Show the enclosed text,
only if all the specified prestates are present. The prestates are pre-
pended to the URL with this syntax:

http://www.whate-
ver.domain/(pre,state)/my/nice/page.html

. See “<APRE>” on
page 47 for more information.

•

referer

; Show the enclosed text, only if the

referer header

 is supp-
lied by the client.
If you add a pattern (

referer=pattern[,pattern,...]

) then
send the enclosed text only if the referer header matches the pat-
tern(s). See “<REFERER>” on page 59 for more information.

•

supports=feature

; If the client supports the given feature,
include the enclosed section. This is configurable (

Global Variab-
les/ Client supports regexps

). These are the available features:

°

backgrounds

; The client supports backgrounds according to
the HTML3 specifications, cf. page 32.

°

bigsmall

; client understands the

<big>

 and

<small>

 tags.

°

center

; The

<center>

 tag for centering HTML objects is sup-
ported.

RXML tags

Roxen User’s Guide

55

°

cookies

; client can receive cookies.

°

divisions

; the client can at least handle

<div align=...>

°

font

; The client supports at least

, à la
Netscape Navigator.

°

fontcolor

; You can change the colour of individual characters.

°

fonttype

; The browser can set the font, cf. Microsoft Internet
Explorer.

°

forms

; Forms according to the HTML 2.0 and 3.0 specification
are supported.

°

frames

; frames should work.

°

gifinline

; The client can show GIF images inline.

°

imagealign

; The client supports

align=left

 and

align=right

 in images, à la Netscape.

°

images

; the client can display images.

°

java

; the client supports Java applets.

°

javascript

; client supports java scripts.

°

jpeginline

; The client can show JPEG images inline.

°

mailto

; The mailto function can be used.

°

math

; the

<math>

 tag is correctly displayed by the browser.

°

perl

; supports Perl applets

°

pjpeginline

; can handle progressive JPEG images (

.pjpeg

)
inline.

°

pnginline

; client can handle

.png

 images inline.

°

pull

; the client handles Client Pull

°

push

; the clint can handle Server Push

°

python

; supports Python applets

°

robot

; the request really comes from a search robot, not an
actual browser.

°

stylesheets

; client handles stylesheets (a là Arena)

°

supsub

; handles

<sup>

 and

<sub>

 (superscript and subscript,
respectively).

°

tables

; tables according to the HTML 3.0 specification are
supported.

°

tcl

; supports TCL applets.

RXML - The RoXen Macro Language

56

Roxen User’s Guide

°

vrml

; the client supports VRML.
This list is refreshed automatically every week directly from our site
(infovav.se) unless you explicitly tell Roxen not to do this by setting

Update the supports database automatically

 under
G

LOBAL

 V

ARIABLES

 to

No

. The list is a list of browsers and what fea-
tures they can handle, not something the browser sends.

•

user=name[,name,...]|any

; Show the enclosed section only
to the user

name

, or, if

any

 is specified, to any valid user on the sys-
tem. Unless the modifier

file=X

 is specified, the default user data
base is used.
Modifiers:

 file=X

,

wwwfile

.

•

variable

; works exactly like

cookie

.

•

config=configuration

; If you have set a user’s configuration
through the use of one or several

<aconf +/-configuration>

you can use this conditional to check it. It works like prestates but is
instead saved on the client side through the use of cookies.

MODIFIERS

Used in conjunction with some of the conditionals.

•

file=X

; Modifies the

user=userid

 value. If this is specified, the

user:password

 pairs will be taken from an external file of this for-
mat:

username:encrypted-password
username:encrypted-password
....

Unless

wwwfile

 is present, it is assumed that the file ”X” is an
ABSOLUTE pathname in the real filesystem, like

/usr/www/secu-
rity/localpasswd

.

•

wwwfile

; Indicates that the file ”X” is a file in the virtual filesystem
of the server. This might be a security problem, since everyone can
read it via WWW.

•

before

; Used together with

<if date=yymmdd>

. Show the
enclosed section if the current date is before yymmdd.

•

after

; Used together with

<if date=yymmdd>

. Show the enclo-
sed section if the current date is after yymmdd.

RXML tags

Roxen User’s Guide

57

•

inclusive

; Used together with

<if date=yymmdd>

 and before
or after. Show the enclosed section if the current date is the same as
or before/after yymmdd.

•

not

; Invert the results of

all

 tests.

•

and

; Show the enclosed text only if all tests are true (default).

•

or

; Show the enclosed text if one or more of the tests are true.

Example 7.14)

This example shows how to make part of a page (in this case a list item)
available to locals only, using the

host

attribute:

<if host=”130.236.25?.*”>
Local info, only availa-
ble to local clients
</if>

A useful use of the

user

 option might be:

Example 7.15)

<if not user=any>
<header name=WWW-Authenticate value=”Basic; Re-
alm=Pers”>
<return code=401>
<h1>Access denied</h1> You may not see this dou-
ment without a valid user and password.
</if>
<else>
.. The secret document ..
</else>

This will force a user entry. But please note that if the user presses the

Cancel

 button, or refuses to enter an authentification, the parts of the
document that is outside

<else>...</else>

 will be shown to him or
her.

<LANGUAGE>

This tag was implemented for debugging purposes. It sends a list of all
languages supported by the client. Helps you find out if you’re doing so-
mething wrong or if the client doesn’t do it’s thing properly. The only
attribute is

full

, which when included gives you a somewhat more ver-
bose list.

RXML - The RoXen Macro Language

58

Roxen User’s Guide

<MODIFIED>

Insert the date when the page was last modified or by whom it was mo-
dified.

Attributes

•

by

; This tag will insert

<user name=user>

, where

user

 is the
last one to modify the file.

•

realfile=file

; Insert the modification date of the file

file

 in
the real filesystem. This tag can also be used together with

by

.

•

file=virtual

; Insert the modification date of the file

virtual

in the virtual filesystem. This tag can also be used together with

by

.

See also: “<DATE>” on page 49 and “<ACCESSED>” on page 44.

<QUOTE>

Sometimes you wish to use the quotation marks for something apart
from quotes. In that case you should, in order to avoid confusing yourself
or the server, define other characters as starting and ending quotation
marks, respectively.

Attributes

•

start=start_char

; The character beginning a quotation.

•

end=end_char

; The character that ends a quotation.

Example 7.16)

<quote start=’{’ end=’}’>
<insert name=foo bar={”foo” bar gazonk ’elefant’
snabel}>

Since we have redefined quotation marks to being curly brackets,

bar

gets the value equalling the sequence of characters between the curly
brackets. If we had not made this redefinition

bar

 would have been just
”{” or something unpredictable due to the placement of the ordinary
quotation marks.

<RANDOM>

Randomly select a part of the document.
The text between

<random>

 and

</random>

 will be split on the speci-
fied separator, and one of the resulting parts will be returned, which one
it will be is randomly selected.

RXML tags

Roxen User’s Guide

59

Attributes

•

separator=string

; The separator to be used. If none is speci-
fied,

newline

 will be used.

Example 7.17)

<random separator=+>
This is a test+This is not a test+What is this?
</random>

will cause Roxen to send one, and only one, of the three sentences sepa-
rated by the plus signs.

<REFERER>

The Referer field allows the client to specify, for the server’s benefit, the
address, URL, of the document (or element within the document) from
which the Request-URL was obtained. Insert the referer! It’s good prac-
tice because it can help you track down faulty links.
This tag can also be used for making a ”back button”, a link back to the
page the user previously visited. We recommend that you use it together
with

<if referer>

.

<REMOVE_COOKIE>

Removes a cookie. The attribute

name=cookiename

 must of course be
present.

See also “<SET_COOKIE>” on page 60.

<RETURN>

Return an HTTP result code other than 200, which is the regular, ”no
problem”, return code.

Attributes

•

<return code=c>

; This will return the response

c

. Note that
most of them are quite odd to have in a document, especially the ser-
ver errors. See the listing in table C.3 on page 197.

See also “<HEADER>” on page 52.

<RIGHT>

This tag is essentially obsolete and is only here for sentimental reasons.

.

FIGURE 7.14 The Back
button

RXML - The RoXen Macro Language

60

Roxen User’s Guide

Do not use it, it does not give any good results.
This tag tries to align the enclosed text to the right. Today it just makes
a table, with

align=right

, which means that you can do it yourself by
defining a macro.

Example 7.18)

<right>This text is aligned to the right</right>

will send the following to the client:

<tt>
<table width=100%>
<tr>
<td align=right>This text is aligned to the
right</td>
</tr></table></tt>

Sometime in the future, this tag may be developed further.

<SET_COOKIE>

Sets the

cookie

 called name to

value

.

Attributes

•

name=name

; Gives the cookie a name.

•

value=value

; Assigns a value to the cookie.

•

persistent

; Tells the client to save the cookie forever.

See also “<REMOVE_COOKIE>” on page 59.

<SIGNATURE>

Like

<user>

, but with some more bells and wistles. The result will in
fact be

<p align=right><address><user name=userna-
me></address></p>

. Like the

<right>

 tag it is not recommended
for use since we do not actively intend to develop this tag.

Attributes are the same as those of “<USER>” on page 62.

<SMALLCAPS>

This tag takes the enclosed string and turns it into a string of smallcaps
(as you might have already guessed).

Attributes

RXML tags

Roxen User’s Guide

61

•

size=x

; sets the base font size to x. x can be between 1 and 7. This
is what is used for the capitals.

•

small=x

; sets the font size for the small capitals.

•

space

; inserts a space between every character in the string.

<SOURCE>

Show both the source and the parsed result of the enclosed section.

Attributes

•

separator=”Separator string”

; Use this separator instead of
the default ”Result”.

<TABLIFY>

You can let Roxen magically conjure up tables for you by to installing the
Tablify module. This module lets you do the following:

<tablify>
tab separated text
</tablify>

and then Roxen sends an HTML 2.0 table to the browser instead of the
tab separated text. Rows are separated by newlines and cells are separated
by tab stops.

<TABLIST>

If you have installed the Tablist module you can let Roxen automatically
generate pictures like the one you find at the top of the configuration in-
terface (Servers/Global Variables/Status/Debug). It also simulates tab
lists in text-only browsers by using slashes and backslashes in combina-
tions.

FIGURE 7.15

An example of tablists in a text-only browser.

RXML - The RoXen Macro Language

62

Roxen User’s Guide

Attributes

•

names=name1;name2;name3 ...

; The text that should be seen
in each of the tabs.

•

1=url1 2=url2 3=url3 ...

; The URL:s corresponding to
the different tabs. The list of URL:s must be in the same order as the
list of names.

•

selected=[number]

; initially selected tab number.

•

bg=#rrggbb

; background color.

•

tc=#rrggbb

; tab color.

•

fc=#rrggbb

; font color.

•

font=

; font file name.

•

scale=<float number>

; Image scaling factor, default is 1.0.

Example 7.19)

<tablist selected=2 names=Orange;Banana;Cucumber
1=orange.html 2=banana.html 3=cucumber.html>

<USER>

Insert the real name and email address of a user.

Attributes

•

name=username

; Insert data about this user, modified by real-
name, email and nolink, see below.

•

realname

; Insert only the real name of the user, modified by link,
see below.

•

email

; Insert only the email address of the user, modified by link,
see below.

•

link

; Link the text consisting of the user’s name, Real Name, to the
home page of the user, and the email to a

mailto:

 link. This is the
default for the default action (i.e. with no email or realname modifi-
ers present)

•

nolink

; Add no links whatsoever. This is the default when any of
the

email

 and

realname

 modifiers are present.
The default output is ”Real Name <user@your.domain>”.

RXML tags

Roxen User’s Guide

63

<XIMG>

This tag can replace the

 tag. It automatically calculates the width
and the height of a picture and uses

.jpg

 or

.pjpg

 files if the browser sup-
ports them. Otherwise it is used like the normal HTML

 tag.
The

<ximg>

 tag is only present if you have installed the

X Image Tag

Module, see “X Image Tag” on page 126.

<ICONS>

This tag is only available when the Lysator module is enabled. The enclo-
sed area will only be sent if the browser supports inline images.

<ICON>

This tag is only available when the Lysator module is enabled. Works like

<picture>

 below, except that the images are assumed to be in the di-
rectory given by the variable

Icon pre-URL

.

 <PICTURE>

This tag is only available when the Lysator module is enabled. It works
like the

 tag except for the fact that you do not provide everything.
The picture that you insert is supposed to be in

/pictures/

 and conside-
red a gif picture. Do not provide the

.gif

 extension because

<picture>

will add it. Otherwise it behaves like

.

 <BLINK>

If the Lysator module is enabled and the variable

Blink enabled

 is set
to

No

 it replaces every occurence of the

<BLINK>

 tag with

.

 <LYSATOR>

This container is only available when the Lysator module is enabled. This
tag formats the display properly. Within the container, several additional
tags are available. It uses tables for its output if the browser can handle it.

Attributes

•

pretxt=”First text”

; text to be placed in front of the main
title.

RXML - The RoXen Macro Language

64

Roxen User’s Guide

•

title=”Nifty title”

; the title.

•

txt=”Nice text”

; Sub header.

<ITEM>

Only allowed inside the

<lysator>

 container. This is a container that
defines a link item with a short description and possibly an icon.
Attributes

•

linkto

; The URL of the link.

•

icon

; the name of the image to use. It is assumed to be in the icon
directory as stated in the variable

Icon pre-URL

.

•

title

; The text of the link

<ENDTABLE>

Only allowed inside the

<lysator>

 container. It ends the table created
by using all the

<item>

:s.

<FOT>

Only allowed inside the

<lysator>

 container. This creates a footer. The
only attribute is

sv

 which gives the footer text in swedish. If left out, the
text is in english.

<COMMENT>

Only allowed inside the

<lysator>

 container. Outputs the string

”<!-
- Comments :-) -->”

. God knows why.

<H>

Only allowed inside the

<lysator>

 container. Creates a subheader
using

. Quite dirty, but it works.
Attributes

•

level=number

; How big should the heading be?

•

hr

; use a horisontal ruler.

Examples of HTML and RXML

Roxen User’s Guide

65

ATTRIBUTES RELATED TO TIME AND DATES

These attributes can be added to RXML tags related to dates, like

<mo-
dified>

 and

<accessed>

.

•

type=discordian|stardate

; These attributes only make a dif-
ference when

not

 using

part

 (see below). Note that

stardate

 has
a separate companion attribute,

prec

, which sets the precision.

•

type=number|string|roman

•

lang=language

; When using

type=string

, return the equiva-
lent in the given language. This also affects the

part

 attribute, see
below. Available languages are Swedish (se), Finnish (fi), German
(de), Catala (ca or es_CA), Dutch (du), Spanish (es), French (fr),
English (en, default) and Norwegian (no).

•

part=year|month|day|date|hour|minute|second|yday

°

year

; The year

°

month

; The month

°

day

; The weekday, starting with Sunday.

°

date

; The number of days since the first this month.

°

hour

; The number of hours since midnight.

°

minute

; The number of minutes since the last full hour.

°

second

; The number of seconds since the last full minute.

°

yday

; The day since the first of january.
The return value of these parts are modified by both

type

 and

lang

.

•

time

: Only show the time.

•

date

: Only show the date.

•

capitalize

: Capitalize the string.

•

lower

: Lowercase the string.

•

upper

: Uppercase the string.

EXAMPLES OF HTML AND RXML

In order to illustrate how one can use these tags, this section contains a

RXML - The RoXen Macro Language

66

Roxen User’s Guide

couple of pages, both source and screenshots of the results when sent to
the Netscape Navigator. If you wish to see the resulting HTML type
them in and try them, then choose to view source from the browser. The
examples are sparsely commented but they are quite simple and should
give you a rough idea about what you can do.
Screenshots are from the Macintosh and besides the Netscape Navigator,
I used the Alpha programmer’s editor to build the code, NSCA Telnet to
connect to our server, so that I could run Lynx, and Fetch to upload the
files.
I decided to build an ego-boosting homepage and some nice examples of
how the HTML tags

 and

<Hn>

 look. Since I want to use a simp-
le, consistent layout on all pages I first build a macro file for use at the
top and at the bottom of the pages, see figure 7.16.

Then I use the macros to build a simple homepage, figure 7.17.

The result when using Netscape Navigator is in figure 7.18. If you use

FIGURE 7.16

The macro file containing only the definitions of header and footer. NB.:
There’s no extension on the filename.

Examples of HTML and RXML

Roxen User’s Guide

67

Lynx, the result will look like figure 7.19.

Ok, then we have the two example pages in figure 7.20 and you see the
results in figure 7.21 and in figure 7.22.
Now there are a few things that are not obvious;
The file

macros

 does not have an extension. The reason for this is that if
I put

.html

 or even

.rxml

 (due to the configuration of our server) at the
end of the name, the file will be parsed before being inserted and I don’t
want that in this case. Sometimes it might be useful but not here.
You can be quite mean to Roxen, putting RXML tags almost anywhere
as you can see in the return link (TURN BACK!) where I have used

<re-
ferer>

.
Well, as for other strange things, look at the examples and play around
with them to see what they do. Good luck!

FIGURE 7.17

Let’s write a nice homepage!

RXML - The RoXen Macro Language

68

Roxen User’s Guide

FIGURE 7.18

Looks nice, doesn’t it?

Examples of HTML and RXML

Roxen User’s Guide

69

FIGURE 7.19

The Lynx version. See how one of the links is not present? This is due to
the fact that the link is not interesting for the user of Lynx.

RXML - The RoXen Macro Language

70

Roxen User’s Guide

FIGURE 7.20

The example pages. The results are in the next two figures.

Examples of HTML and RXML

Roxen User’s Guide

71

FIGURE 7.21

The header test page.

RXML - The RoXen Macro Language

72

Roxen User’s Guide

FIGURE 7.22

And the font size test page.

Roxen User’s Guide

73

CHAPTER 8

I

MAGE

 M

APS

INTRODUCTION TO IMAGE MAPS

An image map is an image on which has been defined several sub-areas,
often called

hot spots

, each one associated with a certain URL. Clicking
on one of these hot spots takes you to the associated URL as if it had been
an ordinary text link.
An image map ordinarily consists of two files; the image file itself and the
associated

map file

 in which should be defined which area should be map-
ped to which URL.
The two most common map file formats are the NCSA and CERN for-
mats. The Netscape Navigator (starting with version 2.0) and the Micro-
soft Internet Explorer can handle the mapping definitions as part of the
HTML-file, so-called client side image maps, thus eliminating the need
to separately load a map file.

HOW TO INSERT AN IMAGE MAP ON A PAGE

You insert an image by writing something like

Making this image a link is, as for text, done by enclosing the image in
the

<A>

 container, like this:

<IMG SRC=”/images/choi-

Detta dokument har framställts med FrameMaker 4.0.4

Image Maps

74

Roxen User’s Guide

ces.gif”>

If you wish this image to have several hot spots you have to tell the brow-
ser that the image is an image map by adding the attribute

ISMAP

 to the

 tag. Then, to associate certain areas with certain URL:s, you have
to provide the URL to the file that contains the definitions of these areas
in the

<A>

 tag:

<IMG SRC=”/ima-
ges/choices.gif” ISMAP>

The image map file is a text file whose contents have a special structure
as we will discuss below.

ROXEN AND IMAGE MAPS

Roxen has support for ISMAP images in the form of a separate module,
the

ISMAP Image map

 module. Roxen has its own map file format but
this module also has full built-in support for NCSA and CERN mapfiles.
You can, if you want to, mix these three mapfile formats in the same file.
Accordingly, there are often three (very similar) ways of doing things.
If you come across any other mapfile formats, feel free to send us an ex-
ample file, so we can add support for that format as well. Most servers can
use one or both of the first two formats (NCSA and CERN).
The notable variable in the image map module is the mapfile extension
All files ending with this extension, will be parsed as map-files. The de-
fault is

.map

.
Note that with Roxen you can put your

.map

 files anywhere in the virtual
filesystem, you are not limited to using a separate directory, since the ima-
ge map module is part of Roxen, not a separate CGI-script as for other
servers.

