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Introduction Redundant encoding is a method of error detection that spreads the 
information across more bits than the original data. The more redundant 
bits you use, the greater the chance that you will detect transmission 
errors. For example, a 16-bit increase in data record length misses 1 error 
in 65,536, while a 32-bit increase misses only 1 error in over 4 billion. 

Although these odds are favorable, undetectable errors can still occur. The 
nature of common errors varies depending on the transmission and 
storage medium, but undetectable errors can be caused by occasional 
isolated changed bits or short bursts of multiple changed bits. To 
minimize undetectable errors, you can distribute the data so that it is less 
likely that transmission errors will result in a valid encoding of an 
alternate set of data.

Cyclic redundancy codes (CRCs) are a favored type of redundant 
encoding. Cyclic redundancy code checkers (CRCCs) check for 
differences between transmitted data and the original data. Data 
transmission applications use CRCCs extensively. For example, the 
Asynchronous Transfer Mode (ATM) specification requires a CRCC that 
is implemented across the entire payload to ensure data integrity. 

CRCCs are particularly effective for two reasons:

■ They provide excellent protection against common errors, such as 
burst errors where consecutive bits in a data stream are corrupted 
during transmission.

■ The original data is the first part of the transmission, which makes 
systems that use CRCCs easy to understand and implement.

When you use a CRCC to verify a frame of data, the frame is treated as one 
very large binary number, which is then divided by a generator number. 
This division produces a remainder, which is transmitted along with the 
data. At the receiving end, the data is divided by the same generator 
number and the remainder is compared to the one sent at the end of the 
data frame. If the two remainders are different, then an error occurred 
during the data transmission.
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Creating CRCCs In general, digital logic does not implement the division of very large 
numbers efficiently. Consequently, binary information must be converted 
into a more appropriate form before CRCCs are used. The string of bits to 
be verified is represented as the coefficients of a large polynomial, rather 
than as a large binary number, as shown in the following example:

1,0001,0000,0010,0001 = X16 + X12 + X5 + 1

To make the calculations easier to implement, the arithmetic is cast in a 
binary algebraic field. The arithmetic is implemented modulo 2 with no 
carry, i.e., addition and subtraction are identical (implemented via XOR). 
Multiplication by 1 or 0 is performed with an AND function, and division 
by the binary field’s single non-zero element, 1, leaves the dividend 
unchanged. In this system, any remainder for a polynomial of degree n is 
no more than n–1 bits long. Therefore, even though polynomials of order 
16 have 17 terms (including X0), any remainder is contained within 16 bits 
(X15 through X0). 

When implementing CRCCs, both the original data and the generator 
number must be represented as polynomials. The generator number is 
therefore called the generator polynomial. The polynomial that represents 
the original data is multiplied by Xn, where n is the degree of the generator 
polynomial (i.e., the length of the CRC). This operation shifts the data to 
the left by n bits. The resulting 0s at the end of the polynomial allow you 
to add the CRC to the data polynomial by replacing the last n bits (which 
have become 0) with the CRC.

Since addition and subtraction are equivalent, this operation also 
produces a polynomial that is evenly divisible by the generator 
polynomial. Therefore, when the data polynomial plus the CRC is divided 
by the generator polynomial at the receiving end of the system, the 
remainder for an error-free transmission is always 0. 

In summary, the data D is multiplied by Xn and divided by the generator 
polynomial G. The quotient Q is then discarded, and the remainder R is 
added to the dividend Xn × D. See the following equation:

(Xn × D) + R = (Q × G) + 0

At the receiving end, the first part of the transmitted information is the 
original data D; the second part (the last n bits) is the remainder R. This 
entire quantity is divided by the same generator polynomial G, and the 
quotient Q is discarded. The remainder of this division is always 0 if there 
are no errors in the transmitted data. 
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Error Detection Generally, CRCCs detect the following types of errors:

■ Single-bit errors
■ Two-bit errors
■ Three-bit and other odd-number-bit errors
■ Burst errors that are less than or equal to the CRC length
■ Most burst errors that are greater than the CRC length

The types of errors that a CRCC detects depends on the generator 
polynomial. Table 1 shows several common generator polynomials for 
various applications.

Different generator polynomials have different error-detection 
capabilities. To achieve optimum results, you must use a generator 
polynomial that effectively detects and corrects the expected transmission 
errors. Alternatively, you can use a standard generator polynomial that is 
appropriate for a particular transmission medium.

