

USB Function

IP Core

Author: Rudolf Usselmann
rudi@asics.ws

Rev. 0.2
January 8, 2001

Preliminary Draft

Revision History

Rev. Date Author Description

0.1 6/1/01 Rudolf
Usselmann

First Draft

0.2 8/1/01 Rudolf
Usselmann

Second Draft

OpenCores USB Function Core January 8, 2001

1. Introduction

The Universal Serial Bus (USB) has evolved to the standard interconnect between
computers and peripherals. Everything from a mouse to a camera can be connected
via USB. With the new USB 2.0 specification, data rates of over 480 Mb/s are pos-
sible.

The Universal Serial Bus is a point to point interface. Multiple peripherals are
attached through a HUB to the host.

This core provides a function (peripheral device) interface. It can be used to inter-
face almost any peripheral to a computer via USB. This core fully complies to the
USB 2.0 specification and can operate at USB Full and High Speed rates (12 and
480 Mb/s).

This core requires an external PHY (transceiver) that complies to the UTMI speci-
fication.

The UTMI Specification, can be downloaded from:
http://developer.intel.com/technology/usb/download/USB_TMI_spec.pdf.

The following companies have announced PHY chips:

Lucent: USS2X1
http://www.lucent.com/micro/usb/usbdocs.html

NEC: uPD720120
http://www.necel.com/home.nsf/Main?ReadForm&Multimedia+Products

Philips: ISP1501
http://www.semiconductors.philips.com/pip/isp1501-01/

This are all that I have found. If you know of other please email me: rudi@asics.ws
www.opencores.org Rev. 0.2 Preliminary Draft 1 of 15

OpenCores USB Function Core January 8, 2001

2. Architecture
This section describes the internal architecture of the USB Function Controller.

Below figure illustrates the overall architecture of the core. The host micro control-
ler interface provides a bridge between the internal data FIFO and control registers
to the hosts micro controller (or CPU). The data FIFO and control registers inter-
face to the Protocol Layer block (PL). The protocol layer interfaces to serial inter-
face block (SEI). The SEI interfaces to the physical interface block (PHY). Each of
the blocks is described in detail below.

Figure 1: Core Architecture Overview

2.1. Clocks

The USB core has two clock domains. The UTMI interface block, runs of the clock
provided by the PHY. The maximum clock output from the PHY is 60 MHz. The
actual clock frequency depends on the operation mode (High Speed/Full Speed).
The UTMI block includes synchronization logic to the rest of the USB core.
 All other blocks run of the clock from the host interface. The goal is that the mini-
mum frequency is at least 100Mhz.

2.2. Host Interface

The host interface blocks provides a consistent core interface between the internal
functions of the core and the function specific host or micro controller.

PHYPL

Host Interface
(Wishbone)

Host Micro controller

External

UTMI
I/F

Control/
Status
Registers

Memory
Interface
and
Arbiter

SSRAM USB
Connector
www.opencores.org Rev. 0.2 Preliminary Draft 2 of 15

OpenCores USB Function Core January 8, 2001

The host interface is WISHBONE SoC bus specification Rev. B compliant.

2.3. Protocol Layer (PL)

The protocol layer is responsible for all USB data IO and control communications.

Figure 2: Protocol Layer Block

Table
Walk
Engine

Packet

Packet

Protocol

Virtual
Endpoint

Engine

Assembly

D
M

A
 a

nd
M

em
or

y
In

te
rf

ac
e

Dis-
assembly

Control/Status Registers
www.opencores.org Rev. 0.2 Preliminary Draft 3 of 15

OpenCores USB Function Core January 8, 2001

2.3.1. DMA & Memory Interface

This block interfaces to the shared Memory. It provides random memory access
and also DMA block transfers.

2.3.2. Table Walk Engine

Whenever a IN or OUT token is received, this block searches the endpoint list for
the appropriate endpoint. If the endpoint is found the data packet is acknowledged
or data is send out. If not no action is taken.

2.3.3. Virtual Endpoint

The virtual endpoint temporarily holds the configuration data from the endpoint
found in the list or provides default endpoint configuration.

2.3.4. Protocol Engine

This block handles all the standard USB protocol handshakes and control corre-
spondence.

2.3.5. Packet Assembly

This block assembles packets and places them in to the output FIFO.