IMAGE MAP FILE FORMATS

In defining a map file you define areas of the image by providing pixel
coordinates of suitable corners, vertices. You can define rectangles, circles
and even polygons. After having defined an area you associate it with a

Image map file formats

Roxen User’s Guide

75

URL. Finally, you should define some kind of default URL which is used
if the user clicks on a part of the image that is not covered by any defined
area(s).
Whitespace does not have any meaning whatsoever, and can be inserted
at will. All lines starting with a ”#” are considered comments. The follo-
wing are the possible methods of creating hot spots. Coordinates are gi-
ven in pixels and the origin of both the X-axis and the Y-axis is the upper
left corner.
Note that areas are checked in the order they appear appear in the map
file so in the case of overlapping, the first to appear takes precedence.
The URL may be full or relative, but be aware that the relative URL
would be relative to the directory of the map file. The advantage is that
when you don’t provide a full URL the server does not have to send a
redirect to the browser, thus saving time and bandwidth.

CERN

One of the first WWW servers to emerge, the CERN httpd, implements
image maps using

.map

 files and four keywords on the following form:

•

default URL

The url

URL

 will be returned if nothing else matched. Don’t forget
to set it.

•

circle (X,Y) R URL

Any point inside the circle centered in (X,Y) and with the radius R
will return the url

URL

.

•

rectangle (X1, Y1) (X2, Y2) URL

(X1, Y1) are the coordinates of the upper left corner of arectangular
area whose lower right corner has the coordinates (X2, Y2). Any
point inside the box will return the url

URL

.

•

polygon (X1, Y1) (X2, Y2) ... (Xn, Yn) URL

Every value pair is a vertice. The first and last should be the same
thus closing the area, but if they are not Roxen will (as

htimage

 in
httpd does) complete the series of adjacent vertices.

The keywords may be abbreviated as

def

,

circ

,

rect

 and

poly

 respec-
tively.

Image Maps

76

Roxen User’s Guide

NCSA/APACHE

This format is almost identical but with one change; the URL should
come before the coordinates. There is also one addition to the methods
available:

•

point URL (X,Y)

This just specifies a single point and ties a URL to it. If more than
one point is specified in the file, the one closest to the position on
which the user clicks will be used.

ROXEN

As you can see, the ”method” of the NCSA and CERN formats need not
be present, Roxen will deduce the area type from the given coordinates.
You can also use colours as representatives of URL:s.

•

(X1,Y1)-(X2,Y2) URL

(X1, Y1) are the coordinates of the upper left corner of arectangular
area whose lower right corner has the coordinates (X2, Y2). Any
point inside the box will return the url URL.

•

(X,Y),R URL

Any point inside the circle centered in (X,Y) and with the radius R
will return the url URL.

•

(X,Y) URL

This just specifies a single point and ties a URL to it. If more than
one point is specified in the file, the one closest to the position on
which the user clicks will be used.

There are methods of describing an image file in a big, but easily deco-
ded, binary format. These files can be used to map colours to URL:s

•

ppm:PPM_file

Use the PPM file referred to by the absolute filesystem path

PPM
file

. Each colour in that file may give a different URL.

•

pgm:PGM_file

As PPM, but the file is a greyscale file.

Client-side image maps

Roxen User’s Guide

77

•

color:(r,g,b):URL

In all PPM files referenced, this colour will point to the document
URL. r,g and b are decimal integers between 0 and 255 and the
colour defined is the combination of the red (r), green (g) and blue
(b) intensities. If the file searched is a PGM (greyscale) picture, the
greyscale will be (r+g+b)/3.

•

color:(r,g,b)-(r,g,b):URL

All colours in the range will point to

URL

. If the file searched is a
PGM (greyscale) picture, the greyscale will be (r+g+b)/3.

•

color:greyscale-greyscale:URL

All colors with an intensity falling within the range will point to

URL

.

•

color:greyscale:URL

All colours with the intensity

greyscale

 will point to

URL

.

•

default:URL

The url

URL

 will be returned if nothing else matched. Don’t forget
to set it.

•

void URL

The url

URL

 will be returned if the client doesn’t support imagemaps
or if the mapfile is accessed without coordinates.

CLIENT-SIDE IMAGE MAPS

This method is faster because it is server independent. The first imple-
mentation was made by Netscape and now the Microsoft Internet Explo-
rer also supports this style of image maps. What makes this different from
server-side image maps is that the map information resides in an HTML
file, usually in the same file as the

 tag, instead of in a separate file.

HOW TO INCLUDE CLIENT-SIDE IMAGE MAPS

By adding the

USEMAP

 attribute to the

 tag you tell the browser
that this is a client-side image map. With

USEMAP

 you also tell where the
mapping definitions reside:

<IMG SRC=”/images/choices.gif” USEMAP=”/image-

Image Maps

78

Roxen User’s Guide

maps.html#choicesmap”>

This line will only work in a browser that supports client-side image
maps. The USEMAP=... tells the browser to look in a file called

image-
maps.html

 (in the root of the web server) for an image map definition
called

choicesmap

. If you leave out the path (what is

before

 the ”#”),
the browser assumes that the map definition resides in the current file. Cf.
“Links” on page 37.
To make an image map that works regardless of the browser used, include
provisions for both client-side and server-side image maps, respectively:

<IMG SRC=”/ima-
ges/choices.gif” USEMAP=”/imagemaps.html#choices-
map” ISMAP>

HOW TO DESCRIBE THE DIFFERENT AREAS

This is done through use of the

<MAP>

 and the

<AREA>

 tags:

<MAP NAME=”name”>
<AREA [SHAPE=”shape”] COORDS=”x,y,...”
[HREF=”URL”] [NOHREF]>
.
.
.
</MAP>

Within

<MAP>...</MAP>

 there can be as many

<AREA>

 as you like but
the first of two areas that overlap each other will take precedence.

•

name

 is the name referenced in the

USEMAP

 attribute after the ”#”.
Since you can have several map definitions in a file, make sure you
give each one a unique name.

•

shape

 is either

RECT

 (rectangle),

POLY

 (polygon),

CIRCLE

 (circle)
or

DEFAULT

 (areas not covered by other shapes) and tells how the
coordinates in the

COORDS

 attribute should be interpreted. If you do
not supply the shape,

SHAPE=”RECT”

 is assumed.

•

The coordinates are given in pixels and in the upper, left corner
x=y=0. The x-axis is the horisontal axis and the y-axis is the vertical
axis.

°

Rectangular coordinates are given as

COORDS=”xleft, yup-
per, xright, ylower”

.

Client-side image maps

Roxen User’s Guide

79

°

Circular areas are defined by

COORDS=”xcenter, ycenter,
radius”

.

°

Polygons are defined by providing a series of (x, y) pairs that,
when connected by straight lines enclose the desired area, like
this:

COORDS=”x1,y1,x2,y2,x3,y4,...”

.

•

The

URL

 of course indicates the associated URL.

•

If

NOHREF

 is included, the area is not associated with any URL. You
did figure that out yourself, didn’t you?

N.B.: Relative URL:s are relative to the location of the file that contains
the map description, i.e. not necessarily the file containing the image re-
ference itself.
More information can be obtained through Netscape’s WWW server,

http://home.netscape.com/

.

Image Maps

80

Roxen User’s Guide

Roxen User’s Guide

81

CHAPTER 9

S

CRIPTING

WITH

R

OXEN

Using Roxen you can use both the well-known CGI as well as make
scripts in Pike, the native language of Roxen. In this chapter we will ex-
plain how to write Pike scripts and also take little look at CGI scripts and
Roxen.

PIKE SCRIPTS

We assume that you have some knowledge of programming in general
and of Pike in particular, refer to “The Pike Quick Guide” on page 137
for a short introduction.
A Pike script is a piece of code (in fact a Pike object) that is run when the
URL of the script is requested, i.e. instead of returning the script itself,
the result of the script is returned. The definition of a script is very simple.
Since Pike is an interpreted language it is sufficient to create a file with
your script in it, and then refer to it with a URL.

Example 9.1)A well known test case

string|mapping parse(object request_id)
{

return ”Hello world!\n”;
}

Create a file with the above content, call it

test.pike

 and put it some-

Scripting with Roxen

82

Roxen User’s Guide

where in the virtual file system of your web server. When you’ve done
that, access the file with your favourite browser, e.g.

http://www.wha-
tever.domain/path/test.pike

. You will see a page with nothing but the
plain text ”Hello world”.
Now, since you’ve seen a lot of interesting things that Roxen can do in
the previous pages, how do you go about using them in your Pike scripts,
i.e. taking care of variables from forms, prestates etc? All this information
resides in the object

request_id

. This object is the single most impor-
tant thing for Roxen’s taking care of different requests and thus for your
scripts too! Below we shortly describe what you can obtain from this ob-
ject.

CONTENTS OF REQUEST_ID

You can reference the contents of this object through:

request_id->variable_name.

You’ll find examples below that illustrate this.

•

int time;

When the connection was established measured in seconds since
00:00:00, the first of January 1970.

•

object conf;

This object contains the current configuration, a pointer to the vir-
tual server to which the request was sent, i.e. the server in which
your module or script resides. You will probably not need this vari-
able if you don’t intend to perform some very odd operations.

•

string raw_url;

This string contains the URL completely unparsed as it was sent
from the client.

•

mapping (string:string) variables;

This mapping contains all those nice variables you can send over the
HTTP protocol. Most of the time they come from an HTML form.
In this mapping they are already parsed and ready to use.

Example 9.2)

A request for the file

/goo/bar?hmm=hej&foo=%20

 will set

variab-
les

 to

([”hmm”:”hej”, ”foo”:” ”])

.

Pike scripts

Roxen User’s Guide

83

•

mapping (string:array (string)) misc

As the name implies this mapping contains a little bit of this and a
little bit of that. Usually you don’t have to care but to see the con-
tents you can do a test script with the following line:

return sprintf(”%O”, request_id->misc);

However, this is also where you define your own variables in case you
against all odds should need any. Make sure that all variables have
unique names to avoid nasty surprises. Variables are local for every
request.

•

list (string) prestate;

Prestates provide variables that can be used to affect Roxen’s treat-
ment of a request. The prestate variable is a list of strings. They can
for example, be used like this,

if(request_id->prestate->nobg) no_background = 1;

which checks if the prestate for no background is active and in that
case sets the

no_background

 variable to 1, i.e. true.
Prestates are included in the URL before the name of the file reques-
ted, like this,

/(foo,bar)/goo/bar

.

•

list (string) config;

Configurations

 works just like

prestates

 except they aren’t kept in the
URL, but in client-side cookies, which entails several advantages:

°

The config is not in the URL, where it perhaps confuses people.

°

The config will not disappear when the user turns off his or her
browser, but will reside in a cookie sent with the request to the
URL where the cookie came from the next time.

°

Links in bookmark files will not include the configuration.
Not to forget the disadvantages:

°

There cannot be more than one list of configurations for every
server.

°

It is hard for the user to get rid of a configuration.

°

Cookies are not widely implemented in browsers.
In order to add something to

config

 you let the user access a file
on the following form;

http://your.server:port/<+config,-config,...>/re-

Scripting with Roxen

84

Roxen User’s Guide

al/URL.

As you can see, you add to

config

 by using the ”+” and remove by
using ”-”.
What happens is that the new and updated config will be added to
the cookie

Roxen-Config

 and the client will recieve a redirect from
Roxen.

•

list (string) supports;

The string that contains a list of what the client can handle. The con-
tents originate from etc/supports by default, which can be changed
in the configuration interface. Use it, for example, to conditionally
generate different code for different clients.

Example 9.3)

if(request_id->supports->tables)
return make_table();

else
return make_pre();

•

string remoteaddr;

This string contains the IP-number of the computer on the other
end of the connection, e.g. ”158.126.90.157”.

•

array (string) client;

This is the client that requests the page. The reason for it being an
array is that the HTTP/1.* protocol allows multiple User-Agent:
header rows. You never know...
Ordinarily you should use the string operator in order to obtain a
string

(request_id->client*””)

, but sometimes it may be
better to use the

supports

 list.

•

array (string) referer;

The (one or several) page(s) that referred to the current page.

•

list (string) pragma;

This list contains all the pragma headers the client has sent. What is
interesting for the programmer here is the no-cache pragma header
that is generated when the browser’s R

ELOAD

 button is pressed.
Read more about pragma headers in the HTTP specifications.

Pike scripts

Roxen User’s Guide

85

•

string prot;

The protocol which was used to generate the request, most probably
it will contain ”HTTP/1.0” or ”HTTP/1.1”, but you may also
encounter things like ”FTP”, ”GOPHER” and ”HTTP/0.9”.

•

string method;

The method used to send all the data from a form to the server. It is
either ”GET” or ”POST”.

•

string rest_query;

Everything in the URL behind a ”?” which is not a variable.

•

string raw;

The complete request in its raw, unparsed, form.

•

string query;

Everything in the URL behind the ”?”.

•

string not_query;

Contains everything before the ”?” in the URL, excluding prestates.
This variable is used by Roxen to calculate through which modules
the request should be mapped.

•

string data;

This contains everything in a body of a request. It isn’t used very
often but when form data is sent using

method=POST

 it is used for
all the form variables.

•

array (int|string) auth;

This one is either,

°

0; No authentication sent by the client

°

({ 0, ”username:password” })

; authentication sent but
the Auth module doesn’t consider it to be correct and the user
does not exist

°

({ 0, ”username” })

; authentication sent but the Auth
module doesn’t consider it to be correct although the user does
exist

°

 ({ 1, ”username” })

; authentication sent and is conside-
red correct

•

mapping (string:string) cookies;

All the cookies sent by the client.

Scripting with Roxen

86

Roxen User’s Guide

Now that we can obtain all this data we can do something with it and
then, most probably, we return some other data. How this is done? Read
on!

RETURNING DATA

The simplest case is to return a string. This string is sent through the par-
ser of Roxen. You can also return a mapping, but it can be a bit difficult
to put together the correct kind of mapping. In order to help with this,
there are several help functions defined in

/pike/http.pike

, which is in-
herited by

roxenlib

, which you in turn should inherit in all your scripts
by including the line

#inherit ”roxenlib”

, if you intend to use any
of these functions.

•

mapping http_string_answer(string data,
string|void type);

Return a string as the result whose type is

text/html

 if nothing
else is set. The string will not be parsed by Roxen before being retur-
ned to the client.

•

mapping http_file_answer(object fp, string|void
type, void|int len);

Return a file as the result whose type is

text/html

 if nothing else is
set. If you do not provide the length, Roxen will calculate it anyway.
The object fp has to be an instance of

precompiled/file

, or an
object implementing the same methods, which is something you
definitely do not want to try. Use

precompiled/file

.

•

mapping http_redirect(string url, object|void
request_id);

Return a redirect to the given URL. Sending along request_id in
addition to providing a relative URL causes both

prestate

 and

state

 to be added to the URL.

•

mapping http_auth_failed(string realm);

Return a demand for a password (authentication) within the names-
pace

realm

 on this server. The Netscape Navigator retains one user-
name and password pair for every server in memory. This mapping is,
as might be inferred from the name, used when the login failed.

Pike scripts

Roxen User’s Guide

87

•

mapping http_auth_required(string realm, string
message);

This returns almost the same as http_auth_failed but you can send
along a small error message which is shown if the user chooses Can-
cel. In addition, the code used is somewhat different. As the name
implies, http_auth_required indicates that this should be used when
the user has not tried to log in before.
No web browser we have seen distinguishes between the above two
results.

•

mapping http_low_answer(int error_code, string
message);

This function returns a message with

error_code

 as the error code
(unexpected, eh?). Take a look in

server/include/variables.h

, in
figure C.3 on page 197 or in the HTTP specification for a list of
these error codes.

Example 9.4)

if(search(lower_case(request_id->client*””),
”aol”) != -1) return http_low_answer(402, ”Please
enter your VISA number and expiration date be-
low:\n”);

If you enjoy details, below is the returned mapping. All fields can be
left out but the resulting response wouldn’t amount to much.

([”file”:file_object, ”data”:”string”,
”len”:int, ”type”:”main/sub”, ”raw”:0|1,
”leave_me”:0|1, ”extra_heads”:([”name”:”value,
...]), ”error”:int,])

°

file

; A file object that should be sent back to the client. If there
is

data

 present,

file

 is sent after that.

°

data

; This is a string that should be sent before

file

.

°

len

; The sum of the lengths of

data

 and

file

. If you do not
specify it, Roxen will calculate it anyway.

°

type

; This is the mime type of what you return. If it is not defi-
ned,

text/plain

 will be used.

°

raw

; If you set this variable you will have to henerate all the
headers and such by yourself because nothing at all will be sent to
the client.

Scripting with Roxen

88

Roxen User’s Guide

°

leave_me

; Setting this variable will tell Roxen not to send
anything to the client, and so you are expected to take care of all
the socket communication and clean-up by yourself. This
approach is used in the proxy modules.

°

extra_heads

; Extra header fields that will be added to the
response. One such that could be useful is

([”Expire”:http_date(time()),])

which will cause the return value of the the script to expire
immediately.

°

error HTTP

; The response code that should be used, usually
200. All the codes are defines in

server/include/variables.h

,
probably the most unintuitively named file in all of the Roxen
distribution. You can also find them in figure C.3 on page 197.

IMPORTANT NOTES

Scripts are not allowed to execute for longer than four seconds. If this li-
mit is transgressed, the interpreter returns an error, which it of course is
possible to trap, analyse or possibly ignore.
When the script is running it blocks the server, i.e. nothing else is done
during this time.
If you run several servers, take note of the fact that the script can run on
all of them at once.
If you hit R

ELOAD

 the script is reloaded. It is possible to hinder this by
implementing a method, for example like this, in your script:

Example 9.5)

int no_reload(object request_id)
{

if(!request_id->variables->reload)
return 1;

return 0;
}

Comments are included by preceding the comment with double slashes,
”//”. You can also use C-style comments, see the “Example Script” be-
low.

Pike scripts

Roxen User’s Guide

89

EXAMPLE SCRIPT

This is an example of a short script that reads a file with names of images,
separated by a newline. It returns a random image.

inherit "roxenlib";
// Has some nice functions, notably the
// http_* functions.

array (string)files;
// An array of strings; the image filenames

#define FILELIST "/the/full/path/to/the/filelist"
// Absolute path to the image list.

#define BASEDIR "/"
// Path to be prepended to the filenames in the
// list

/* Create() is called when the script loads. Reads
* the file from the disk and explodes it into an
* array
*/
void create()
{

files = read_bytes(FILELIST)/"\n";
}

/* Don't reload the module from file, unless the
* creator wants to. Call the script with
* '/random.pike?reload=whatever', to reload it.
*/
int no_reload(object id)
{

if(!id->variables->reload)
return 1;

return 0;
}

Scripting with Roxen

90

Roxen User’s Guide

/* parse() is called every time someone
* requests the URL of the script. We simply use
* a function defined in roxenlib (really in a
* file inherited from the above mentioned
* library), http_redirect, to send a redirect to
*one of the files from the list.
*/
mapping parse(object id)
{

// Return a redirect to a random file
return http_redirect(BASEDIR +
files[random(sizeof(files))], id);

}

THE

parse()

 FUNCTION

When someone accesses the URL of a Pike script, the function

parse()

has to be called in it, i.e. you have to put it there in your scripts, with one
argument;

object request_id

. Read about this in “Contents of
request_id” on page 82 and you’ll understand that this is where all the
interesting information about the request resides.

CGI

Of course we’d prefer you to use Pike scripts since it is more efficient and
also more secure as everything is handled internally in Roxen. Neverthe-
less, we see the need for use of CGI with Roxen so if you’ve installed the
CGI module in the virtual server you can script using CGI. We’ve also
included support for FastCGI.
Many servers offer small extensions of CGI so that certain scripts are in-
compatible with other servers. Thanks to all beta testers we have endea-
voured to make Roxen as compatible as possible with as many home-
brew scripts as possible. If a CGI script that you wish to use follows the
original NSCA standard it should work like a charm, otherwise please
send us a report on

roxen-bugs@roxen.com

.