Serial CRC 
Computation

Typically, CRC calculations are implemented with linear-feedback shift 
registers (LFSRs). LFSRs use a method that yields the same results as the 
subtract and shift division process when the subtraction is performed 
without carry by the XOR function. To affect the subtract and shift division 
one bit at a time, you can shift through and examine each bit in the original 
frame of data (i.e., the dividend). For the first bit of value 1, the divisor 
high-order bit is subtracted (XORed) from the dividend. That dividend 
bit, which is unnecessary and is not generated, is set to zero by the 
subtraction. The lower order bits of the divisor cannot be subtracted yet, 
because the corresponding divisor bits have not been shifted in. 

Table 1. Common Generator Polynomials

Generator Name Polynomial

SDLC (CCITT) X16 + X12 + X5 + X0

SDLC Reverse X16 + X11 + X4 + X0

CRC-16 X16 + X15 + X2 + X0

CRC-16 Reverse X16 + X14 + X1 + X0

CRC-12 X12 + X11 + X3 + X2 + X1 + X0

Ethernet X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 + X0
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Figure 1 shows the Consultative Committee International Telegraph and 
Telephone (CCITT) CRC-16 generator computed serially. The quotient 
“1” bit (XOR16) is fed back and subtracted from the appropriate taps in the 
shift register (XOR12, XOR5, XOR0). These bits shift forward to appear at the 
end and are subtracted from the next data bit, unless they are eliminated 
by a coinciding second bit from an earlier or later subtraction that is fed 
back.

Figure 1. LFSR Configuration for CCITT CRC-16 Generator (X16 + X12 + X 
5 + X 

0)
 

Parallel CRC 
Computation

The serial method works well when the data is available in bit-serial form. 
However, today’s high-speed signal processing systems process data in 
byte, word, double-word (32-bit), or larger widths rather than serially. 
Even in telecommunications systems, which transmit data serially, 
received data is encapsulated within a VLSI device responsible for Clock 
recovery and byte framing. The data is presented to the board designer in 
8-bit frames at a manageable speed. Therefore, designs for high-speed 
devices require the CRC to be calculated 8 bits at a time.

You can develop a parallel CRC algorithm with the LFSR approach. You 
can express the contents of the shift register after 8 shifts as a function of 
the initial contents of the shift register and the 8 data bits shifted in. This 
function can be created using only XOR operators. Figure 2 shows the 
function that uses the CCITT CRC-16 generator polynomial (X16 + X12 + 
X5 + X0). In this example, the register contents C[15..0] and the next 8 
data bits D[7..0] are used to calculate the general contents of the register 
after 8 shifts. Because the register shifts once for each input data bit, the 
XOR16 operator produces the series of terms C0 ⊕  D0, C1 ⊕  D1, etc. These 
terms are assigned the name Mn where Mn = Cn ⊕  Dn.
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Figure 2. CRC Register Shifts for CCITT CRC-16 Generator (X16 + X12 + X 
5 + X 

0)

All terms on a line are XORed together.

On the first four shifts, only Mn terms are fed back. On the fifth shift, 
register 0 now contains C4 ⊕  M0(from earlier shifts), which will be XORed 
with D4 and fed back, as shown in the following equation: 

D4 ⊕  (C4 ⊕  M0) = (D4 ⊕  C4) M0 = M4 ⊕  M0 

Later shifts all have multiple terms fed back. The CRC register contents 
after 8 shifts are shown in the box on the right. 

AHDL CRC 
Macrofunction

Figure 3 shows an excerpt from an Altera Hardware Description 
Language (AHDL) Text Design File (.tdf) that includes the logic equations 
for the register values after 8 shifts (i.e., 1 byte later).
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Figure 3. AHDL CRC Design Excerpt

ex0 = ( reg[0] $ dat[0] ) ;
ex1 = ( reg[1] $ dat[1] ) ;
ex2 = ( reg[2] $ dat[2] ) ;
ex3 = ( reg[3] $ dat[3] ) ;
ex4 = ( reg[4] $ dat[4] ) ;
ex5 = ( reg[5] $ dat[5] ) ;
ex6 = ( reg[6] $ dat[6] ) ;
ex7 = ( reg[7] $ dat[7] ) ;