2.3.6. Packet Disassembly

This block decodes all incoming packets and forwards the decoded data to the
appropriate blocks.
www.opencores.org Rev. 0.2 Preliminary Draft 4 of 15

OpenCores USB Function Core January 8, 2001

2.4. UTMI I/F

This is the interface block to the UTMI compliant PHY (transceiver).

Figure 3: UTMI Interface Block

2.4.1. Interface State Engine

This block handles the interface state. It controls suspend/resume modes and Full
Speed/High Speed switching.

2.4.2. Speed Negotiation Engine

This block negotiates the speed of the USB interface and handles suspend and reset
detection.

2.4.3. Rx & Tx FIFOs

The FIFOs hold the temporary receive and transmit data. They also used as a
means to synchronize between the UTMI clock and the host interface clock.

2.4.4. Rx & Tx Bus Interface

This blocks ensure proper handshaking with the receive and transmit interfaces of
the PHY.

Speed

Interface

Rx FIFO
Rx Bus

Tx Bus
Interface

State
Engine

Negotiation
Engine

Interface

Tx FIFO
www.opencores.org Rev. 0.2 Preliminary Draft 5 of 15

OpenCores USB Function Core January 8, 2001

3. Operation
This section describes the operation of the USB function controller. It first dis-
cusses the logical interface to the host micro controller (function) and the logical
USB interface.
The USB core uses a local configuration memory which is used to define endpoints
and as a temporary data storage. The memory size is user definable, and can be
used in three ways:

1) As a shared buffer between all end points. In this configuration, the
USB controller will send an interrupt to the controller to fill/empty the
buffer when needed for each endpoint.

2) Each endpoint has it’s own dedicated input/output buffer. No software
intervention is needed when different endpoints are accessed. Multiple
buffer may be set up, allowing for automatic transmission of larger
frames.

3) Any combination of 1) and 2)

Figure 4: Logical Representation of USB

3.1. Endpoints

This USB core supports up to 15 input endpoints and 15 output endpoints (maxi-
mum number of endpoint per USB 2.0 specification). Each endpoint is defined by
creating an entry in a linked list in the controllers memory. The TBD register
points to the beginning of the linked list. The USB core will search the entire list
for the desired endpoint each time it receives a token addressing a specific end-
point, if the desired endpoint is not found the default endpoint configuration is
used.

PHY

E 0

E 1

E n

USB Core

Memory

Host or
HUB

U
S

B
F

un
ct

io
n

Core
Logic
www.opencores.org Rev. 0.2 Preliminary Draft 6 of 15

OpenCores USB Function Core January 8, 2001

Each entry in the linked list consists of the following fields:

Figure 5: Linked List Entry

3.1.1. Linked List Entry

The configuration and status bits specify the operation mode of the end point and
the endpoint ID, as well as reporting any specific endpoint status back to the con-
troller.

Table 1: Config Status Bits 1

Bit #
No of
Bits

Description

31-28 4 Endpoint Number

27 1 1: Control endpoint; 0: Data Endpoint

26 1 1: Input Endpoint 0: Output endpoint (This bit has no meaning if bit 27 is
1.

25:24 2 Transfer Type
00: Reserved
01: Interrupt
10: Isochronous
11: Bulk

23

22

19

18

17:16 2 Interrupt Enable
00: Interrupts disabled
01: Assert Interrupt when a transfer has completed (successful or error)
10: Assert interrupt only on errors
11: Assert Interrupt only on fatal errors (HALT condition)

15 1 RESERVED

Buffer 1 PointerBuffer 0 Pointer

Next EntryConfig/Status Bits 1

S S

0:

2:

01415163031

Config/Status Bits 21:
www.opencores.org Rev. 0.2 Preliminary Draft 7 of 15

OpenCores USB Function Core January 8, 2001

3.1.2. Buffer Pointers

The buffer pointers point to the input/output data structure in memory. If the S bit
is set, this indicates that the buffer is a shared buffer. In this case a interrupt is gen-
erated and the core waits for the controller to clear the TBD bit in the TBD register.
Clearing the TBD bit, will cause the USB core to perform the transmit/receive
operation. A value of all ones (7FFFh) indicates that the buffer has not been allo-
cated. If both buffer are not allocated the core will respond with TBD acknowledg-
ments to the USB host.

14:0 15 Next Entry Pointer
This pointer, points to the next entry in the endpoint linked list. If
the value is all ones (7FFFh), then there are no more entries in the
list.