R

O X E N

A

D M I N I S T R A T O R

’

S

G

U I D E

Detta dokument har framställts med FrameMaker 4.0.4

Roxen Administrator’s Guide

93

CHAPTER 10

G

ENERAL

I

NFORMATION

As opposed to merely using Roxen’s features when putting your informa-
tion together, someone has to be responsible for the actual running of
the Roxen server. This person, the administrator, must be more intima-
tely familiar with all aspects of Roxen than the ordinary user. This part of
the manual aims to explain some of the details of Roxen. Note, though,
that there is a lot of information in this part of the manual that is probably
very useful for any user of Roxen.

THE ROXEN CONCEPT

In short, Roxen is built upon the concept of modularity. The core of
Roxen cannot, by itself, do anything. The only thing the Roxen core can
do is talk to modules. This means that before you can start using your
server you have tell it how to treat files, how to do all the things a normal
web server does. You do this by adding modules that take care of diffe-
rent aspects of Roxen’s functionality. This means that you can make your
web server as complex or as simple as you wish, all depending on needs
and wants of the people using it to provide information to the Internet.

In “Configuring Roxen – the first steps” we showed how to set up a basic
WWW server. The modules that are necessary for basic operation are the

User database

 module and the

Filesystem

 module in addition to the de-

General Information

94

Roxen Administrator’s Guide

fault modules

Content type

 and

RXML Parser

. Actually, the RXML Parser
and the user database are not strictly essential to the web server but they
are necessary for many of Roxen’s special features. In the next chapter
you will find information specifically pertaining to each and every modu-
le. Now we will first take a look at variables.

VARIABLES

Roxen has a number of global variables, namely,

Configuration variables

,

Disk Cache Variables

 and

Logging Variables

.
Apart from these, there are also variables that are independently settable
in every virtual server. These variables are of a general nature, but they
also concern security and the customisation of logging.

CONFIGURATION INTERFACE VARIABLES

All these variables reside under the

Configuration interface...

 header.

•

IP pattern

Only clients running on computers with IP numbers matching this
pattern will be able to use the configuration interface. This is a way
to enhance the security of the configuration interface.

•

Ports

This is the ports via which you can configure the server. Initially
there should be one, but you can of course change this.

Do not delete
the last one!

 Change the port number if you want to but

do not delete
the last one!

 You may want to tattoo a note on this onto the inside of
your eyelids.

•

Password

Here you can change the configuration password. To prevent errors
there is also a form available.

•

User

Set the user name that should accompany the password.

Variables

Roxen Administrator’s Guide

95

•

URL

The URL of the configuration interface. The default is

http://{Configuration interface IP}:{Configuration port}/

.
This value will be used for all redirects generated during configura-
tion.

•

Background

If set to

No

, the background color will be set to standard grey.

•

Compact layout

When set removes some of the images from the configuration inter-
face and replaces image maps with text links instead.

•

Help texts

Shows descriptions of each and every possible variable. When you
know what you are doing, you might want to turn them off.

PROXY DISK CACHE VARIABLES

The disk cache is used by the HTTP proxy, the Gopher gateway and the
FTP gateway.

•

Enabled

If set, caching will be enabled. This will speed up most accesses out-
side your domain quite alot, especially if you have a slow Internet
connection.

The following are only visible if the cache is enabled.

•

Base Cache Dir

This is the base directory where cached files will reside.
To avoid mishaps, the cache is saved in the directory

roxen_cache/

in this directory.

•

Bytes per second

How file size should be treated during garbage collect. Larger files
will be removed first. It has to be an integer.

•

Clean size

Minimum number of megabytes removed when a garbage collect is
done.It has to be an integer.

General Information

96

Roxen Administrator’s Guide

•

Size

How many Mbytes may the cache grow to before a garbage collect is
done?

•

File name method

You can choose any of the methods Hash, Flat and Hierarchy. If you
change method, the old cache is rendered unusable and may as well
be trashed. The Hash method creates a hash table and directories
corresponding to the table entries and cached files are saved in the
corresponding directories. The Flat method just saves files in a direc-
tory and Hierarchy saves the cached files in a hierarchy of directories
that looks like the hierarchy of the web server.

LOGGING VARIABLES

•

Logging Method

The method to use for logging. Default logging to file is used, but
it's also possible to enable syslog logging. Try

man syslog

 if you
don’t know what it is.

Syslog

 is quite slow, though.
The variables below are only present if you have chosen

syslog

 above.
The syslog variables reside under a separate node.

•

Log PID

If enabled, the PID (Process ID) will be included in the syslog.

Roxen[4711]: Error: Flep flop

instead of just

Roxen: Error: Flep flop

•

Log as

When syslog is used, this is the identification that Roxen uses.

•

Log to system console

If set and if syslog is used, the error / debug messages will be printed
on the system console, as well as to the system log.

•

Log Type

When using syslog, which log type should be used?

•

Log what

When using syslog, how much information should be sent to it?

°

Fatal

: Only messages about fatal errors

Variables

Roxen Administrator’s Guide

97

°

Errors

: Only error or fatal messages

°

Warning

: Warning messages as well

°

Debug

: Debug messager as well

°

All

: Everything

GENERAL GLOBAL VARIABLES

•

Change UID and GID to

See “Your first changes” on page 18 for a discussion of this.

•

Client supports regexps

This is a list of client names in the form of regular expressions, follo-
wed by a commaseparated list of features supported by all clients
matching that regular expression. All lines beginning with ”#” are
treated as comments. One special case is

default

 which is used if
nothing else matches. If a client matches more than one regular
expression, the supported features are ”summed” together. You can
also include files;

#include <relative/exact filepath>

There is a default list included which you can study. If you have addi-
tions for this list, please send them to us. The file

etc/supports

 is
automatically updated now and then from Infovav, unless you turn it
off.
The other case is

#section

 which begins and ends individual brow-
ser sections. This simplifies the construction of the regular expres-
sions pertaining to each and every browser. Take a look at the
examples in

etc/supports

.

•

Update supports database automatically

If set to

Yes

 the list of what browser(s) support which features will
be updated automatically from our site.

•

Documentation URL

The URL to prepend to all documentation URLs throughout the
server. This URL should not end with a ”/”.

•

Honor If-Modified-Since headers

If set, Roxen sends a

Not modified

 response in reply to

if-
modified-since

 headers.

General Information

98

Roxen Administrator’s Guide

•

Identify as

What Roxen will call itself when talking to clients.
N.B.: Revealing the specific software version of the server may allow
the server machine to become more vulnerable to attacks against
software that is known to contain security holes.

•

Module directories

A comma separated list of directories, where Roxen should look for
modules. They can for example be paths relative from the

server/

directory. If you install Roxen and decide to make your own modu-
les, it might be a good idea having those in a special directory.
By default there are three module directories in the

server/

 direc-
tory;

modules/

 (containing tried and tested modules),

more_modules/

 (containing modules that we use but haven’t tho-
roughly tested. Some of them were written by other people than us)
and the

non_maintained_modules/

 directory (with modules that
lack documentation and aren’t supported. Use them at your own
peril).

•

Number of accepts to attempt

The maximum number of accepts to attempt for each read callback
from the main socket. Increasing this will make the server faster for
users making many simultaneous connections to it, or if you have a
very busy server. It won't work on some systems, though, e.g. IBM
AIX 3.2 To see if it works, change this variable, but don’t press
SAVE, and then try connecting to your server. If it works, go back
and press the save button. If it doesn't work, just restart the server
and be happy with having ”1” in this field.
If you have many virtual servers, it is not a good idea to have a high
value in this field since it will place a great load on your machine.

•

Number of hostname lookup processes

The number of simultaneous hostname lookup processes that Roxen
should run. The default value is 2, which should be more than
enough on a normally loaded server. Consider raising the number of
processes, if your server is heavily loaded.

Variables

Roxen Administrator’s Guide

99

•

Number of copies to run

The number of forked copies of Roxen to run simultaneously. This is
quite useful if you have more than one CPU in your machine, or if
you have a lot of slow NFS accesses. This must be an integer.

•

PID file

In this file, the server will write out its PID, and the PID of the start
script.

$pid

 will be replaced with the pid, and

$uid

 with the uid of
the user running the process.

•

Set unique user id cookies

If this is set, every client that visits your server and supports cookies
will receive a unique cookie. This cookie can then be used to track
individual users through the log files.

•

Show the internals

If set, the Internal server error messages will be relayed to the client.
This can be very helpful when debugging your own modules or
scripts.

SERVER SPECIFIC LOGGING VARIABLES

•

Enabled

Setting this to

No

 turns off all logging for the server.

•

Format

The format to use when logging accesses. The syntax is:

response-code:Log format for that response code

or

*:Log format

The log format is normal characters, or one or more of the variables
below:

°

$host

; The remote host name, or IP number.

°

$ip_number

; The remote ip number.

°

$bin-ip_number

; The remote host id as a binary integer num-
ber.

°

$cern_date

; Cern Common Log file format date.

°

$bin-date

; Time, but as a 32 bit integer in network byte order.

°

$method

; Request method.

General Information

100

Roxen Administrator’s Guide

°

$resource

; Resource identifier.

°

$protocol

; The protocol used (normally HTTP/1.0).

°

$response

; The response code sent.

°

$bin-response

; The response code sent as a binary short
number.

°

$length

; The length of the data section of the reply.

°

$bin-length

; Same, but as an 32 bit integer in network byte
order.

°

$referer

; the header ”

REFERER”

from the request, or ”-” if
the browser does not supply the referring URL.

°

$user_agent

; the header ”USER-AGENT” from the request,
or ”-”.

°

$user

; the name of the authentication that the user used, if any
was used.

•

Log file

This is the name of the access log file. It can be

stdout

 for standard
output,

stderr

 for standard error or a filename, whose path is relative
to the server directory if it doesn’t begin with a ”/”. It defaults to

../logs/Virtual_server_name/log

, i.e. relative to Roxen’s

server/

directory. If left empty, no logging will take place.

•

No Logging for

Don’t log requests from hosts with IP numbers matching any of the
patterns in this comma separated list. This also affects the access
counter log.

SERVER MESSAGES

•

FTP Welcome

Since Roxen can act as an FTP server this is where you put what
Roxen should say to new connections in case the file

welcome.msg

doesn’t exist.
This variable may not be present in your configuration interface since
it will be moved to the FTP protocol module.

Variables

Roxen Administrator’s Guide

101

•

No such file

This is the page that Roxen returns if someone tries to access a file or
resource that doesn't exist. As any other page, this one gets parsed by
Roxen, unless you have removed the html-parser in this virtual ser-
ver.
You can insert two variables on this page;

$File

 will be replaced
with the name of the resource requested and

$Me

 with the URL of
the server. If you want to use a file, you can use the

<insert
file=XXX>

 tag, see “<insert>” on page 49. Doing this makes it
possible to change the page without entering the configuration inter-
face.

GENERAL VIRTUAL SERVER VARIABLES

•

Configuration interface comment

This text will be visible in the configuration interface, it can be quite
useful to use as a memory helper. Write whatever you want to be sure
that those who administer Roxen read.

•

Configuration interface name

This is the name that will be used in the configuration interface ins-
tead of the actual name you entered when first creating the virtual
server. If this is left empty, the actual name of the virtual server will
be used.

•

Domain

Your domain name should be set automatically here. If it isn’t, enter
the real domainname and send a bug report to

roxen-
bugs@infovav.se

.

•

Server URL

This is the location of your server. It’s not necessarily correct, so if
you change port and/or network interface, you should change this
variable to the correct one. If someone accesses the directory

/foo-
bar

, it is redirected to

{Server URL}/foobar/

. If you forget to
change here before you save, Roxen will redirect your users to the
wrong place.

General Information

102

Roxen Administrator’s Guide

•

Listen ports

The port(s) Roxen should bind this virtual server to. If you want
Roxen to run on port 80 (the standard WWW port), Roxen must
start as root.
If your server has many ethernet interfaces or virtual interfaces, you
can tell Roxen which interface this configuration should be bound
to. The default is

ANY

 which means that the virtual server should
bind to all interfaces.

BUILTIN MODULE VARIABLES

•

Comment

An optional comment. It has no effect on the module and is only a
text field for comments that the administrator might have (why the
module is there, etc.)

FIGURE 10.23

Telling Roxen to which virtual interface to bind this virtual server.

Variables

Roxen Administrator’s Guide

103

•

Module name

An optional name. You can set it to something that reminds you of
what the module really does, e.g.

WWW site main filesystem

.
It has no effect on the module itself.

•

Priority

The priority of the module, i.e. in which order the module is called
among modules of the same type. 9 is highest and 0 is lowest. Modu-
les with the same priority are assumed to be called in random order.

MODULE SECURITY VARIABLES

•

Patterns

This is a list where you can set up very precise patterns for who will
be allowed to use the module. It is a list where each entry is on the
form

security level=value

The entries can be one or more from this list:

° allow ip=pattern
° allow user=username,...
° deny ip=pattern

In patterns, ”*” is one or more characters and ”?” is one character.
Using

any

 as username stands for any valid account as indicated by
.htaccess or other authentication type module. The default used
when

no

 entries are present is

allow ip=*

, allowing everyone to
access the module.

•

Trust level

When a location module finds a file, that file will get a ”Trust level”
that equals the level of the module. This file will then only be sent to
modules with a

lower or equal

 Trust level.
As an example: If the trust level of a User filesystem is 1, and the
CGI module has trust level 2, files from that file system will never get
passed on to the CGI module.
A trust level of 0 means that any file can be passed to the module;
”free access”.

General Information

104

Roxen Administrator’s Guide

SERVER STATUS

There are a couple of ways to obtain status about Roxen. On the confi-
guration top page, there is a panel called

Server Status

 and another called

Debug

. The debug log shows problems that have occurred. If you click
on the server status, you will see the following nodes:

•

Access/request status

Nothing exciting, just a report on how much data has been sent out.

•

Process Status

Status about the Roxen server process, collected using the

getru-
sage()

 system call or via

/proc/

, the process file system.
NB: If you use Solaris and change

UID

, the server process won't be
allowed to receive this information!

•

Pipe system status

Here you can see the number of open outputs and inputs, the num-
ber of

mmap

:ped files (and their total size) and more.

•

Host names

The number of hostname lookup processes and the size of the host-
name lookup queue.

•

Memory cache system

Information about Roxen’s memory cache system.

•

Open files

Information about the active file descriptors.

VIRTUAL SERVER STATUS

If you focus on or unfold a virtual server, you will see a node called

Status and debug info

. If you unfold it, you will see the status infor-
mation for this virtual server, like sent data and number of requests.
This is the server’s part of the access/request count as seen in the
status node for the server as a whole.

Roxen Administrator’s Guide

105

CHAPTER 11

M

ODULES

A module is an addition to the server, which adds to or modifies its func-
tionality. There are a few different

types

 of modules. For a description of
the types see the first section of “How to make your own Roxen module”
on page 155.

AVAILABLE MODULES

For a complete listing of all the basic modules that come with Roxen see
table C.4.
Of these, there are of course a few required modules without which the
server won’t work as expected;

1.

Content-types module

This is the module that handles the mapping of extensions to con-
tent types. All other modules may also set the content type to whate-
ver they want to, so this is a fallback for those that don’t, like the
default filesystem module.
There must be a content types module present, but it can be repla-
ced.

Modules

106

Roxen Administrator’s Guide

2.

Main RXML Parser

This module takes care of all RXML parsing. If there are other parser
modules enabled, they are called from this module.
If there is no Main RXML Parse module present, there will be no
parsing at all.

3.

User database and security

The user database and security module manages the security. All
modules use this module . User-made modules may also use it to get
information about users or verify logins. The same goes for CGI and
Pike scripts. See page 119 and page 124 for more information.

CGI EXECUTABLE SUPPORT

This module can execute CGI-scripts both from a special directory and
on extension basis. It supports the CGI/1.1 interface. Read more about
this at

http://hoohoo.ncsa.uiuc.edu/docs/cgi/interface.html

.

Variables

•

Allow listing of /cgi-bin/ directory

If set, users can get a listing of all the files in the CGI-bin directory.

•

CGI-bin path

The location of this module in the namespace of the server. Usually,
this is

/cgi-bin/

 for compatibility reasons. By default, the module
will also service one or more extensions from anywhere in the name
space of the server.

•

CGI-script extensions

All files ending with these extensions, will be parsed as CGI-scripts.
For example, if you would like to run perl scripts, add

pl

 to this
comma separated list.

•

Extra environment variables

These are extras that can be sent to the script. The normal CGI vari-
ables will override these. The format is

NAME=value

.

Available modules

Roxen Administrator’s Guide

107

•

Pass environment variables

If this is set, all environment variables seen by Roxen will be passed
to CGI scripts, and not only those defined in the CGI/1.1 standard.
Roxen also adds the CGI enhancements if they are defined, see
below. This includes

LOGNAME

 and all the others. For a quick test,
you can try this script with and without this variable set, respectively:

#!/bin/sh

echo Content-type: text/plain
echo ’’
env

•

Raw user info

If set, the raw, unparsed, user information will be sent to the script,
in the

HTTP_AUTHORIZATION

 environment variable. This is not
recommended, but some popular ready-to-run scripts seem to need
it.
N.B.: This will give the scripts access to the password used, if any.

•

Search path

This is where the module should expect to find files in the real filesys-
tem.

•

Search path

This is where the module should look for the CGI-binaries in the
real file system.

•

Send decoded password

Setting this will cause the environment variable

REMOTE_PASSWORD

to be set to the decoded password value.

•

Send stderr to client

It you set this, standard error from the scripts will be redirected to
the client instead of the

../logs/debug/»config_dir_name«.1

 log.

•

Roxen CGI Enhancements

If set, the module will add a few extra environment variables on it’s
own, namely:

Modules

108

Roxen Administrator’s Guide

° VAR_variable_name or QUERY_variable_name

Parsed form variable, like CGI parse. The parsed value of the
form variable

variable_name

. That is, if you have an input
field in an HTML form on the form

<input name=name>

, and
the user types ”J. Random” in that field, the evironment variable

QUERY_name

 will be set to ”J. Random”.

° VARIABLES

A space separated list of all variables in the form request, if any.
This list consists only of the variable names.

° STATE_variable_name

The parsed value of the state

variable_name

. A state is pre-
pended to a URL

with the

add_state()

 function in the server.
If the state variable

module

 is set to

config.pike

, the envi-
ronment variable

STATE_module

 will be set to

config.pike

as well.

° STATES

A space separated list of all state variables if any.

See also “

µ

LPC script support” on page 123.

CLIENT LOGGER

This module simply logs the

user-agent

 field in the log file.

Variables

•

Client log file

This is the file into which all client names will be put.

EXPLICIT CLOCK

This module is only here as an example of a very simple location module.
It shows what time it is or perhaps approximately, since time shown can
be modified.

Variables

•

Mount Point

The location of the clock in Roxen’s virtual filesystem.

•

Time Modification

Time difference, in seconds, from the system clock.

Available modules

Roxen Administrator’s Guide

109

CONNECT METHOD IMPLEMENTATION

This module implements the

CONNECT

 method, useful for ”tunneling”
SSL connections. This is used in the Secure proxy server by Netscape
Communications. Read more on this subject in the draft at

http://www1.netscape.com/newsref/std/tunneling_ssl.html

.

Variables

•

Allowed Ports

Connections will only be made to ports within the range given here.
The syntax is

firstport-lastport

 or just plain

port

. It might
be desireable to disallow access to some ports, see the

Forbidden
Ports

 variable below. It is a comma separated list of strings

•

Connection refused message

The message to send when the requested host denies the connection.

•

Forbidden Ports

The syntax is as for

Allowed Ports

. This is a comma separated list
of strings too.

•

No such host message

The message to send when the requested host cannot be found.

CONTENTTYPES

This module takes care of all the normal file extension to Content-type
mapping.

Example 11.6)

Given the file

foo.html

, this module will set the content type to

text/html

.

Variables

•

Extensions

A list with extensions and their corresponding Content-types. The
format is as follows:

Modules

110

Roxen Administrator’s Guide

Extension type encoding

Example 11.7)

gif image/gif
gz STRIP application/gnuzip

STRIP

 means that Roxen should strip this extension, and try again.
Thus, a file named

roxen.tar.gz

 would get the Content-encoding

x-
gzip

 and in addition the Content-type

application/unix-tar

instead of just the Content-encoding.
In Roxen, you can include files containing more mappings by typing:

#include <etc/extensions>
#include <etc/more-ext>

etc/extensions

 is included by default.
The complete list of types can be found at

ftp://ftp.isi.edu/in-
notes/iana/assignments/media-types/media-types

.