reg[0].d = reg[8]    $ ex4 $ ex0 ;
reg[1].d = reg[9]    $ ex5 $ ex1 ;
reg[2].d = reg[10]   $ ex6 $ ex2 ;
reg[3].d = reg[11] $ ex0 $ ex7 $ ex3 ;
reg[4].d = reg[12] $ ex1 ;
reg[5].d = reg[13] $ ex2    ;
reg[6].d = reg[14] $ ex3    ;
reg[7].d = reg[15] $ ex4  $ ex0 ;
reg[8].d = ex0 $ ex5  $ ex1 ;
reg[9].d = ex1 $ ex6  $ ex2 ;
reg[10].d = ex2 $ ex7  $ ex3 ;
reg[11].d = ex3     ;
reg[12].d = ex4    $ ex0 ;
reg[13].d = ex5    $ ex1 ;
reg[14].d = ex6    $ ex2 ;
reg[15].d = ex7    $ ex3 ;

1 A complete AHDL description of the CCITT CRC-16 
macrofunction is available in the self-extracting file an_049.exe 
from the Altera bulletin board service (BBS) at (408) 954-0104 or 
from Altera’s FTP site.

A CRC is calculated before a frame of data is transmitted, then each data 
byte is clocked into the CRC macrofunction. Conversely, the CRC is 
clocked during each byte of transmitted data. After the last byte of data is 
clocked in, the 16-bit CRC is appended to the data. A multiplexer selects 
the low CRC byte (REG[7..0]), then selects the high byte for 
transmission.
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To check the CRC after the data transmission, you should clear the shift 
register by asserting the Clear signal. The CRC macrofunction is enabled 
for one Clock cycle during each byte of received data, including the two 
CRC bytes calculated at transmission end and appended to the end of the 
data frame. After the last CRC byte is clocked in, the register contains the 
16-bit CRC of the transmitted data plus the transmitted CRC, as shown in 
the following equation:

 

If there are no errors in the transmission, the remainder is 0, and the CRC00 
signal is asserted. 

Piecewise 
CRCC 
Computation

In packet-switching networks (such as ATM networks), a frame is broken 
into small packets for transmission, then reassembled into the original 
long frame after it is received. The frame can include a CRC at the end that 
allows the CRCC to verify the integrity of the entire frame once it is 
reassembled. It is easier to generate a CRC while the frame is still in its 
original format. For more complex transmission protocols, CRC 
generation may require a communications processor, which can easily 
become overburdened. To avoid the need for a communications processor 
entirely, you can compute the CRC in hardware at a lower level. 
However, his method can cause packets from different frames to 
intermingle, especially on the receiving end. 

To prevent intermingling frames, you can compute the CRC for each 
packet separately, i.e., piecewise. Once the CRCC has been executed over 
a packet, the interim CRC is stored in a small RAM that is indexed by the 
channel number. For the next packet, the channel number is first 
determined from the header, and the interim CRC for the previous 
channel is extracted from the RAM and loaded into the CRC register. The 
packet’s data is then clocked into the CRC. At the end of the packet, the 
interim CRC for the next packet is stored in the RAM in preparation for 
the next packet. Sometimes the data path needs to be delayed by a few 
bytes to allow cycles to acquire the channel number and load the previous 
interim CRC into the CRC macrofunction. When the last packet of a frame 
is transmitted, the CRC is appended to the data so that it can be verified 
as 0 when it is received.

The piecewise method adds RAM and control logic to the design. 
However, this method has little effect on the CRC engine; the register 
must simply be loaded with the interim CRC for the previous channel 
before proceeding with each packet’s data. 

X
n

D× R+
G

---------------------------
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1 A sample file of the CRC macrofunction with an added load 
function is available in the self-extracting file an_049.exe from 
the Altera bulletin board service (BBS) at (408) 954-0104 or from 
Altera’s FTP site.

Each frame’s packets must be processed in the same order at transmission 
and reception. If any of the packets are out of sequence when they are 
received, the CRCC indicates an error. Bit or burst errors are also detected 
and reported. 

Conclusion CRCCs are an efficient method for verifying data transmission, especially 
for ATM applications. CRCCs offer protection from common errors 
without adding extensive logic overhead. You can use either serial or 
parallel computation methods to implement CRCCs. For applications in 
which the data frame is segmented and mixed with data from other 
frames, a piecewise CRC calculation is most effective.
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