Table 2: Config Status Bits 2

Bit #
No of
Bits

Description

12:11 2 Number of transactions per micro frame

10:0 11 Maximum payload size

Table 3: Buffer Pointers

Bit #
No of
Bits

Description

31 Shared Bit 0

30-16 Buffer 0 pointer

15 Shared bit 1

14:0 Buffer 1 pointer

Table 1: Config Status Bits 1

Bit #
No of
Bits

Description
www.opencores.org Rev. 0.2 Preliminary Draft 8 of 15

OpenCores USB Function Core January 8, 2001

This USB core supports double buffering feature which reduces the latency
requirements on the functions micro controller and driver software. Double buffer-
ing is enabled when both buffer pointers have been set. Data is being retrieved/
filled to/from the buffers in a ping-pong fashion. When data is sent to/from the
endpoint, first buffer 0 is used. When the first transfer completes, the function con-
troller is notified via an interrupt. The function controller can refill/empty buffer 0
now. The USB core will use buffer 1 for the next operation. When the second oper-
ation completes, the function controller is interrupted, and the USB core will use
buffer 0 again, and so on.
<buffer usage for control endpoints> TBD

3.2. Default Endpoint

The default endpoint specifies the behavior of the USB core for unspecified end-
points.
<How to configure and use> TBD

3.3. USB core memory size

This USB core, includes a memory block that is uses for storing data and endpoint
control information. The memory is 32 bits wide. Depending on the application,
the user should chose the appropriate memory size based on the following:

• Linked List
For each endpoint 12 bytes are required in the linked list. If only one
endpoint is used, the default endpoint registers can be used for control
and status of the endpoint.

• Data buffer
USB packet sizes range from 64 to 1024 bytes, depending on transfer
mode, and speed of the interface.

• Control & Configuration Structure
Endpoint 0 is the default control and configuration structure. The mini-
mum size for this structure is XX bytes.

Based on the above information, using shared buffers, the memory can be as small
as 1024 bytes. The maximum supported memory size is 128 Kilobytes.
www.opencores.org Rev. 0.2 Preliminary Draft 9 of 15

OpenCores USB Function Core January 8, 2001

4. Core Configuration and Status Registers
This section describes all control and status register inside the USB function. The
Address field indicates a relative address in hexadecimal. Width specifies the num-
ber of bits in the register, and Access specifies the valid access types to that regis-
ter. Where RW stands for read and write access, RO for read only access. A ‘C’
appended to RW or RO, indicates that some or all of the bits are cleared after a
read.

4.1. Control Status Register (CSR)

This is the main configuration and status register of the USB core.

Table 4: Control/Status Registers

Name
A

dd
r

.

W
id

th

A
cc

es
s

Description

CSR 0 32 RWC Control/Status Register

FA 1 7 RO Function Address

ELL 2 15 RW Pointer to the beginning of the endpoint linked list in
memory

DE_CS0 3 32 RW Default endpoint Configuration Status Register 0

DE_CS1 4 32 R Default endpoint Configuration Status Register 1

INT_MSKA 5 16 RW Interrupt Mask for interrupt A (int_a)

INT_MSKB 6 16 RW Interrupt Mask for interrupt B (int_b)

INT_SRC 7 16 RO Interrupt Source register

8 RW

9 RW

A RW

Table 5: CSR Register

Bit
#

A
cc

es
s

Description

5

4

3

2

www.opencores.org Rev. 0.2 Preliminary Draft 10 of 15

OpenCores USB Function Core January 8, 2001

Reset Value:

CSR: TBD h

4.2. Function Address Register (FA)

The function address is set by the host when the function is configured.

Reset Value:

FA: 00h

4.3. Endpoint Linked List Register (EEL)

The endpoint linked list register points to the beginning of the linked list in the
local memory. When this register is all ones (7fff) it means that the linked list has
not been set up.

Reset Value:

ELL: 7FFFh

4.4. Default Endpoint Control Status Registers (DE_CS)

This two registers may be used to specify a default endpoint behavior.

1

0

Table 6: DE_CS0 Register

Bit #

A
cc

es
s

Description

31 RW

21 RW

20 RW

19 RW

Table 5: CSR Register

Bit
#

A
cc

es
s

Description
www.opencores.org Rev. 0.2 Preliminary Draft 11 of 15

OpenCores USB Function Core January 8, 2001

Reset Value:

DE_CS0: TBD h
DE_CS1: FFFFFFFF h

4.5. Interrupt Mask Registers (INT_MSK)

The interrupt mask registers defines the functionality of int_a and int_b outputs.