DEEP THOUGHT

This is only an example of a parser module. It simply adds a new tag,

<dthought>

. The main reason for including it is to show the interested
programmer how to build a working module in Pike.
There are no variables to set in this module.

FILESYSTEM

The filesystem module is placed on a

Mount point

 in the name space of
the server, e.g.

/doc/

. This mount point is a ”mapped to” location in
the real file system, e.g.

/usr/spider/doc/

. The module makes files
from the real file system available in the virtual filesystem of your web ser-
ver.
The module tries to map all requests to files, e.g.:

/doc/s2.gif

maps to

/usr/spider/doc/s2.gif

and

/doc/tmp/test.html

maps to

Available modules

Roxen Administrator’s Guide

111

/usr/spider/doc/tmp/test.html

If more than one module have the same mount point, the server will call
them in priority order, and the first one that finds a file ”wins”. The end
result is that directory listing will be the union of the files in all location
modules that match the directory.
For example, if the (virtual) directory

/foo/

 is accessed, and one module
is mounted on

/foo/

, and gets its files from

/usr/www/foocusto-
mer/

, and another module is mounted on

/

, and gets its files from

/usr/www/html

, and there is a directory

foo

 in

/usr/www/html

, the
resulting list of files will be the union of all files in

/usr/www/foocusto-
mer

 and

/usr/www/html/foo

.

Variables

•

Mount point

This is where the module will be inserted in the name space of the
server.

•

Search path

This is where the module will search for files in the real filesystem.

•

Handle DELETE

The DELETE action can be used to delete files in the filesystem.

•

Handle PUT

PUT can be used to upload files to the filesystem.

•

Enable directory listings by default

If set, you have to create a file named

.www_not_browsable

 (or

.nodiraccess

) in a directory to

disable

 directory listings. If unset, a
file named

.www_browsable

 in a directory will

 enable

directory
listings.

•

Require authentication for modification

Only allow authenticated users to use methods other than GET and
POST. If unset, this filesystem will be a

very

 public one allowing
anyone editing access to files located on it.

•

Show backup files

If set to

No

, all files ending with ”~” or ”#” or ”.bak” will be exclu-
ded from directory listings, since they are considered backups.

Modules

112

Roxen Administrator’s Guide

•

Show hidden files

If set to

Yes

, all hidden files will be included in directory listings,
and become retrievable.

FTP GATEWAY

An FTP gateway, with support for remote proxies. It keeps connections
alive to the FTP sites, for improved speed.

Variables

•

Connection timeout

The time in seconds that a connection to a ftp server is kept, after the
last usage of it. When the time is up, the connection is closed.

•

Data connection timeout

Time in seconds before a data connection has timed out and cancel-
led.

•

Connection timeout

This is the time in seconds before a connection attempt is retried.

•

FTP transfer method

The method used to transfer files, active or passive. Both should
work, but if there is a problem with a site, try switching method.

•

Hold until response

Hold data transfer until response from server; if the server sends file
size, size will be sent to the http client. This may slow down access
some, but not noticeably.

•

Icons

If set, icons are used in the directory listings.

•

Location

This is the location in the virtual filesystem, and the default value is

ftp:/

. If set to anything else, all normal WWW-clients will fail using
it.
The useful case where it would work with something else is

 /ftp/

. If
you set this location, a link formed like this:

 <a href=”/ftp/my
.ftp.server/foo”>myftpserver

 will enable accesses to
local FTP servers through a firewall. Consider the security issues first
though.

Available modules

Roxen Administrator’s Guide

113

•

Logfile

This is the file name of the logfile. If left empty, no FTP logging will
take place.

•

Port timeout

How long tim,e in seconds, a data port is kept open without usage,
before it’s closed.

•

Remote gateway regular expressions

Here you can add redirects to remote gateways. If a file is requested
from a host matching a pattern, the gateway will query the FTP gate-
way server at the host and port specified. Hopefully, that gateway
will then connect to the remote ftp server. Currently, the remote
gateway has to be an http-ftp gateway like this one.

Example 11.1)

All hosts inside *.rydnet.lysator.liu.se have to
be accessed through lysator.liu.se
.*\.rydnet\.lysator\.liu\.se 130.236.253.11 80

Please note that these must be regular expressions.

•

Save dataports

Some FTP daemons have problems when the same port is reused.
Try this out on your own, it might help.
Show server information
Set this if you want the gateway to show the information that the ser-
ver gives when the gateway logs in.

GOPHER GATEWAY

This is a caching gopher gateway, useful for sites with firewalls and for
those who desire faster ”surfing speed”.

Variables

•

Location

The location of the Gopher gateway in the virtual filesystem.

HTTP-PROXY

This is a caching HTTP-proxy, which is useful for sites using firewalls. It’s
also useful as a site-wide cache, allowing for faster ”surfing” on the Inter-

Modules

114

Roxen Administrator’s Guide

net.

Variables

•

Location

The location of the proxy in the virtual filesystem. If set to any other
value than the default (

http:/

), all WWW clients will fail using it as a
proxy.
The useful case that might be useful and works is

/http/

. If you set
this location, a link formed like this:

mywwwserver

will enable accesses to local WWW-servers through a firewall. Please
consider security issues first though.

•

Logfile

This is the filename of the log to be used for proxy-accesses. If left
empty, no logging will take place.

•

Remote proxy regular expressions

Here you can add redirects to remote proxy servers. If a file is
requested from a host matching one of the patterns, the proxy will
query the proxy server at the host and port specified. Hopefully, that
proxy will then connect to the remote computer.

All hosts inside *.rydnet.lysator.liu.se have to
be accessed through lysator.liu.se
.*\.rydnet\.lysator\.liu\.se 130.236.253.11 80

•

External filter regular expressions

If the request matches one of these regular expressions, these are the
external filters to use.

LANGUAGE MODULE

This module enables you to have pages in several languages and easily
manage them. It also manages nice flags that represent the languages. It
enables the user to choose a preferred language and the module will au-
tomatically send pages in that language, without your having to care
about separate link farms for every language.
To make the language module tick you create separate files for every lang-
uage and name them as usual but with the addition of a language code at
the end, e.g.

index.html.en

,

index.html.se

,

index.html.fr

and so on.
Links on these pages are identical in every language version. The langu-

Available modules

Roxen Administrator’s Guide

115

age module sends the correct language version of requested pages if they
exist. This means that the module is also a simple directory parser modu-
le.
To see an example of an older version of the language module in action
visit

http://www.lio.se/

.

Variables

•

Default language

Well, if the user hasn’t selected any preferred language, this is what
will be used instead, of course. You did figure that out for yourself,
didn’t you? Also, if a file doesn’t have a language extension, this is
the language that Roxen will consider should be used on the page.

•

Directory index files

If any of these files are present in a directory, they will be returned
instead of the actual directory. It is a commaseparated list of strings.

•

Flag directory

°

language-code.selected.gif

; The image to use to indicate the
language of the page. It could for example be slightly larger
image.

°

language-code.available.gif

; The image that should be shown as
a link to the page in the language that the image represents. It
will of course only be shown if the page exists in that language.

°

language-code.unavailable.gif

; This image indicates that the
page doesn’t exist in the chosen language.

•

Languages

These are the languages that are supported by your web site. Each
row defines one language’s settings in this format:

lang-code lang-name [list-of-next-lang-codes]

(Note that the last field is optional.)
For example:

se Svenska en de
en English de
de Deutch en

The optional list of language codes is used when there is no page
present in the desired language. In the above example, if no swedish
page is found, Roxen will first try to find an english page. If one

Modules

116

Roxen Administrator’s Guide

doesn’t exist Roxen will search for a page in german. Not until this
last item has failed to appear will the default language be used. (And
if that fails, well, enter the ”No such resource” message!)
The language search is done in the following order:

°

The selected language, stored as a prestate.

°

The user’s client’s accept-headers, i.e. the languages that the user
has set in the preferences of his or her client.

°

The selected language’s

list-of-next-languages

 if any
exist.

°

The default language. If no language has been selected and no
page exists in the default language, Roxen will try the

list-of-
next-languages

 for the default language.

°

If there were no selected language, the default language’s

next-
language-codes

.

°

All the languages in this list, in the order they appear in the text
field.

Empty lines and lines beginning with

”#

” or ”

//”

 will be ignored.

•

Use config (uses prestate otherwise).

If set, Roxen will store the user’s chosen language in a client-side
Cookie, if possible. Unfortunately, Netscape may not reload the page
when the language is changed using Cookies, which means that users
may have to manually reload to see the page in the new language.
Prestates do not have this problem, but on the other hand they will
not be remembered between sessions.

ISMAP IMAGE-MAPS

This module gives Roxen the power to handle image maps. For further
discussion on image maps see “Image Maps” on page 73.
There is only one variable to set, the map file extension. This is by default
set to

.map

 but may of course be changed to anything you deem appro-
priate. All files named with this extension are then parsed as map files.

INDIRECT HREF

This is a database with URL aliases mapped to real URL:s. The module
adds a new tag and by using this new tag (whose name is defined in the

Available modules

Roxen Administrator’s Guide

117

variable Tagname) you can use the symbolic names instead of the real
URL. Using these definitions you only need to change in one place, here,
when a URL changes.

Variables

•

Indirect HREFs

The database itself. The syntax is as follows:

name=URL

Example 11.2)

infovav=http://www.infovav.se/

•

Tagname

The name of the tag used when inserting a URL from the database
cf. above).

<Tagname name=indirectname>foo</Tagname>

will be replaced with

foo

.

REDIRECT MODULE V2.0

This module redirects all accesses from one path in the virtual filesystem
to another server or path. This might for example be useful if you move
a directory tree to another server or path.
The module allows you to redirect requests for one file to another by
using regular expressions. The syntax has a three different forms;

regexp
to_URL

,

prefix to_URL

 or

exact file_name to_URL

.
A few examples:

Example 11.3)

Redirect requests in a certain directory to another

/from/.* http://to.infovav.se/to/%f

Example 11.4)

Redirect all requests ending with

.cgi

.*\.cgi http://cgi.foo.bar/cgi-bin/%p

Example 11.5)

Request in

/thb/

 is answered by one certain file

/thb/.* %u/thb_gone.html

Example 11.6)

Redirect requests to

/roxen/

 to another WWW server

Modules

118

Roxen Administrator’s Guide

/roxen/ http://www.roxen.com/

Example 11.7)

exact / /main/index.html

%f

 in the to-field will be replaced with the filename of the matched file,

%p

 will be replaced with the full path, and

%u

 will be replaced with this
server’s URL, useful if you for some reason wish to send a redirect instead
of doing it internally. The last example is a special case. If the first string
on the line is ”

exact”

, the filename following must match

exactly

.
You can use ”(” and ”)” in the regular expression to separate parts of the
from-pattern when using regular expressions. The parenthesised parts
can then be insterted into the to-string with $1, $2 etc.
More examples:

Example 11.8)

When requesting a file ending in

.class

 somewhere in a directory contain-
ing the partial path

/SE/liu/lysator/

, redirect the request to the same
file, but under

/java/classes/

.

.*/SE/liu/lysator/(.*)\.class /java/clas-
ses/SE/liu/lysator/$1.class

Example 11.9)

Redirect requests for files ending in

.en.html

 to a prestate-relative URL
instead.

/(.*).en.html /(en)/$1.html

Example 11.10)

Make sure that all ”ugly” requests for index files get redirected to the di-
rectory itself. This will cause Roxen to always send the index file you have
defined should be sent when the URL doesn’t end with a file.

(.*)/index.html %u/$1/

If the ”to-file” isn’t a full URL, the redirect will always be handled inter-
nally, so add

%u

 to generate an actual redirect, i.e. to return a new URL
to the browser.
N.B.: For reasons of speed; if the

from

 pattern does not contain any ”*”
characters, it will not be treated like a regular expression, but as a prefix
that must match exactly.

HTTP-RELAY

This module relays requests which the server cannot resolve to another

Available modules

Roxen Administrator’s Guide

119

server. This can for example be useful when you have moved information
to another server.

Variables

•

Module priority

This tells Roxen whether or not to immediately redirect the request.
If set to

last

, Roxen first tries to find the file in the ordinary way. If
set to

first

, the redirection will be immediate.

•

Relay host

The IP number of the host to relay to.

•

Relay port

The port number on the remote host to relay to.

•

Always redirect

All URL:s that match any of the patterns in this list will always be
redirected to the remote server, even if they match a pattern in the

Don’t redirect

 list.
The format for the list is very straightforward:

pattern pattern pattern

where each pattern is a string wich will be matched against the
requested URL. ’*’ denotes zero or more arbitrary character(s), and
’?’ is any single character.

•

Don’t redirect

Don’t relay requests for any of the patterns in this list, unless they
match one of the patterns in the

Always redirect

 list.

SECURE FILESYSTEM MODULE

The secure file system module works like the ordinary filesystem module.
It is a bit more secure since it allows regular expression security. There is
only one additional variable in this module. For a description of all the
other variables that you can set refer to “FileSystem” on page 110.

Variables

•

Security patterns

This is a list with entries on the form

filepattern: security
level=value

. Each security level can be one or more from this list:

° allow ip=pattern

Modules

120

Roxen Administrator’s Guide

° deny ip=pattern
° allow user=pattern

In patterns: * is one or more characters, ? is one character.
Please note the the expressions are tested from top and downwards,
so if you have

*: allow host = *

 as the first line, it won’t matter
whatever you add further down, everything will still be allowed.

FAST DIRECTORY PARSING

This is a simple and fast directory parsing module. It is very fast since the-
re are no fancy details as in the ordinary directory parser.
N.B.: To get any directory parsing at all, you must enable a directory par-
sing module.

Variables

•

Include readme files

If set to

Yes

, README-files (i.e.

README

,

README.html

) will
be included in the listing.

•

Index files

If any one of the files listed here is present in the directory requested,
it will be sent instead of the ”No such file” response.

DIRECTORY PARSING

This is a directory parsing module, with a Machintosh lookalike directory
tree.
N.B.: To get any directory parsing at all, you have to have a directory par-
sing module enabled, either this one or the simple directory module.
Features with this directory module includes folding/unfolding of direc-
tories, module virtual locations shown in the directory tree. Also, if you
have overlapping modules (i.e. two filesystems mounted on the same lo-
cation) the content of all of them will be shown.

Variables

•

Separate hosts

If this is set, the fold/unfold status will be different for each host
accessing the server. Beware that this uses quite a lot of memory.

Available modules

Roxen Administrator’s Guide

121

•

Index files

If any one of the files listed here is present in the directory requested,
it will be sent instead of the directory listing.

•

Allow directory index file overrides

If

Yes

, you can force Roxen to send the directory listing even if
there is an index file present by adding a dot to the request. This is
very useful for ”debugging” whil building the site or trying out new
scripts. However, it may be seen as a security hole and you can there-
fore turn this feature off if you wish.

Example 11.11)

http://www.roxen.com/.

•

Include file size

If

Yes

, file sizes will be included in the directory listings.

•

Include readme files

If

Yes

, README-files (i.e.

README

,

README.html

) will be
inserted before the listing if they exist. Below there’s an example of
the result.

STATUS MONITOR

The status monitor simply shows the number of open connections and
how much data there is to send. Note that this module only works with
Netscape and probably the Microsoft Internet Explorer because it uses
dynamic document loading.

Variables

•

Mountpoint

The file to access to get the status information.

•

Maximum bar length

The maximum length of the bar graph bars (in pixels).

•

Minimum scale factor

The minimum scaling factor to use. The actual maximum value of
the graph will be at least (

minfact

 *

maxlength

).

Modules

122

Roxen Administrator’s Guide

•

Scale step

The scaling factor will increment with 'Scale step' each time the max
value has gone off the scale. The actual algorithm for the scaling fac-
tor is:

float factor, tmp_factor;
factor = minfact;

while((value/maxlen) > factor)
factor *= scalestep;

barlength = value / factor;

•

Delay between updates

The delay between each update of the information (in seconds).

MAIN RXML PARSER

The main module for parsing RXML.

Variables

FIGURE 11.1

Example of the pretty directory

Available modules

Roxen Administrator’s Guide

123

•

Access log

If unset, the

<accessed>

 tag will not work and no access log will
be needed. This will save three file descriptors.

•

Access log file

When a file is accessed, a counter in this file is increased. This will
then be used in the

<accessed>

 tag.

•

Extensions to parse

Parse all files ending with these extensions. You can add as many as
you want. The returned type will always be

text/html

.

•

Maximum file size

Files that is larger than this (size in kilobytes) won’t be parsed, to
save time.

•

SSI support: NCSA and Apache SSI support

If set, Roxen will parse NCSA / Apache server side includes.

•

SSI support: execute command

If set and if server side include support is enabled, Roxen will accept
the NCSA / Apache

<!--#exec cmd=\"XXX\"-->

 server side
include.
N.B.: Inserting command- and CGI script results block the server.

TIMESTAMP

A sample extension type module. If you open a file with the extension

.ti-
mestamp

, the time stamp, the last modification date (

mtime

) of the file
without that extension will be shown.

Variables

•

Mount Point

The location in Roxens virtual file system.

•

Time Modification

Time difference in seconds from the system clock.

µ

LPC SCRIPT SUPPORT

This module takes care of users’ Pike scripts. Scripting with Pike works
somewhat like CGI, with the exception that scripts are handled internally

Modules

124

Roxen Administrator’s Guide

in the server. Pike scripts are thus much faster, but it blocks the server
while executing.
Note that though the module is still called

µ

LPC script module, the
scripting language is Pike really.

Variables

•

Extensions to parse

Files ending with any of these extensions, will be handled as Pike-
scripts. It’s a comma separated list.

•

Maximum evaluation time

The maximum execution time, in seconds, for a script. This may be
changed in the script, but it is good for stopping stupid program-
ming errors like

for i=0;
while (i<=0)

i--;

This option might not be available to you.

USER DATABASE AND SECURITY

The user database and security module manages the security in Roxen. It
uses the normal system password and user database to validate users. The
module also maintains the user database for all other modules in Roxen,
e.g. the user filesystem module.

Variables

•

Password database request method

What method to use to maintain the passwd database.

getpwent

 is
very slow but it should work on all systems and it will work with

/etc/shadow

, that is if Roxen is allowed to read it. It will also ena-
ble automatic password information updates. Every ten seconds the
information about one user from the passwd database will be upda-
ted. A call will also be performed if a user is not in the in-memory
copy of the passwd database. This choice may not be available on
your system.
Other methods are

ypcat

,

niscat

 (on Solaris 2.x systems) and

file

. If you choose

none

, all authentication requests will succeed
regardless of use name and password.

Available modules

Roxen Administrator’s Guide

125

•

Password database file

The password file that is used for authentication checks if the met-
hod is set to

file

.

•

Password command arguments

If you wish to send extra arguments to either

ypcat

 or

niscat

.
For

ypcat

 the full command line will be;

ypcat »arguments« passwd

and for

niscat;

niscat »arguments« passwd.org_dir

If you do not want the

passwd

 part, you can end your arguments
with ”#”.

•

Turn }{| into åäö.

If set, }{| will become åäö in the Real Name field of the userinfo
database. This is quite useful in Sweden.

•

Strip finger information from fullname

If enabled, this will strip everything after the first ”,” character from
the GECOS field of the user database.

USER FILESYSTEM

The user file systems works more or less like a file system, with the excep-
tion that it uses the user database to get information about the home di-
rectories of users. This is then used to fetch the files by appending a
public directory path.
This means that you have to have the user database enabled or this mo-
dule won’t work as expected.

Variables

•

Banish list

None of the users in this comma separated list is considered valid.
This can be used to selectively shut off access for certain users, or to
disable stupid loops, like if the home dir of the user

www

 is

/usr/www/

, and most html files are located in the

html/

 direc-
tory, which also happens to be the public directory. This would make

/~www/

 the same as

/

.

Modules

126

Roxen Administrator’s Guide

•

Password users only

Only users who have a valid password on the system are allowed to
have public directories.

•

Public directory

This is where the public directory is located. If the directory is set to

.public

, the module has the mountpoint

 /~

, and the file

/~per/foo

is accessed, and the home directory of Per is

 /home/per

, the
module will try to find the file or directory

/home/per/.public/foo

.

•

Only owned files

If set, only files whom the user really owns can be sent. This enhan-
ces security, but may be a pain when several users are working in one
user’s directory on a project.

All variables except

Search path

 are inherited from the file system mo-
dule. Refer to “FileSystem” on page 110 for the other variables.

BOFH MODULE

This is a very simple module that only adds the tag

<bofh>

. What it does
is that it inserts a random ”bofh” excuse, for whatever reason...
Usable when sending pages as a result of an unsuccessful request.
BOFH is an acronym for Bastard Operator From Hell.

X IMAGE TAG

The XIMG module adds a new tag,

<ximg>

, or replaces the

 tag.
It can automatically calculate the height and width of an image which
provides for faster loading. It also automatically sends

.jpg

 or

.pjpg

 ima-
ges if the browser supports them, and there is a

.jpg

 or

.pjpg

 version av-
ailable.

Variables

•

Replace tag

If you set this, the

 tag will be replaced. If not set, the module
adds the tag

<ximg>

 tag. When you have changed this variable you
either have to R

ESTART

 Roxen or R

ELOAD

 the module for the
change to take effect.

Available modules

Roxen Administrator’s Guide

127

•

Calculate height and width

If set, the size of the image is calculated on the fly, using the .gif ver-
sion. This operation takes time so it might be necessary to disable
this feature to avoid slowing down the system.

WAIS GATEWAY

This module allows Roxen to act as a caching WAIS Gateway. It can be
useful for sites with firewall installations and as well as for everyone who
wishes to experience faster ”surfing”.

Variables

•

Location

The mountpoint of the gateway in the virtual filesystem.

•

Cache wais files

Enables the caching of wais files

•

Connection refused messsage

Set this variable to the path of the file that should be sent to the user
upon a ”connection refused” error.

TAB LIST

This module is used to automatically generate tab lists, like the one on
the top of the Roxen configuration interface.

Variables

•

Mount point

This is the place where the module resides in the virtual file system.

•

Font path

Is where the fonts reside on your system. This path is relative the
mount point.

•

Default font

The font that should be used when the module generates the tablists.

.HTACCESS SUPPORT

Previously, this used to be part of the Roxen core. Now, to further mo-
dularise Roxen, support for

.htaccess

 files has been placed in a sepa-

Modules

128

Roxen Administrator’s Guide

rate module, meaning that you can turn this functionality on and off at
will. You will find more on .htaccess in XXXref.

Variables

•

Cache the failures

If this is set, all attempts to find a

.htaccess

 file are logged, failu-
res as well as successful attempts. If you run a busy site it is advanta-
geous to set it so that problems can be quickly traced. The problem
with this is that users has to press R

ELOAD

 in their browser in order
to get an updated

.htacces

s file parsed.

USER LOGGER

This is a module that logs the accesses for each user in their home direc-
tories if, and only if, they create a file named

Accesslog

 in that directory
and also set write permissions on this file so that Roxen may peruse it.
This can save time for logging, especially when there is a large amount of
users on your system.

Variables

•

Maximum number of open log files

Since any one user’s pages are typically accessed several times in a
row, it is inefficient to close the files after every logging. This number
tells Roxen how many user’s log files should be allowed to be open at
the same time.

•

Log file garb timeout

This should be set to an integer number and is the number of
seconds after which the file should be closed.

•

Only log in user log

If this one is set, no logging in the normal logs will be done.

•

Private logs

These directories want their own log files. Use either a specific path,
or a pattern.

/foo/

 will check if there is a

/foo/AccessLog

, while

/users/%s/

 will check for the file

AccessLog

 in all subdirectories of

/users/

. All paths are in the virtual filesystem, not the real one.

FASTCGI

This module has support for the Fast-CGI interface. More information

Available modules

Roxen Administrator’s Guide

129

can be found on

http://www.fastcgi.com/

.

Variables

•

Handle *.fcgi

This flag tells Roxen to treat all files with the extension

 .fcgi

 as well
as the files in the

cgi-bin/

 directory as fast-CGI scripts. This is a way
of emulating the behaviour of the NCSA server. In the CGI module
you can set what file extensions are to be handled.

For the other variables, see “CGI executable support” on page 106.

TABLIFY

This is parser module that can generate HTML2.0 tables from, for ex-
ample, a set of tab separated fields. It defines a tag;

<tablify>

 and the-
re are no variables to set. The tag is a container, i.e. text between

<tablify>...<tablify>

 is parsed and put into a table.

INDEX FILES

This is a directory module which you can use if you absolutely do not
wish to have Roxen send directory listings. If no index file is present in
the requested directory, the ”No such file” message will be sent back to
the client.

Variables

•

Index files

This is a list of file names that should be sent when a directory is
requested. If a file with any of these names is present, it will be sent
to the client upon request of the directory.

LOGGING DISABLER

This module can be used for turning off logging for certain resources, ba-
sed on regular expressions.

Variables

•

No logging for

Requests for any file whose virtual file name matches this pattern will
not be logged.

Modules

130

Roxen Administrator’s Guide

•

Logging for

Files matching this regular expression will be logged unless they also
match the pattern in the

No logging for

 field.

CONFIGURATION INTERFACE

This module can be used to access the configuration interface from loca-
tion in the normal file system, i.e. acting like any other file system. This
can be very useful if you wish to do remote configuration of a server that
sits behind a firewall.

Variables

•

Mount point

Where the configuration interface should exist in the virtual file sys-
tem.

•

Allow anonymous read-only access

If set, anyone will be able to connect to, and read the configuration
interface settings. This can be useful if you wish people to be able to
learn from your work. Normally it should be off though.

LYSATOR SPECIFIC PARSING

This is a very special module that reflects needs and also some opinions
of the Lysator Computer Society. For example it can be set up to filter
away the horrible

<blink>

 tag from user’s pages...
The module adds the tags

<icons>

,

<blink>

, and

<lysator>

. It also
adds the containers

<icon>

 and

<picture>

.
Look at

http://www.lysator.liu.se/

 to see this module working. The
module is, among other things, used to create the first page where there
are lots of small icons.
Note that this module might not work on your system without some
tweaking of the code but you can try it and maybe learn something from
working with it. The tag is mainly included as an example of how one can
make very site-specific tags.

Variables

•

Icon size

The icons used at lysator are all squares and this number tells Roxen
how big an icon should be, no matter the original size.

Secure sockets layer, SSL

Roxen Administrator’s Guide

131

•

Icon has borders

If set, it gives borders to the icons.

•

Icon pre-url

This is the icon directory. It is prepended to icon URL:s.

•

Blinking enabled

If you set this, Roxen will not filter

<blink>

 tags. This is of course
only valid when this module is enabled. Roxen without the Lysator
module does not filter

<blink>

 tags.

SECURE SOCKETS LAYER, SSL

Using SSL is a quite delicate operation. To use SSL you have to obtain a
verification certificate and an SSLeay implementation. The latter is inclu-
ded with Roxen, so we urge you to read that documentation before con-
figuring Roxen to use an SSL port. Note that the we do not provide any
printed documentation for this, we only distribute it in its electronical
form.
To obtain the certificate, you have to contact a verification institute, for
example Verisign.
Follow these steps to set up Roxen-SSL on your machine;

1.

Install the SSLeay package.

This must be done before you start installing Roxen or it won’t
work. Follow the instructions in the SSLeay documentation and
leave the default paths alone. This is because Roxen expects the files
to in these default locations. If you start with a clean, new Roxen this
is done during start-up and compilation.

2.

Create a certificate and a private key.

This can be done either by contacting one of the verification institu-
tes or by temporarily creating a dummy certificate. A dummy certifi-
cate is a valid certificate but it’s worthless since it hasn’t been verified
by the proper authorities. It is necessary to have something with
which to start though.
Follow the instructions for creating certificates and private keys in
the SSLeay documentation.

Modules

132

Roxen Administrator’s Guide

3.

Install and start up Roxen.

Configure port(s) for one or more virtual servers to use SSL. Use the
instructions in

Listen Ports...

 under the node

Server Variables

.

.HTACCESS

If you use .htaccess you will place a special file in every directory detailing
the access rights for that directory. The name of the file should be

.ht-
access

. .htaccess was originally implemented by NCSA for use with
their WWW server, NCSA Httpd.

SECURE TRANSMISSION

.htaccess files reside in directories that are open for reading but since the
filename begins with a dot, Roxen considers them to be hidden files and
thus doesn’t send them. Be sure to not set the wrong value in the direc-
tory parsing module.
The transmission of login name and user id is uuencoded and according
to NCSA is roughly as secure as your average telnet connection establish-
ment.

HOW TO RESTRICT ACCESS

Create a file named

.htaccess

 in the directory that you wish to protect.
The file should look something like this;

AuthUserFile /fullpath/.htpasswd
AuthGroupFile /fullpath/.htgroup
AuthName ByPassword
AuthType Basic

<Limit GET PUT POST>
require user »username«
</Limit>

The first four lines contain the definitions of how we should protect and
the last three tell us what to check when someone tries to request the pro-
tected material.

AuthUserFile

 and

AuthGroupFile

 indicate where the password file

.htaccess

Roxen Administrator’s Guide

133

and the group file are respectively. They must both be fully qualified Unix
paths. If the group file doesn’t exist put

/dev/null

 there instead.

AuthName

 can be anything you want. It gives the

Realm name

 for which
the protection is provided. This name is usually given when a browser
prompts for a password, cf. “<RETURN>” on page 59. Browsers save
this information along with the URL so that passwords entered for a cer-
tain realm are used when that realm once again demands authentication.
If you don’t set this to something it will default to

ByPassword

.

AuthType

 should be set to Basic, since we are using Basic HTTP
Authentication.
In the limiting section we can set up protection against all or a few of the
available methods for information transfer. For normal HTTP traffic the
method GET is used.
What about the password file then? It is very easy to create:

htpasswd -c /fullpath/.htpasswd username

You will then be asked to enter a password twice and that’s it. Now look
in the newly created file

.htpasswd

 and you will see

username:encryptedpassword

Adding more user/password pairs is easy; just do:

htpasswd /fullpath/.htpasswd otherusername

once for every new user you wish to add. Do not include

-c

 since it clears
the file (unless you wish to do so of course).
When many users are allowed different access rights in different parts of
the WWW tree it can be useful to group users together. These groups are
set up in the file

.htgroup

 which you create in a proper place, looking
something like this:

GenerationX: spike shaq martin rod

You can of course add as many groups as you like to this file. Now anyone
in a group can use his or her individual username and password to get the
same access rights as the others when entering a group limited realm.
Read all about this subject at

http://hoohoo.ncsa.uiuc.edu/docs/tu-
torials/user.html

.

Modules

134

Roxen Administrator’s Guide

R

O X E N

P

R O G R A M M E R

’

S

G

U I D E

Detta dokument har framställts med FrameMaker 4.0.4

Roxen Programmer’s Guide 137

CHAPTER 12

T

HE

 P

IKE

 Q

UICK

G

UIDE

INTRODUCTION

This is an extremely brief introduction to Pike, Roxen’s native language.
It is not a programmer’s handbook as such, as that would take up far too
much space, but a reference for the budding Roxen enhancer.
This is not an introduction to programming, we assume that you know
how to program. Later we will publish a nice Pike manual, with tutorials
and stuff.
Pike is an object-oriented language and it has a quite C-like syntax, and
many of you C/C++ programmers will feel right at home. However, do
look out for the differences!
Pike is not a compiled language, it is interpreted, a bit like Perl. Like Perl
it has very good string handling capabilities and quite not like Perl it is a
more orthogonal language, i.e. you cannot write cryptic programs as ea-
sily as in Perl.

PRINTING TEXT

Let’s begin by writing a small Pike program:

The Pike Quick Guide

138 Roxen Programmer’s Guide

int main()
{

write(”hello world\n”);
return 0;

}

Let’s call this file

hello_world.pike

, and then we try to run it:

$ pike hello_world.pike
hello world
$

Pretty simple, eh? Now let’s see what everything means:

int main()

main()

 is a function identifier. Before the function name we have placed
the declaration of the type of value it returns, in this case

int

 which is
the integer type in Pike. The empty space between the parenthesises in-
dicates that this function takes no arguments.
A Pike program has to contain at least one function, the

 main()

 func-
tion. This function is where program execution starts and thus the func-
tion from which every other function is called, directly or indirectly. We
can say that this function is called by the operating system.
Pike is, as many other programming languages, built upon the concept
of functions, i.e. what the program does is separated into small portions,
or functions, each performing one (perhaps very complex) task. A func-
tion declaration consists of certain essential components; the

type

 of the
value it will return, the

name

 of the function, the

parameters

, if any, it ta-
kes and the body of the function. A function is also a part of something
greater; an object. You can program in Pike without caring about objects,
but the programs you write will in fact be objects themselves anyway.
Now let’s examine the body of

main()

;

{
write(”hello world\n”);
return 0;

}

Within the function body, programming instructions, statements, are
grouped together in blocks. A block is as series of statements placed bet-
ween curly brackets. Every statement has to end in a semicolon.

write(”hello world\n”);

The first statement is a call to the builtin function

write()

. This will ex-
ecute the code in the function

write()

 with the arguments as input da-

Choices aren’t hard to make

Roxen Programmer’s Guide 139

ta. In this case, the constant string

hello world\n

 is sent. Well, not
quite. The ”\n” combination corresponds to the newline character.

write()

 then writes this string to

stdout

 when executed.

Stdout

 is
the standard Unix output channel, usually the screen.

 return 0;

This statement exits the function and returns the value zero. Any state-
ments following the return statements will not be executed.

IMPROVING OUR PROGRAM

Typing

pike hello_world.pike

 to run our program may seem a bit
unpractical. Fortunately, Unix provides us with a way of automating this
somewhat. If we modify

hello_world.pike

 to look like this:

#!/usr/local/bin/pike

int main()
{

write(”hello world\n”);
}

And then we tell Unix that

hello_world.pike

 is executable:

$ chmod +x hello_world.pike

Now we can run

hello_world.pike

 without having to bother with run-
ning pike;

$./hello_world.pike
hello world
$

N.B.: The hash bang (

#!

) must be first in the file, not even whitespace is
allowed to precede it! The file after the hash bang must also be the com-
plete filename to the Pike binary, and it may not exceed 30 characters.

CHOICES AREN’T HARD TO MAKE

FURTHER IMPROVEMENTS

Now, wouldn’t it be nice if it said ”Hello world!” instead of ”hello
world” ? But of course we don’t want to make our program ”incompa-
tible” with the old version. Someone might need the program to work

The Pike Quick Guide

140 Roxen Programmer’s Guide

like it used to. Therefore we’ll add a

command line option

 that will make
it print the old ”hello world”. We have to give the program the ability to
choose what it should output based on the command line option. This is
what it could look like;

#!/usr/local/bin/pike

int main(int argc, array (string) argv)
{

if(argc > 1 && argv[1]==”--traditional”)
{

write(”hello world\n”); // old stype
}
else
{

write(”Hello world!\n”); // new style
}
return 0;

}

Let’s run it;

$ chmod +x hello_world.pike
$./hello_world.pike
Hello world!
$./hello_world.pike --traditional
hello world
$

What is new in this version, then?

 int main(int argc, string *argv)

In this version, the space between the parenthesises has been filled. What
it means is that

main()

 now takes two arguments. One is called

argc

,
and is type

int

. The other is called

argv

 and is an array of strings. This
could also be represented as

string *argv

, but that is harder to read
and often confuses programmers used to other languages. The asterisk
means that the argument is an array, in this case an array of strings.
The arguments to

main()

 are taken from the command line when the
Pike program is executed. The first argument,

argc

, is how many words
were written on the command line (including the command itself) and

argv

 is an array formed by these words.

Data Types

Roxen Programmer’s Guide 141

if(argc > 1 && argv[1] == ”--traditional”)
{

write(”hello world\n”); // old stype
}
else
{

write(”Hello world!\n”); // new style
}

This is an if-else statement that will execute what’s between the first set
of brackets if the expression between the parentheses evaluates to

true

,
i.e. not zero. Otherwise the block after

else

 will be executed. Let’s look
at that expression;

 argc > 1 && argv[1] == ”--traditional”

Loosely translated, this means:

argc

 is greater than one, i.e. there was
something in addition to the program invocation on the command line,
and the second element in the array

argv

 is equal to the string

--tra-
ditional

.
Also note the comments:

 write(”hello world\n”); // old stype

The // begins a comment which continues to the end of the line. Com-
ments lets you type in text in the program which will be ignored by the
computer. This is to inform whoever might read your code (like yourself)
of what the program does to make it easier to understand. Comments are
also allowed to look like C-style comments, i.e. /*....*/, which can ex-
tend over several lines. The // comment only extends to the end of the
line.

DATA TYPES

As you remember from the first examples we have to indicate the type of
value returned by a functions or contained in a variable. We used integers
(int), strings (string), and arrays (with the * notation). The others are

mapping

,

mixed

,

void

,

float

,

multiset

,

function

,

object

,

program

.
Neither

mixed

 nor

void

 are really types,

void

 signifies that no value
should be returned and

mixed

 that the return value can be of any type,
or that the variable can contain any type of value.

The Pike Quick Guide

142 Roxen Programmer’s Guide

Function, object and program are all types related to object orientation.
We will not discuss the last three in any great detail in this short Pike
overview. You can, however, read more at

http://pike.infovav.se/

.
There you’ll also find more details on the other data types and the pos-
sible operations that are possible to perform on each of them.

INT

The integer type stores an integer.

FLOAT

This variable type stores a floating point number.

ARRAY

Arrays are basically a place to store a number of other values. Arrays in
Pike are allocated blocks of values. They are dynamically allocated and do
not need to be declared as in C. The values in the array can be set when
creating the array like this,

arr=({1,2,3});

or anytime afterwards like this,

arr[index]=data;

where

index

 is an integer, i.e. entry number

index

 is set to

data

. The
first index of an array is 0 (zero). A negative index will count from the
end of the array rather than from the beginning, -1 being the last ele-
ment.
Note that arrays are shared and use reference counts to keep track of their
references. This will have the effect that you can have two variables poin-
ting at the same array, and when you change an index in it, both variables
will reflect the change.
To indicate an array of a certain type of value you can use the * operator,
e.g.

string *i;

which tells us that i is an array of strings. The * binds to the variable na-
me, not to the type, so writing

string *i, j;

will declare one array of strings and one string. However, it’s much clea-

Data Types

Roxen Programmer’s Guide 143

rer to write

array (string) i;

STRING

A string contains a sequence of characters, a text, i.e. a word, a sentence,
or a book. Note that this is not simply the letters A to Z; special charact-
ers, null characters, newlines and so on can all be stored in a string. Any
8-bit character is allowed. String is a basic type in Pike, as opposed to C
where strings are represented by an array of char. This means that you
cannot assign new values to individual characters in a string.
Also, all strings are ”shared”, i.e. if the same string is used in several pla-
ces, only one will be stored in memory.
When writing a string in a program, you enclose it in doublequotes. To
write special characters you need to use the following syntax;

•

\n newline

•

\r carriage return

•

\t tab

•

\b backspace

•

\" " (quotation character)

•

\\ \ (literal backslash)

MAPPING

A mapping is basically an array that can be indexed on any type, not just
integers. It can also be seen as a way of linking data (usaully strings) to-
gether. It consists of a lot of index-data pairs which are linked togeter in
such a way that

map[index1]

 returns

data1

.
A mapping can be created in a way similar to arrays;

map=([five:good,ten:excellent]);

You can also set that data by writing

map[five]=good

.
If you try to set an index in a mapping that isn't already present in the
mapping it will be added as well.

MULTISET

A multiset is basically a mapping without data values. When referring to

The Pike Quick Guide

144 Roxen Programmer’s Guide

an index of the multiset a 1 (one) will be returned if the index is present,
0 (zero) otherwise.

A MORE ELABORATE EXAMPLE

To illustrate several of the fundamental points of Pike we will now intro-
duce an example program, that will be extended as we go. We will build
a database program that keeps track of a record collection and the songs
on the records.
In the first version we hard-code our ”database” into the program. The
database is a mapping where the index is the record name and the data is
an array of strings. The strings are of course the song names. The default
register consists of one record.

#!/usr/local/bin/pike

mapping (string:array(string) records = ([”Star
Wars Trilogy” :

({”Fox Fanfare”,
”Main Title”,
”Princess leia’s Theme”,
”Here They Come”,
”The Asteriod Field”,
”Yoda’s Theme”,
”The Imperial March”,
”Parade of th Ewoks”,
”Luke and Leia”,
”Fight with Tie Fighters”,
”Jabba the Hut”,
”Darth Vader’s Death”,
”The Forest Battle”,
”Finale”})

]);

We want to be able to get a simple list of the records in our database. The
function

list_records

 just goes through the mapping

records

 and
puts the indices, i.e. the record names, in an array of strings,

record_names

. By using the builtin function

sort

 we put the record
names into the array in alphabetical order which might be a nice touch.
For the printout we just print a header, ”Records:”, followed by a newli-

A more elaborate example

Roxen Programmer’s Guide 145

ne. Then we use the loop control structure

for

 to traverse the array and
print every item in it, including the number of the record, by counting
up from zero to the last item of the array. The builtin function

sizeof

gives the number of items in an array. The printout is formatted through
the use of

sprintf

 which works more or less like the C function of the
same name.

void list_records()
{

int i;
array (string) record_names=sort(indices

(records));

write(”Records:\n”);
for(i=0;i<sizeof(record_names);i++)

write(sprintf(”%3d: %s\n”, i+1,
record_names[i]));

}

If the command line contained a number our program will find the re-
cord of that number and print its name along with the songs of this re-
cord. First we create the same array of record names as in the previous
function, then we find the name of the record whose number (

num

) we
gave as an argument to this function. Next we put the songs of this record
in the array

songs

 and print the record name followed by the songs,
each song on a separate line.

void show_record(int num)
{

int i;
array (string) record_names = sort(indices

(records));
string name=record_names[num-1];
array (string) songs=records[name];

write(sprintf(”Record %d, %s\n”,num,name));
for(i=0;i<sizeof(songs);i++)

write(sprintf(”%3d: %s\n”, i+1, songs[i]));
}

The main function doesn’t do much; it checks whether there was anyth-
ing on the command line after the invocation. If this is not the case it calls
the

list_records

 function, otherwise it sends the given argument to
the

show_record

 function. When either one of those functions is done
the program just quits.

The Pike Quick Guide

146 Roxen Programmer’s Guide

int main(int argc, array (string) argv)
{

if(argc <= 1)
{

list_records();
} else {

show_record((int) argv[1]);
}

}

TAKING CARE OF INPUT

Now, it would be better and more general if we could enter more records
into our database. Let’s add such a function and modify the

main()

function to accept ”commands”.

ADDRECORD()

Using the builtin function

readline()

 we wait for input which will be
put into the variable

record_name

. The argument to

readline()

 is
printed as a prompt in front of the user’s input. Readline takes everything
up to a newline character.
Now we use the control structure

while

 to check whether we should
continue inputting songs. The

while(1)

 can be interpreted as ”while
everything is ok”. When something has been read into the variable

song

it is checked. If it is a ”.” we return a null value that will be used in the
while statement to indicate that it is not ok to continue asking for song
names. If it is not a dot, the string will be added to the array of songs for
this record, unless it’s an empty string.
Note the ”+=” operator. It is the same as saying

records[record_name]=records[record_name]+({song})

.

A more elaborate example

Roxen Programmer’s Guide 147

void add_record()
{

string record_name=readline(”Record name: ”);
records[record_name]=({});
write(”Input song names, one per line. End with
’.’ on it’s own line.\n”);
while(1)
{

string song;
song=readline(sprintf(”Song %2d: ”,

sizeof(records[record_name])+1));
if(song==”.”)

return;
if (strlen(song))

records[record_name]+=({song});
 }
}

MAIN()

The main function now does not care about any command line argu-
ments. Instead we use

readline()

 to prompt the user for instructions
and arguments. The available instructions are ”add”, ”list” and ”quit”.
What you enter into the variables

cmd

 and

args

 is checked in the

switch()

 block. If you enter something that is not covered in any of
the

case

 statements the program just silently ignores it and asks for a
new command.
In a

switch()

 the argument (in this case

cmd

) is checked in the

case

statements. The first

case

 where the expression equals

cmd

 (the argu-
ment) then executes the statement after the colon. If no expression is
equal, we just fall through without any action.
The only command that takes an argument is ”list” which works like the
first version of the program; if there is an argument that record is shown
along with its songs, and if there isn’t the program sends a list of the re-
cords in the database. When the program returns from either of the lis-
ting functions, the

break

 instruction tells the program to jump out of
the

switch()

 block.
”Add” of course turns control over to the function descibed above.
If the command given is ”quit” the

exit(0)

 statement stops the execu-
tion of the program and returns 0 (zero) to the operating systems, telling

The Pike Quick Guide

148 Roxen Programmer’s Guide

it that everything was ok.

int main(int argc, string * argv)
{

string cmd;
while(cmd=readline(”Command: ”))
{

string args;
sscanf(cmd,”%s %s”,cmd,args);

switch(cmd)
{

case ”list”:
if((int)args)
{

show_record((int)args);
} else {

list_records();
}
break;

case ”quit”:exit(0);

case ”add”:add_record();
break;

}
}

}

COMMUNICATING WITH FILES

Now if we want to save the database and also be able to retrieve previous-
ly stored data we have to communicate with the environment, i.e. with
files on disk.
Now we have to introduce objects. To open a file, be it for writing or for
reading, we need to use the builtin program

/precompiled/file/

. A
program is an object. An object can be

cloned

, i.e. we can create an object
just like it and associate it with the physical file in question. The methods
and variables in the file object enables us to perform actions on the asso-
ciated file. You can find more on this at

http://pike.infovav.se/

. The
methods we need to use are

open

,

read

,

write

 and

close

.

A more elaborate example

Roxen Programmer’s Guide 149

SAVE()

First we clone the program

/precompiled/file/

 to the object

o

. Then
we use it to open the file named

file

 for writing, using the fact that if
there’s an error during opening,

o

 will return a false value which we can
detect and act upon by exiting. The arrow operator is what you use to
access methods and variables in an object.
Note that it is perhaps easier to understand if we write

o=new(File); // Roxen addition

instead of using the somewhat bulky

clone()

 expression.

File

 is a
constant that can be used almost anywhere in cases like this.
N.B.: when inheriting you must use

/precompiled/file

.
If there’s no error we use yet another control structure,

foreach

, to go
through the mapping

records

 one record at a time. We precede record
names with the string ”Record: ” and song names with ”Song: ”. We also
put every entry, be it song or record, on its own line by adding a newline
to everything we write to the file.
Finally, remember to close the file.

The Pike Quick Guide

150 Roxen Programmer’s Guide

void save(string file)
{

string name, song;
object o;
o=clone((program)”/precompiled/file”);

if(!o->open(file,”wct”))
{

write(”Failed to open file.\n”);
return;

}

foreach(indices(records),name)
{

o->write(”Record: ”+name+”\n”);
foreach(records[name],song)

o->write(”Song: ”+song+”\n”);
}

o->close();
}

LOAD()

The

load

 function begins much the same, except we open the file named

file

 for reading instead. When receiving data from the file we put it in
the string

file_contents

. The somewhat cryptic argument given to
the method

o->read

 means that the reading should not end until the
end of the file.
After having closed the file we initialise our database, i.e. the mapping

records

. Then we have to put

file_contents

 into the mapping and
we do this by splitting the string on newlines (cf. the

split

 operator in
Perl) using the division operator. Yes, that’s right: by dividing one string
with another we can obtain an array consisting of parts from the first. And
by using a

foreach

 statement we can take the string

file_contents

apart piece by piece, putting each piece back in its proper place in the
mapping

records

.

A more elaborate example

Roxen Programmer’s Guide 151

void load(string file)
{

object o;
string name=”ERROR”;
string file_contents,line;

o=clone((program)”/precompiled/file”);
//or o=new(File);
if(!o->open(file,”r”))
{

write(”Failed to open file.\n”);
return;

}

file_contents=o->read(0x7fffffff);
o->close();

records=([]);

foreach(file_contents/”\n”,line)
{

string cmd, arg;
if(sscanf(line,”%s: %s”,cmd,arg))
{

switch(lower_case(cmd))
{

case ”record”:
name=arg;
records[name]=({});
break;

case ”song”:
records[name]+=({arg});
break;

}
}

}
}

MAIN()

main()

 remains almost unchanged, except for the addition of two

case

statements with which we now can call the load and save functions. Note

The Pike Quick Guide

152 Roxen Programmer’s Guide

that you must provide a filename to load and save, respectively, otherwise
they will return an error which will crash the program.

case ”save”:save(args);
break;

case ”load”:load(args);
break;

COMPLETING THE PROGRAM

DELETE()

If you sell one of your records it might be nice to able to delete that entry
from the database. The delete function is quite simple; first we set up an
array of record names (cf. the

list_records

 function). Then we find
the name of the record of the number

num

 and use the builtin function

m_delete()

 to remove that entry from

records

.

void delete_record(int num)
{

string *record_names=sort(indices(records));
string name=record_names[num-1];

m_delete(records,name);
}

SEARCH()

Searching for songs is quite easy too. To count the number of hits we de-
clare the variable

hits

. Note that it’s not necessary to initialise variables,
that is done automatically when the variable is declared if you do not do
it explicitly. To be able to use the builtin function

search()

, which sear-
ches for the presence of a given string inside another, we put the search
string in lowercase and compare it with the lowercase version of every
song. The use of

search()

 enables us to search for partial song titles as
well.
When a match is found it is immediately written to standard output with
the record name followed by the name of the song where the search
string was found and a newline.
If there were no hits at all, the function prints out a message saying just
that.

A more elaborate example

Roxen Programmer’s Guide 153

void find_song(string title)
{

string name, song;
int hits;

title=lower_case(title);

foreach(indices(records),name)
{

foreach(records[name],song)
{

if(search(lower_case(song), title) != -1)
{

write(name+”; ”+song+”\n”);
hits++;

}
}

}

if(!hits) write(”Not found.\n”);
}

MAIN()

Once again

main()

 is left unchanged, except for yet another two

case

statements used to call the search and delete functions, respectively. Note
that you must provide an argument to

delete

 or it will not work pro-
perly.

case ”delete”:delete_record((int)args);
break;

case ”search”:find_song(args);
break;

FINAL NOTES

Well that’s it! The example is now a complete working example of a Pike
program. But of course there are plenty of details that we haven’t atten-
ded to. Error checking is for example extremely sparse in our program.
This is the next step and it is left as an execise to the student. Good luck!
And once again: read the on-line documentation at

http://pike.in-
fovav.se/

 for all the technical reference you can stomach!

The Pike Quick Guide

154 Roxen Programmer’s Guide

By the way; the complete listing can be found in APPENDIX B on
page 185. Read it, study it and enjoy!

Roxen Programmer’s Guide 155

CHAPTER 13

H

OW

TO

MAKE

YOUR

OWN

 R

OXEN

MODULE

In order to really take advantage of Roxen as a flexible management in-
formation engine, we provide you with an easy way of programming new
features into Roxen - and you add them easily while the server is running!
This text assumes that you have a working knowledge of programming
in general and of Pike in particular. In “The Pike Quick Guide” on
page 137 you can find more information on Pike. You can also check out
the web pages at

http://pike.infovav.se/

. Good luck!

MODULE TYPES

The three most common types of modules are

file extension

,

location

 and

parser

 modules.

•

A location module handles everything under a certain directory in
the virtual filesystem, for instance

 /cgi-bin/

. It is usually this type of
module that finds files and passes them on to the different extension
modules.

•

A file extension module handles files of one or several extension
types, e.g.

.cgi

, after that a location module has located the file.

Detta dokument har framställts med FrameMaker 4.0.4

How to make your own Roxen module

156 Roxen Programmer’s Guide

•

A parser module defines one or more RXML tags. These are later
handled by a module of the type

main parser

. There can only be one

main parser

 in each virtual server, but there can be any number of

parser

 modules. The main parser gets all modules of type parser sent
to it, but nothing else. To be able to do any parsing, a main parser
module also has to be an extension module or a location module, or
at least an

extension without a file

 module, see below.
There are also several module types which are used less frequently;

•

Authentication

; A module type that handles authentification of users,
and also keeps a database of users for for instance the

user filesystem

module (which is an example of a location module).

•

Directory

; This type of module handles file listings. If you don’t have
one such module, Roxen won’t be able to generate file listings of
directories, and the automatic use of index files, like

index.html

,
won’t work. There can only be one instance of this type of module
present in each virtual server.

•

Extension

; A kind of extension module that is called

before

 the loca-
tion module is called, and thus it does not receive any file pointers.
Note the difference; this is not a

file extension

 module.

•

First try

; A module type that is called before all other module types,
except other modules of the type first try and the Authentication
type.

•

Last try

; A module that is called after all other modules, if none of
the other modules found anything to do.

•

Filter

; This type of module does something after all the other modu-
les have had their way with a file. It differs from last try modules in
that it is run even if other modules managed to resolve a request. It is
also the only module type to talk to Last try modules.

•

Types

; This module type quite simply handles extension to content-
type mapping in those cases where the modules that have already run
haven’t told the system what content-type the file has. For example,
the file

things.html

 should have content-type

text/html

.

•

URL

; This type of module receives a URL and returns another. This
module type should be used if you wish to implement redirecting
modules of any kind.

Module types

Roxen Programmer’s Guide 157

•

Logger

; A module type that should be used for implementing logging
modules. Logger modules are called at the same time as the response
is sent out.

A module can have one or more module types, cf. the main parser mo-
dule type above. Modules can even lack type entirely. This is quite point-
less, though, since such a module would never be called by Roxen.
So, in a Roxen context, how are these modules related to each other? We
have made a nice little flowchart in figure 13.1 on page 158 that shows
how the modules are called during the treatment of a request. In written
terms it goes something like in the following section. Do you need to
know this then in order to program Roxen? No, actually not, since if you
know what kind of module you intend to make and register it properly
(see the beginning of “How to write a module” on page 159), Roxen will
call it when it’s time and take care of the output it generates. But it might
give you some insight!

ROXEN FLOWCHART DESCRIPTION

If there is no module at a certain level, or if the modules there are cannot
handle the request, it is sent on to the the next module level.
When a request first comes in it is sent through the protocol modules to
find out what protocol is used, and to parse the request accordingly.
Requests are then authenticated. Authentication modules basically just
set a flag and sends the request on its way to be handled.
It is then sent through the first try modules if there are any. If the request
is successfully handled by a first try module now sent through the filter
module level.
If the request was not successfully handled by a first try module it is sent
on to the URL module level. A successful result will send the resulting,
rewritten request back to the beginning of the URL level, i.e. Roxen will
send it through all URL modules again. When there’s no possible
(further) treatment the request is sent on to the extension module level.
Extension modules handle ”imaginary” files. It means that it looks att the
ending of the request and based on this it might do something about the
request. Since no location module has yet been run, there is no file asso-
ciated with the request, and thus no file will be involved in the response.
The only example that we have of this is the Timestamp module, see “Ti-
mestamp” on page 123. There is also an as yet unsupported module that

How to make your own Roxen module

158 Roxen Programmer’s Guide

FIGURE 13.1

The call sequence of the module types of Roxen. At each type level, all modules of that type
are called in order of priority.

MODULE_FIRST

MODULE_URL

MODULE_EXTENSION

MODULE_LOCATION

MODULE_DIRECTORY MODULE_FILE_EXTENSION

MODULE_TYPES

MODULE_FILTER

MODULE_LAST

MODULE_LOGGER

MODULE_AUTH

P

ROTOCOL

MODULES

REQUEST RESPONSE

ERROR
MESSAGE

Success or failure;

Successful handling
of request

Failure to handle

same path

a request

Unconditional path

Further treatment
required

(special case after
location module)

L

EGEND

How to write a module

Roxen Programmer’s Guide 159

can take care of client side image maps and remake them into server side
image maps by creating an imaginary map file on the fly in case the client
does not handle client side image maps. Success here sends the request
on to the filter modules.
Next contestant is the location module level where Roxen finally tries to
find something in the filesystem. There are four possible results here;

•

Nothing could be found.

•

There was actually a location module that could take care of the
request and send something back.

•

A directory was found.

•

A file was found.
In the first two cases the request is sent on to the filter level. The third
reults in a try at the directory module level. You probably also guessed
that if a file was found it is sent on to the file extension modules.
Whether there is either failure or success at the directory modules it’s
time to try the filter modules.
Success at the file extension modules also sends the request on to the fil-
ter modules and failure sends it the content types modules. Content type
modules sends the reult to the filter modules.
Success at a filter module sends the result back to the protocol modules.
If there is a failure Roxen will try the last try modules. If there aren’t any
last try modules or there is a failure here too, an error message will be the
result.
Now the result ends up with the proper protocol module which logs the
request through the use of a logger module and also sends the result back
to the client.
Is everybody still awake? Good, let’s go on with more practical details!

HOW TO WRITE A MODULE

First of all, configure a test server. This way you will have your own copy
of Roxen with which you can play.
One variable that is useful to change is

Module directory

 under G

LOBAL

V

ARIABLES

, which tells the server where to look for modules. This is a

How to make your own Roxen module

160 Roxen Programmer’s Guide

comma separated list of directories. The value for this could, for example,
be:

local/modules/

,

/home/john/roxen_modules/

. They can be re-
lative to Roxen’s

server/

 directory.
Now you’re all set to write your own module. Below is a step-by-step in-
struction on how to accomplish this. We assume that you have basic
knowledge of Pike programming.
Many times we do not tell you everything. If you wonder about somet-
hing, read the source. That will help you learn too.

THE FUNDAMENTALS OF A MODULE

We start by introducing a module skeleton, containing all necessary func-
tions and inheritances for a module.

#include <module.h>
inherit ”module”;
inherit ”roxenlib”;
array register_module()
{

return ({
MODULE_TYPE,

”module name”,
”module documentation”,
0,
0|1,

});
}

First the file

module.h

 is included. It contains a lot of constant defini-
tions, e.g. all module types. It also contains some macros that can be used
when you want the value of a certain module variable.
After that, the file

module

 is inherited. In this file, functions like

defvar()

,

set()

 and

query()

 are defined. It also contains several
usable default values and values to use for checks in your modules.
The file

roxenlib

 includes a lot of useful functions. Though it is not ne-
cessary to include it, it can be very useful. For ideas on how to use this
file, please take look at “Returning values” on page 170.
The function

register_module()

 is supposed to return an array that
defines the function of the module, the name of the module and if it can
have more than one concurrent active instance in each virtual server.
The first element of the array is the module type. This is a bitwise-or (|)

How to write a module

Roxen Programmer’s Guide 161

of module types. Ordinarily each module only has one type, but for in-
stance

htmlparse.pike

 in the Roxen distrubution is a combination of a

MODULE_MAIN_PARSER

, a

MODULE_PARSER

 and a

MODULE_FILE_EXTENSION

.

The second element is the module name, and the third element is a short
description of what the module does. The fourth element is reserved for
future use. The fifth element is ”0” if there can be multiple copies of the
module in each virtual server (e.g. the filesystem module) or ”1” if there
can only be one active copy in each virtual server (e.g. the Main RXML
Parser).
Since this example is a module which adds tags to RXML we choose the
following look of the

register_module()

 function:

M

ODULE

TYPE

NAME

M

ODULE

 T

YPE

MODULE_AUTH Authentication module and user data base. There can
only be one active instance at a time.

MODULE_DIRECTORIES Directory parsing module. Only one active at any one
time.

MODULE_EXTENSION Extension module, called before location modules.

MODULE_FILE_EXTENSION Extension module called after location modules.

MODULE_FILTER Used for ”post-treatment” of files.

MODULE_FIRST First try modules.

MODULE_LAST Last resort modules.

MODULE_LOCATION Location module, finds files.

MODULE_LOGGER Logger module, used when implementing different
logging schemes.

MODULE_MAIN_PARSER Main parser. Only one active at a time.

MODULE_PARSER Normal parser, handles one or more tags.

MODULE_TYPES Type module that handles extension to content type
mappings.

MODULE_URL URL modules can internally rebuild requests.

TABLE 13.1

Module type identifiers and their meanings

How to make your own Roxen module

162 Roxen Programmer’s Guide

array register_module()
{

return({
MODULE_PARSER,

”Gazonk”,
”The gazonk module. Adds a container and ”
”a non-container: ”
”<foo>...</foo> and ”
”<bar>”,
0,
1,

});
}

Now the module can register itself, but that’s not quite enough, how do
we get it to really handle the tags

<foo>...</foo>

 and

<bar>

?

CALLBACK FUNCTIONS

This brings us to the module specific callback functions, which follow.
See table 13.2 on page 163 for a compact listing. In several of them you
can see the argument

object request_id

. This object is described in
the section on Pike scripts, see “Pike scripts” on page 81.

•

void create();

Called automatically by Pike when the object (instance of your
module) is created. Here you define the variables that are local in the
module with

defvar()

.

•

void start();

Called by Roxen just before the module should be ready to receive a
request (requests are handled with the module specific callback func-
tions).

•

void stop();

Called by Roxen just after the module is done with a request
(requests are handled with the module specific callback functions).

•

string status();

Called by the configuration interface at any time to get the status of
the module. Should return a string, containing HTML code that can
be fitted in the

<dd>

 part of a definition list.

How to write a module

Roxen Programmer’s Guide 163

•

string info();

If you define this function, its result is used instead of the third ele-
ment in the return value of

register_module()

. If you look at
the beginning of the example, you’ll recall that this string was used
to describe the module in the configuration interface.

•

string|void check_variable(string variable,
mixed will_be_set_to);

If you need to check the value of your module variables before they
are ”permanently” set, this function is where you should do it. Usu-
ally you don’t have to check on the validity of the values of variables,
since all values that the administrator can set them to are valid.

M

ODULE

TYPE

I

NITIALISATION

ROUTINES CALLBACK

ROUTINES

All create, start status, info, check_variable,
query_name

MODULE_AUTH auth, userinfo, userlist,
user_from_id

MODULE_DIRECTORIES parse_directory

MODULE_EXTENSION query_extensions handle_extension

MODULE_FILE_EXTENSION query_file_extensions handle_file_extension

MODULE_FILTER filter

MODULE_FIRST first_try

MODULE_LAST last_resort

MODULE_LOGGER log

MODULE_LOCATION query_location find_file, find_dir, stat_file,
real_file

MODULE_MAIN_PARSER add_parse_module,
remove_parse_module

MODULE_PARSER query_tag_callers,
query_container_callers

Provided by the
initialisation routines

MODULE_TYPES type_from_extension

MODULE_URL remap_url

TABLE 13.2

Module type specific callback functions

How to make your own Roxen module

164 Roxen Programmer’s Guide

•

string query_name();

Returns the name of the module, and is used instead of the second
element in the array returned by

register_module()

. This can
be very useful if you allow more than one copy of a module.
The user can, however, use any module name he/she wishes in the
configuration interface.

•

array auth(array from);

array userinfo(string username);
array userlist();
array user_from_uid(int uid);

See the

userdb.pike

 module. Usually you don’t have to implement
your own user database and authentification module, and it is not
part of the fundamentals of Roxen programming.

•

mapping parse_directory(object request_id);

Given an internal url (in

request_id->not_query

) this function
returns an HTML-coded directory listing or an index file depending
on how the virtual server making use of the module is set up.

•

array (string) query_extensions();

array (string) query_file_extensions();

Return an array with the extensions that this module is intended to
handle. It is suitable to implement this as follows:

array (string) query_extensions()
{

return query(”extensions”);
}

This requires that the variable

extensions

 is defined, as a
TYPE_STRING_LIST, see below.

How to write a module

Roxen Programmer’s Guide 165

•

mapping handle_extension(string extension,
object request_id);
mapping handle_file_extension(object file,
string ext, object request_id);

Return either a result or 0 (zero). Called by Roxen when the module
should handle an extension.
The case

handle_extension

 is hardly ever used and the only
place where you can find it in the distribution is in the timestamp
module.
The ususal case, though, is to make file extension modules. In that
case it’s the second definition that applies. The object

file

 is a clone of

/precompiled/file

, taken from Pike. One useful method in this
class is

read()

.

•

mapping first_try(object request_id);

If a a response mapping is returned, this will be used as the return
value.
This function is never called by internal requests, i.e. if you use

<insert>

 and similar things.

•

mapping last_resort(object request_id);

Used by the relay module, if priority is set to

last

.
Called only if no other module has found a matching document, but
never by internal requests.

•

string query_location();

Returns which position in the virtual filesystem the module should
have. Use a variable here since this lets the user choose where the
module should end up.

•

object|mapping find_file(string file_name,
object request_id);

Returns an open fileobject of the class

/precompiled/file

 if there is
a file matching

file_name

 that this module handles, or a response
mapping (usually generated with the

http_*

 functions) if you do

How to make your own Roxen module

166 Roxen Programmer’s Guide

not wish that extension modules should be used. The mapping can
be very practical if you want the user to enter a password, or in redi-
recting to a new file.
Instead of using the

clone()

 function you can use the much more
intuitive

new(File)

 in Roxen.

File

 is a constant that is usable
everywhere except when inheriting when you have to use

/precom-
piled/file

.
A useful convenience function is

open(filename, mode)

, which
returns one of these open fileobjects.
N.B.: If the module has a mount point (the value that

query_location()

 returns)

/foo/

 and the file

/foo/bar/

 is
asked for, the location module will get

bar/

 as the first argument,
not

/foo/bar/

, i.e. the mount point is stripped from the filename.

•

array find_dir(string dir_name, object
request_id);

Returns an array with filenames if there is a directory matching

dir_name

 or 0 (zero).
There is a default

find_dir

 in

module.pike

 that returns 0. So if
you don’t want to return any directory listings you don’t have to
define this function.

•

array stat_file(string file_name, object
request_id);

Return the result or zero if there is a file matching

file_name

.
If you don’t want to, you don’t have to define this function, but the
directory module and some other modules might require this in
order to function exactly as ”regular” filesystem.

•

string real_file(string file_name, object
request_id);

Return what the file

file_name

 really is called, e.g. if the module

test

 looks for it’s files in

/usr/www/foo/

, and the file

bar

 is reques-
ted, it should return

/usr/www/foo/bar

.
This method isn’t necessary, it might for instance happen that your
files really dont exist on the disk. However, it speeds up things like
CGI and Pike scripts. Both of these work perfectly fine with only
”virtual” files, though.

How to write a module

Roxen Programmer’s Guide 167

•

void add_parse_module(object module);

void remove_parse_module(object module);

Register and unregister a parse module in the main_parse module.
Only used by the main parser module. We recommend you study

htmlparse.pike

 for real working examples.

•

mapping (string:function(string, map-
ping(string:string), object, object, map-
ping(string:string):string))
query_tag_callers();
mapping (string:function(string, map-
ping(string:string), string, object, map-
ping(string:string):string))
query_container_callers();

query_tag_callers()

 and

query_container_callers

 are
called from the main parser to register a parse module. The return
value should be a mapping on the following form:

([”tag”:function, ...]),

or an empty mapping ([]).

•

array (string|int) type_from_extension(string
ext);

Called from Roxen in the content-type module if no other module
returned what kind of file type this file was. The result is

({con-
tent-type

,

content-encoding})

 or

0

 (zero). There can, as
noted earlier, only be one content-type module in each virtual server.

•

object|mapping remap_url(object request_id);

Returns

request_id

 (with some variables modified), in which case
it is used to make a new request, meaning that the module will be
called again, so be careful not to create an indefinite recursion. It can
also return a mapping with the help of some of the

http_*()

 func-
tions.
Finally you could return zero, in which case the program just conti-
nues.
N.B.: You can change variables in

request_id

 and then return
zero. This is not allowed in any other module type than
MODULE_PARSER.

How to make your own Roxen module

168 Roxen Programmer’s Guide

THE COMPLETE MODULE

Now, back to the example! As you can see in table 13.2 on page 163 this
type of module (MODULE_PARSER in case you’d forgotten) must have
the initialisation functions

query_container_callers

 and

query_tag_callers

. As you can see above, they are quite hard on the
fingers, and since we do not wish to torture our poor digits unnecessarily
we write:

mapping query_tag_callers()
{

}
mapping query_container_callers()
{

}

Now that the function definitions exist, what should they return? They
are supposed to define the two tags that we wish our module to provide.
Let us complete the entire module and fill in the details.

How to write a module

Roxen Programmer’s Guide 169

/* A simple parse type module for Roxen.
* This module defines two new tags, foo and bar.
* The first is a container and the second is a
* stand-alone tag.
*/
#include <module.h>
inherit ”module”;
inherit ”roxenlib”;
array register_module()
{

return({
MODULE_PARSER,

”Gazonk”,
”The gazonk module. Adds a container and ”
”a non-container: ”
”<foo>...</foo> and ”
”<bar>”,
0,
1,

});
}
/* A container gets the contents as the third
* argument. Example: <foo Bar=Gazonk>Hi!</foo> -->
* container_foo(”foo”, ([”bar”:”Gazonk”]),
* ”Hi!”, ...);
* Note the lowercasing of Bar.
*/
string container_foo(string tag_name, mapping

arguments string contents,
object request_id, mapping
defines)

{
if (arguments->lower)

return lower_case(contents);
if (arguments->upper)

return upper_case(contents);
if (arguments->reverse)

return reverse(contents);
}
string tag_bar(string tag_name, mapping arguments,

object request_id, object file,
mapping defines)

{

How to make your own Roxen module

170 Roxen Programmer’s Guide

int i;
string res=””;
if (arguments->num)

i=(int)arguments->num;
else

i=30;
#define LETTERS ((”abcdefghijklmnopqrstuvwxyzå-
äö”)/””)

while(i--)
res += LETTERS[random(sizeof(LETTERS))];

#undef LETTERS
return res;

}
mapping query_tag_callers()
{

return ([”bar”:tag_bar,]);
}
mapping query_container_callers()
{

return ([”foo”:container_foo,]);
}

}
Now we actually have a working parse module. If we start using the mo-
dule (see “Start using your new module” on page 179) you can enter

<foo lower|upper|reverse>Some string</foo>

 in your pa-
ges which should give you the text ”Some string”, changed as indicated
by the attribute;

lower

 changes the string to lowercase,

upper

 to up-
percase letters and

reverse

 reverses the string, printing it backwards.
If you put

<bar>

 on a page, you’ll get a randomly selected string of 30
characters. If you include an integer attribute, e.g.

<bar num=17>

,
you’ll get a randomly selected string of , in this case 17, characters.

RETURNING VALUES

Putting together a mapping of the kind that should be returned in most
cases (extension, last, first and file extension) when you’ve found a file
might be a bit tricky. Therefore there are several convenient helper func-
tions available.
All these functions are defined in

pike/http.pike

 which is inherited by

roxenlib

, which it is, in turn, a good idea to inherit in your own modules.
So that you won’t have to study the source code you’ll find the interes-

How to write a module

Roxen Programmer’s Guide 171

ting contents, the library functions, of

roxenlib

 and

pike/http.pike

 do-
cumented below.

HTTP.PIKE

•

mapping http_low_answer(int errno, string data);

Return a filled out structure with the error and data specified. The
error is in fact the status response, so ”200” is ”OK”, and ”500” is
”Internal Server Error”, etc.
Mostly used by the other functions in

http.pike

.

•

mapping http_pipe_in_progress();

Returns a structure that indicates to Roxen that it should leave this
socket alone. This is not to be used normally, since it might cause a
socket leak. You have to know what you are doing to use it.
Study one of the proxy modules to the point where you can recite it
in your sleep for more information.

•

mapping http_string_answer(string text,
string|void type);

Convenience function to use in Roxen modules. When you just want
to return a string of data, with an optional type, this is the easiest way
to do it if you don’t want to worry about the internal Roxen structu-
res.

•

mapping http_file_answer(object file,
string|void type, void|int len);

Like

http_string_answer()

, but it returns a file object instead.

•

mapping http_redirect(string URL, object|void
request_id)

Send a redirect to the file

URL

, which can be either relative or abso-
lute.
If relative,

request_id

must

 also be supplied to resolve the path
correctly.

•

mapping http_auth_required(string realm, string
message)

Send an Auth-challenge to the client, from the realm

realm

. A
default message that will be shown if the user choose not to send any
password can be supplied.

How to make your own Roxen module

172 Roxen Programmer’s Guide

•

mapping http_proxy_auth_required(string realm,
string message);

Like

http_auth_required()

, but for proxies.

•

string cern_http_date(int t);

Format the timestamp ”t” according to the CERN common log-file
date format.

•

string http_date(int t);

Returns an http_date, as specified by the HTTP-protocol standard.
This is used for the Last-Modified and Time headers in the reply.

•

string http_encode_string(string f);

Encode the string ”f” so that it can safely be used as a URL.

•

string http_encode_cookie(string f);

Encode the string ’f ’ so that it can safely be used as a cookie value or
name.

•

string http_decode_string(string f);

This one is of course the opposite of

 http_encode_string()

but is seldom needed.

ROXENLIB

Roxenlib

 inherits

http.pike

 and so all those convenience functions
are at your command if you inherit

roxenlib

 in your programs.

•

string decode_mode(int m);

Returns an

ls -l

 style file permission mode from a numerical one,
and also prepends the type of the file.

Example 13.12)

File, <tt>rw-r-----</tt>

Example 13.13)

Dir, <tt>rwxr-xr-x</tt>

Should probably take a format string as well.
This function is here more or less only for historical reasons.

•

int _match(string w, array (string) a);

Try to find a pattern from

a

 that matches

w

. If one is found, return 1,
otherwise 0. This function ought to be be renamed.

How to write a module

Roxen Programmer’s Guide 173

•

int is_modified(string a, int t, void|int len);

Is the time described in

a

 before the integer time in

t

, as gotten
from

time()

.

a

 is as given by the

If-Modified:

 header, and if

len

 is included
in the header, and in the call as well, it is used as a first quick check to
see if the file has indeed been modified.
You will probably not have to use this unless you are writing a proxy
module or a protocol module.

•

string short_name(string long_name);

Return a short name, useful as a filename, from the given long name.
The short name is not really all that much shorter, but it is often
easier to handle with a shell.

•

string parse_rxml(string what, object|void id);

Parse the string

what

, as if it was generated as a reply from the
request described in

id

, and then sent from the the HTML parser.
If no

id

 is supplied, a dummy will be generated. Tags like

<clientname>

 will not work then.
Can be quite useful in modules, but not in scripts, since if a script
returns a string (i.e. does

not

 use any of the

http_*()

 functions to
return a value, but instead simply returns a string) it will be parsed
automatically.

•

string dirname(string file);

Return the directory name from the file

file

, just like the

dir-
name

 program available in most Unix flavours.

•

string add_pre_state(string url, list state);

Add the prestate described in the list

state

 to the URL

url

.

Example 13.14)

add_pre_state(”/index.html”, (< ”foo”, ”bar” >))

returns

/(bar,foo)/index.html

•

string add_config(string url, array config, list
prestate)

Add a config modification

and

 a prestate to a URL.

How to make your own Roxen module

174 Roxen Programmer’s Guide

Example 13.15)

add_config(”/index.html”, ({ ”+foo”, ”-bar” }),
(< ”foo”, ”bar” >));

gives

/<+foo,-bar>/(bar,foo)/index.html

When this request is sent to Roxen, a redirect will be generated
immediately to

/(bar,foo)/index.html

, and the cookie

config

database will be modified.

•

string msectos(int t);

This one should really be named

describe_msec

 or something
Returns a description of the time

t

, given in milliseconds.

•

string extension(string f);

Return the extension of the file

f

.

Example 13.16)

extension(”foo.gif”);

gives

”gif”

Example 13.17)

extension(”foo.html~”);

gives

”html”

Example 13.18)

extension(”foo.html.old”);

gives

”html”

•

int backup_extension(string f)

Return

1

 if filename of

f

 indicates that it might be an backup copy of
an original file.

•

int get_size(mixed x);

The arguments can be anything and it returns the memory usage of
the argument.

How to write a module

Roxen Programmer’s Guide 175

•

int ipow(int what, int how);

What

 to the power of

how

. There is, of course, also a

pow(float
what, float to);

These functions do not really come from

roxenlib

 but from Pike.

•

string simplify_path(string file);

This one will remove

../

,

./

 etc. in the path.

Example 13.1)

simplify_path(”foo/../bar/../”)

gives

”/”

Example 13.2)

simplify_path(”foo/../bar/././”)

gives

”/bar/”

•

string short_date(int timestamp);

Returns a reasonably short date string from a time integer.

•

string int2roman(int m)

Return the integer

m

 as a roman number.
That is,

int2roman(10)

 returns

”X”

, etc.

•

string number2string(int n,mapping m,mixed
names);

Convert the number

n

 to a string, using the conversion indicated by

m->type

, and optionally the conversion function

names

. This is
used in all tags in the main RXML parser that converts a number to a
string. Look at the

htmlparse.pike

 for live examples.

•

string image_from_type(string t);

Return a suitable

internal-gopher-*

 image from the mimetype
specified by

t

. The function is used by the directory modules.

•

string sizetostring(int size);

Describe the size

size

 of anything, e.g. a file, an amount of data or
whatever, as a string. Size is measured in bytes and the unit is reaso-
nably intelligently scaled using kB, MB, etc.

How to make your own Roxen module

176 Roxen Programmer’s Guide

MODULE VARIABLES

If you have studied the configuration interface, you have probably noti-
ced that almost all modules contain a plethora of variables that can be set
by the administrator.
How do you do if you want variables of this kind in your module, since
it is nice to let the user himself configure as much as possible?
You use the function

defvar()

 in

create()

 and then

query()

 if you
want to know the value of one of the variables.

int defvar(string name, mixed value, string
long_name, int type, string documentation_string[,
array choices, function|int hidden]

where

name

 is the name, of the variable, used internally in your program
to obtain its value through

query(”name”

) or

QUERY(name)

;

value

is the value of the variable;

long_name

 is the variable name seen in the
configuration interface; and

type

 is, of course, the type of variable, see
table 13.3 on page 177.
Now to illustrate this let’s write an example of

create()

.

How to write a module

Roxen Programmer’s Guide 177

V

ARIABLE

TYPE

E

XPLANATION

TYPE_STRING The variable is a string like
”Informative text”

TYPE_FILE
A file variable. It is in fact like a string
variable, but the help text seen by the
user differs.

TYPE_LOCATION
A position in the virtual file system.
Once again you treat this like a string,
but the help text is different.

TYPE_INT An integer

TYPE_DIR

A directory. The user can only enter
existing directories and they always
end with a ”/”, so you won’t have to
care about that in your modules.

TYPE_FLOAT A floating point number.

TYPE_TEXT_FIELD A field that can contain several lines of
text.

TYPE_FLAG A variable that is either true or false is
of this type.

TYPE_COLOR

A colour variable, a number between 0
and 16777215=2

24

-1. This number is
a three-byte value where each of the R,
G and B colours is represented by one
of the bytes. This was earlier used in
the configuration interface.

TYPE_PASSWORD A password, the variable is
automatically encrypted when set.

TYPE_STRING_LIST An array of strings, like {”foo”, ”bar”,
”gazonk”}.

TYPE_MULTIPLE_STRING
One of several strings. The strings are
chosen from the array sent with the
optional field

choices

.

TYPE_INT_LIST An array of integers.

TABLE 13.3

 Available variable types.

How to make your own Roxen module

178 Roxen Programmer’s Guide

void create()
{

defvar(”BG”, 1, ”Configuration Interface ”
”Background”, TYPE_FLAG, ”Should the ”
”background be set by the ”
”configuration interface?”);

defvar(”NumAccept”, 1, ”Number of accepts to ”
”attempt”, TYPE_MULTIPLE_INT,
”The maximum number of accepts to ”
”attempt for each read callback from ”
”the main socket. <p>Increasing this ”
”will make the server faster for ”
”users making many simultaneous ”
”connections to it, or if you have a ”
”very busy server.”, ({1, 2, 4, 8, 16,
32, 64, 128, 256, 512, 1024}));

defvar(”ConfigurationPort”, 22202,
”Configuration port”, TYPE_INT, ”The ”
”port number of the configuration ”
”interface. Anything will do, but you ”
”will have to remember it to be able ”
”to configure the server.”);

}

In this piece of code three variables are defined (actually, this was cut out
of the central parts of Roxen, and is not from any module, but it works
in the same way).
The first is a flag (

BG

), whose value is

on

, then an integer (

NumAc-

cept

)chosen from a list of integers (2

n

, 0

≤

n

≤

10) and finally a single in-
teger (

ConfigurationPort

).

TYPE_MULTIPLE_INT One of several integers. Cf.
TYPE_MULTIPLE_STRING above.

TYPE_DIR_LIST An array of directories.

TYPE_FILE_LIST
An array of files, treated just like
variables of the TYPE_STRING_LIST
type but the help text differs.

TYPE_MODULE The variable is a module object.

V

ARIABLE

TYPE

E

XPLANATION

TABLE 13.3

(Cont.)Available variable types.

How to write a module

Roxen Programmer’s Guide 179

START USING YOUR NEW MODULE

When you have written your module it is time make it accessible for Rox-
en. Do this by placing the file in the module directory of your server, i.e.
in the directory that you have chosen for your module directory, cf. “The
fundamentals of a module” on page 160. Then all you have to do is to
access the configuration interface and choose A

DD

 M

ODULE

 as usual;
you will now be able to choose your newly added module! As simple as
that.
And if you change the code of a module, you can focus on that module
and hit R

ELOAD

, and voilà! Your new code is immediately loaded and
starts working and this without ever stopping the server.
If, or perhaps when, your module does not show up on the module se-
lection page you should check the debug log for errors.

FIGURE 13.2 The Reload
button.

How to make your own Roxen module

180 Roxen Programmer’s Guide

R

O X E N

 M

A N U A L

A

P P E N D I C E S

Detta dokument har framställts med FrameMaker 4.0.4

Roxen Manual Appendix 183

APPENDIX A

R

EGULAR

 E

XPRESSIONS

INTRODUCTION

A regular expression specifies a set of character strings. A member of this
set of strings is said to be matched by the regular expression. Some char-
acters have special meaning when used in a regular expression; other
characters stand for themselves.
The regular expressions available for use with the regexp functions are
constructed as follows.

EXPRESSION MEANING

•

c

; the character c where c is not a special character.

•

\c

; the character c where c is any character, except a digit in the
range 1-9.

•

^

; the beginning of the line being compared.

•

$

; the end of the line being compared.

•

.

; any character in the input.

•

[s]

; any character in the set s, where s is a sequence of characters
and/or a range of characters, for example, [a-z].

Regular Expressions

184

Roxen Manual Appendix

•

[^s]

; any character not in the set s, where s is defined as above.

•

r*

; zero or more successive occurrences of the regular expression r.
The longest leftmost match is chosen.

•

rx

; the occurrence of regular expression

r

 followed by the occur-
rence of regular expression

x

. It is a

concatenation

 of expressions.

•

r\{m,n\}

; any number of

m

 through

n

 successive occurrences of
the regular expression

r

. The regular expression

r\{m\}

 matches

exactly

m

 occurrences while

r\{m,\}

 matches

at least

m

 occurrences.

•

(r\)

; the regular expression

r

. When

 \n

(where

n

 is a number
greater than zero) appears in a constructed regular expression, it
stands for the regular expression

x

 where

x

 is the nth regular expres-
sion enclosed in

\(

 and

\)

 that appeared earlier in the constructed
regular expression. For example,

\(r\)x\(y\)z\2

 is the concate-
nation of regular expressions

rxyzy

.
Characters that have special meaning except when they appear within
square brackets

([])

 or are preceded by

\

 are

. (dot)
* (asterisk)
[(left bracket)
\ (backslash)

Other special characters, such as ”

$

” have special meaning in more res-
tricted contexts.
The character ”

^

” at the beginning of an expression permits a successful
match only immediately after a newline, and the character ”

$”

 at the end
of an expression requires a trailing newline.
Two characters have special meaning only when used within square
brackets. The character ”

-

” denotes a range,

 [c-c]

, unless it is just after
the open bracket or before the closing bracket,

[-c

] or

[c-]

 in which
case it has no special meaning. When used within brackets, the character
”

^

” has the meaning complement of if it immediately follows the open
bracket (example:

[^c]

); elsewhere between brackets (example:

[c^]

)
it stands for the ordinary character ”

^

”.
The special meaning of the ”

\

” operator can be escaped only by prece-
ding it with another ”

\

”, i.e. ”

\\

”.

Roxen Manual Appendix 185

APPENDIX B

A P

IKE

RECORD

DATABASE

This is the complete listing of the big example of “The Pike Quick Gui-
de”. There are no comments in the code so please refer to that chapter
for explanations of what the various functions do.
For more information on Pike, point your favourite web browser at

http://pike.infovav.se/

 where you’ll find not only all the reference in-
formation you can wish for, but also a few examples.
But of course there’s nothing like practice. Get your hands dirty and hack
as much as you can. That is the only way to really understand what’s go-
ing on.
The listing begins on the next page.

A Pike record database

186

Roxen Manual Appendix

#!/usr/local/bin/pike

mapping (string:array(string)) records =
([”Star Wars Trilogy” : ({

”Fox Fanfare”,
”Main Title”,
”Princess leia’s Theme”,
”Here They Come”,
”The Asteriod Field”,
”Yoda’s Theme”,
”The Imperial March”,
”Parade of th Ewoks”,
”Luke and Leia”,
”Fight with Tie Fighters”,
”Jabba the Hut”,
”Darth Vader’s Death”,
”The Forest Battle”,
”Finale”,
})

]);

void list_records()
{

int i;
array (string) record_names=sort(indices

(records));

write(”Records:\n”);
for(i=0;i<sizeof(record_names);i++)

write(sprintf(”%3d: %s\n”, i+1,
record_names[i]));

}

Expression Meaning

Roxen Manual Appendix

187

void show_record(int num)
{

int i;
array (string) record_names=sort(indices

(records));
string name=record_names[num-1];
array (string) songs=records[name];

write(sprintf(”Record %d, %s\n”,num,name));
for(i=0;i<sizeof(songs);i++)

write(sprintf(”%3d: %s\n”, i+1, songs[i]));
}

void add_record()
{

string record_name=readline(”Record name: ”);
records[record_name]=({});
write(”Input song names, one per line. End with

’.’ on it’s own line.\n”);
while(1)
{

string song;
song=readline(sprintf(”Song %2d: ”,

sizeof(records[record_name])+1));
if(song==”.”) return;
if(strlen(song))

records[record_name]+=({song});
}

}

A Pike record database

188

Roxen Manual Appendix

void save(string file)
{

string name, song;
object o;
o=clone((program)”/precompiled/file”);

if(!o->open(file,”wct”))
{

write(”Failed to open file.\n”);
return;

}

foreach(indices(records),name)
{

o->write(”Record: ”+name+”\n”);
foreach(records[name],song)

o->write(”Song: ”+song+”\n”);
}

o->close();
}

Expression Meaning

Roxen Manual Appendix

189

void load(string file)
{

object o;
string name=”ERROR”;
string file_contents,line;

o=clone((program)”/precompiled/file”);
if(!o->open(file,”r”))
{

write(”Failed to open file.\n”);
return;

}

file_contents=o->read(0x7fffffff);
o->close();

records=([]);

foreach(file_contents/”\n”,line)
{

string cmd, arg;
if(sscanf(line,”%s: %s”,cmd,arg))
{

switch(lower_case(cmd))
{

case ”record”:name=arg;
 records[name]=({});
 break;

case ”song”:records[name]+=({arg});
 break;

}
}

}
}

A Pike record database

190

Roxen Manual Appendix

void delete_record(int num)
{

array (string) record_names=sort(indices
(records));

string name=record_names[num-1];

m_delete(records,name);
}

void find_song(string title)
{

string name, song;
int hits;
title=lower_case(title);

foreach(indices(records),name)
{

foreach(records[name],song)
{

if(search(lower_case(song), title) != -1)
{

write(name+”; ”+song+”\n”);
hits++;

}
}

}

if(!hits) write(”Not found.\n”);
}

Expression Meaning

Roxen Manual Appendix

191

int main(int argc, string * argv)
{

string cmd;
while(cmd=readline(”Command: ”))
{

string args;
sscanf(cmd,”%s %s”,cmd,args);

switch(cmd)
{

case ”list”:
if((int)args)
{

show_record((int)args);
} else {

list_records();
}
break;

case ”quit”:exit(0);

case ”add”:add_record();
break;

case ”save”:save(args);
break;

case ”load”:load(args);
break;

case ”delete”:delete_record((int)args);
break;

case ”search”:find_song(args);
break;

}
}

}

A Pike record database

192

Roxen Manual Appendix

Roxen Manual Appendix 193

APPENDIX C

T

ABLES

RXML TAGS

All the RXML tags that are present in the basic distribution of Roxen are
listed here in table format. For a complete description of every tag refer
to the full documentation on the page referred to in the table.

T

AGNAME

C

ONTAINER

A

TTRIBUTES

P

AGE

REFERENCE

<accessed>

No

file, reset, silent,
since, cheat, factor,
per, precision,
type, addreal

page 44

<aconf>

Yes page 46

<apre>

Yes href, prestates page 47

<clientname>

No full page 48

<comment>

Yes N/A page 49

TABLE C.1

 The Tags of the Roxen Macro Language (RXML).

Tables

194

Roxen Manual Appendix

<date>

No

day, hour, minute,
second and the
date related
attributes

page 49

<define>

Yes name page 49

<doc>

Yes pre page 52

<else>

Yes N/A page 52

<header>

No name, value page 52

<if>

Yes

name, supports,
prestate,
defined,referer,
date, host, user,
file, wwwfile,
before, after,
inclusive, and, not,
or

page 52

<insert>

No

cookie, cookies,
file, name,
nocache, variable,
variables

page 49

<language>

No full page 57

<modified>

No by and the date
related attributes page 58

<otherwise>

No N/A page 52

<quote>

No start, end page 58

<random>

Yes separator page 58

<referer>

No N/A page 59

<remove_cookie>

No name page 59

<return>

No code page 59

T

AGNAME

C

ONTAINER

A

TTRIBUTES

P

AGE

REFERENCE

TABLE C.1

(Cont.)The Tags of the Roxen Macro Language (RXML).

Header response lines

Roxen Manual Appendix

195

HEADER RESPONSE LINES

When sending headers, using the

<header>

 RXML tag, back to the
client after a request you can send many things. Here are some
suggestions on what to send. The most interesting header is the WWW-
Authenticate header, used when restricting access.

For more information on the use of the header tag see figure , “<HEAD-
ER>”, on page 52. For in-depth information on headers you’ll find seve-
ral texts on this subject if you browse around the Internet.

<right>

Yes N/A page 59

<set_cookie>

No name, value,
persistent page 60

<signature>

No name, realname,
email, link, nolink page 60

<smallcaps>

Yes size, small, space page 60

<source>

No N/A page 61

<tablify>

Yes N/A page 61

<tablist>

No
names, 1, [2,..],
selected, bg, fc, tc,
font, scale

page 61

<user>

No name, realname,
email, link, nolink page 62

<ximg>

No

as for the HTML
 tag. page 63

The date related attributes

type, lang, part,
time, date,
capitalize, lower,
upper

page 65

T

AGNAME

C

ONTAINER

A

TTRIBUTES

P

AGE

REFERENCE

TABLE C.1

(Cont.)The Tags of the Roxen Macro Language (RXML).

Tables

196

Roxen Manual Appendix

HTTP RESULT CODES

When a request has been received and treated by an http server it sends
the result back to the client. This table contains the possible responses,
some of which are more than a little bit cryptic. Those that you underst-
and are probably those you are interested in.

H

EADER

NAME

D

ESCRIPTION

Retry-After
The Retry-After header field can be used with ”502
Service Unavailable” to indicate how long the service
is expected to be unavailable

WWW-Authenticate

Must be included with a ”401 Unauthorized”
response, like this:

<header name=WWW-
Authenticate value=”Basic;
Realm=any”>

. The realm attribute is required for
all access authentication schemes which issue a
challenge (i.e. tells the browser to obtain a user name
and a password). The realm value, in combination
with the root URL of the server being accessed, will
be presented to the user.

Location Must be included with a redirect of any kind, like
this:

<header name=Location value=URL>

.

Content-Language The language of the document

Content-Encoding The encoding of the document

Content-Type The content type, usually text/html.

Derived-From Indicates which document this document is derived
from.

Expires After the date indicated by this header, the document
must be refetched from the server.

TABLE C.2

 Some possible heads in the <header> tag.

HTTP result codes

Roxen Manual Appendix

197

C

ODE

M

EANING

200 Document
follows

The request has been fulfilled and an entity
corresponding to the requested resource is being sent
in the response.

201 Created The request has been fulfilled and resulted in a new
resource being created.

202 Accepted The request has been accepted for processing, but
the processing has not been completed.

203 Provisional
information

The returned metainformation in the Entity-Header
is not the definitive set as available from the origin
server, but is gathered from a local or a third-party
copy.

204 No Content
The server has fulfilled the request but there is no
new information to send back. If the client is a user
agent, it should not change its document view.

300 Moved
The requested resource is available at one or more
locations and a preferred location could not be
determined via content negotiation.

301 Moved
permanently

Requires the `Location’ header, see the <head> tag
below. The requested resource has been assigned a
new permanent URI and any future references to this
resource must be done using the returned URI.

302 Moved
temporarily

Requires the `Location’ header, see the <head> tag
below. The requested resource resides temporarily
under a different URI. Since the redirection may be
altered on occasion, the client should on future
requests from the user continue to use the original
Request-URI and not the URI returned in the URI-
header field and Location fields.

304 Not modified The document has not been modified

400 Bad Request
The request had bad syntax or was inherently
impossible to satisfy. The client is discouraged from
repeating the request without modifications.

TABLE C.3

 HTTP result codes

Tables

198

Roxen Manual Appendix

401 Access denied

The request requires user authentication. The
response must include a WWW-Authenticate header
field containing a challenge applicable to the
requested resource. The client may repeat the request
with a suitable Authorization header field. This
might, for instance, be used inside a <deny user=...>
tag.

402 Payment
Required The user has to pay you to get the information.

403 Forbidden The request is forbidden because of some reason that
remains unknown to the client.

404 No such file or
directory

The server has not found anything matching the
Request-URI. No indication is given of whether the
condition is temporary or permanent.

405 Method not
allowed

The method specified in the Request-Line is not
allowed for the resource identified by the Request-
URI.

408 Request timeout n/a

409 Conflict n/a

410 This document is
no more

The requested resource is no longer available at the
server and no forwarding address is known.

500 Internal Server
Error n/a

501 Not
implemented n/a

502 Service
Unavailable n/a

503 Gateway
Timeout n/a

C

ODE

M

EANING

TABLE C.3

(Cont.)HTTP result codes

Available modules

Roxen Manual Appendix

199

AVAILABLE MODULES

In the distribution of Roxen we have decided to include even unsuppor-
ted modules. The ones listed here are documented elsewhere in this ma-
nual and most of them are supported unless otherwise indicated. Note
that this list will grow as we incorporate more and more modules in our
collection

M

ODULE

T

YPE

P

AGE

R

EFERENCE

BOFH Location page 126

CGI Script Location/File extension page 106

Clock Location page 108

Connect First try/Proxy page 109

Content-type Content-type page 109

Deep Thought Parser page 110

FastCGI Location/File extension page 128

Filesystem Module Location page 110

FTP Gateway Location page 112

Gopher Gateway Location page 113

htaccess Location page 127

RXML Parser Location/Parser/File
extension page 122

HTTP Proxy Location page 113

ISMAP Image Map File extension page 116

Header Parser

Language URL/Directory parser

Variable URL/Parser

Redirect First page 117

HTTP Relay Last/First page 118

TABLE C.4

 Available modules in the basic Roxen distribution.

Tables

200

Roxen Manual Appendix

Status Monitor Location page 121

Timestamp Extension page 123

Pike Script File extension page 123

User Database Auth page 124

User Filesystem Location page 125

User logger Location page 128

URL Database Parser page 116

Client Logger First page 108

Directory parser Directory page 120

Simple directory Directory page 120

Secure Filesystem Location page 119

Tablify Parser page 129

Tablist Parser page 127

WAIS Gateway Location page 127

XIMG Parser page 126

M

ODULE

T

YPE

P

AGE

R

EFERENCE

TABLE C.4

(Cont.)Available modules in the basic Roxen distribution.

Roxen Manual Index

i

C

Client-side image maps

77

Configuration interface

16

Configuring

15

–

22

adding virtual servers

19

colour encoding

17

first time

15

focus

17

fold

17

restart

18

save

17

uid/gid

18

unfold

17

Container

33

H

Hardware

7

CPU

7

Hard disk space

7

Memory

7

How

159

HTML
basics

32

characters

33

example

65

forms

38

links

37

lists

35

paragraphs

34

special characters

42

tables

36

tags

32

HTML, HyperText Markup Language

31

HTML-tags
A

37

B

33

BASEFONT

34

BODY

32

BR

41

CAPTION

36

CENTER

41

DD

36

DL

35

DT

35

EM

33

FONT

34

FORM

38

Hn

34

HR

41

HTML

32

I

NDEX

Detta dokument har framställts med FrameMaker 4.0.4

Index

ii

Roxen Manual Index

I

33

IMG

40

INPUT

38

LI

35

OL

35

OPTION

40

P

34

PRE

41

SELECT

39

STRONG

33

TABLE

36

TD

36

TEXTAREA

40

TH

36

TITLE

32

TR

36

TT

33

UL

35

I

Image maps

73

CERN format

75

client-side image maps

77

hot spots

73

NCSA format

76

Roxen format

76

Installing 9

–

13

binary distribution

9

example session

11

source distribution

10

troubleshooting

12

L

Lysator Computer Society

4

M

µ

LPC

137

LPC4

4

Roxen module

123

WWW homepage

155

why

µ

LPC

5

µ

LPC scripts
returning data

86

Module types

155

auth

156

directory

156

extension

156

file extension

155

Filter

156

first try

156

Last try

156

location

155

Logger

157

main parser

156

types

156

URL

156

Module writing

159

–

179

callback functions

162

module variables

176

request_id

82

returning values

170

roxenlib

172

Modules
CGI module

106

Client logger

108

Clock Module

108

Content type

109

Deep thought

110

File System

110

Ftp gateway

112

Gopher gateway

113

HTTP Proxy

113

included

105

Indirect URL database

116

ISMAP module

116

µ

LPC

123

Redirect

117

Request relay

118

RXML Parser

122

Secure file system

119

Simple directory

120

Status Monitor

121

Timestamp

123

User DataBase

124

User filesystem

125

Index

Roxen Manual Index

iii

R

RXML, RoXen Markup Language

43

example

65–67

RXML-tags

44

ACCESSED

44

ACONF

46

APRE

47

CLIENTNAME

48

COMMENT

49

DATE

49

DEFINE

49

DOC

52

ELSE

52

HEADER

52

IF

52

INSERT

49

LANGUAGE

57

MODIFIED

58

OTHERWISE

52

QUOTE

58

RANDOM

58

REFERER

59

REMOVE_COOKIE

59

RETURN

59

RIGHT

59

SET_COOKIE

60

SIGNATURE

60

SMALLCAPS

60

SOURCE

61

Time and Date

65

USER

62

S

Scripts

81

CGI

90

LPC

81

Software

7

OS

7

Spider

4

SSL, Secure Sockets Layer

131

Supports

54

V

Variables

94

configuration

94

disk cache

95

logging

96