18 RW

17 RW

16 RW

15-0 RO RESERVED (Software should always write 0)

Table 7: DE_CS1 Register

Bit #

A
cc

es
s

Description

31 RW Shared Bit 0

30:16 RW Buffer 0 Pointer

15 RW Shared Bit 1

14:0 RW Buffer 1 Pointer

Table 8: Interrupt Mask Register

Bit
#

A
cc

es
s

Description

7 RW

6 RW

5 RW

4 RW

3 RW

2 RW

Table 6: DE_CS0 Register

Bit #

A
cc

es
s

Description
www.opencores.org Rev. 0.2 Preliminary Draft 12 of 15

OpenCores USB Function Core January 8, 2001

Reset Value:

INT_MSKA: 00h
INT_MSKB: 00h

4.6. Interrupt Source Register (INR_SRC)

TBD

Note:
It is essential that the function controller reads the value of the INT_SRC
register immediately when it receives and interrupt. Failure to do so, may
resulting loosing an interrupt source.

1 RW

0 RW

Table 9: Interrupt mask Register

Bit
#

A
cc

es
s

Description

RW

RW

RW

RW

7 RW

6 RW

5:4 RO Buffer Number

3:0 RO Endpoint Number

Table 8: Interrupt Mask Register

Bit
#

A
cc

es
s

Description
www.opencores.org Rev. 0.2 Preliminary Draft 13 of 15

OpenCores USB Function Core January 8, 2001

5. IOs
This section lists all IOs of the USB core. Each clock domain is contained in a sep-
arate subsection

5.1. Host Interface IOs

The host interface is a WISHBONE Rev B compliant interface. This USB core
works as a slave device only. When it need the intervention of the local micro con-
troller, it will assert INTA_O or INTB_O.

Table 10: Host Interface (WISHBONE)

Name

W
id

th

D
ir

ec
ti

on

Description

CLK_I 1 I Clock input

RST_I 1 I Reset Input

CS_I 1 I Core Select (From Address decoder)

ADDR_I 15 I Address Input

DATA_I 32 I Data Input

DATA_O 32 O Data Output

SEL_I 4 I Indicates which bytes are valid on data bus. Whenever this sig-
nal is not fh during a valid access, the ERR_O is asserted.

ACK_O 1 O Acknowledgment Output. Indicates a normal Cycle termination.

ERR_O 1 O Error acknowledgment output. Indicates an abnormal cycle ter-
mination.

RTY_O 1 O Retry Output. Indicates that the interface is not ready, and the
master should retry this operation. [Most Likely not used in this
core.]

WE_I 1 I Indicates a Write Cycle when asserted high.

STB_I 1 I Indicates t6he beginning of a valid transfer cycle.

INTA_O 1 O Interrupt Output A

INTB_O 1 O Interrupt Output A
www.opencores.org Rev. 0.2 Preliminary Draft 14 of 15

OpenCores USB Function Core January 8, 2001

5.2. UTMI IOs

The UTMI interface is a USB 2.0 UTMI specification Version 1.03 compliant
interface.

Table 11: UTMI Interface

Name
W

id
th

D
ir

ec
ti

on

Description

clock 1 I Clock
www.opencores.org Rev. 0.2 Preliminary Draft 15 of 15

	1. Introduction
	2. Architecture
	2.1. Clocks
	2.2. Host Interface
	2.3. Protocol Layer (PL)
	2.3.1. DMA & Memory Interface
	2.3.2. Table Walk Engine
	2.3.3. Virtual Endpoint
	2.3.4. Protocol Engine
	2.3.5. Packet Assembly
	2.3.6. Packet Disassembly

	2.4. UTMI I/F
	2.4.1. Interface State Engine
	2.4.2. Speed Negotiation Engine
	2.4.3. Rx & Tx FIFOs
	2.4.4. Rx & Tx Bus Interface

	3. Operation
	3.1. Endpoints
	3.1.1. Linked List Entry
	3.1.2. Buffer Pointers

	3.2. Default Endpoint
	3.3. USB core memory size

	4. Core Configuration and Status Registers
	4.1. Control Status Register (CSR)
	4.2. Function Address Register (FA)
	4.3. Endpoint Linked List Register (EEL)
	4.4. Default Endpoint Control Status Registers (DE_CS)
	4.5. Interrupt Mask Registers (INT_MSK)
	4.6. Interrupt Source Register (INR_SRC)

	5. IOs
	5.1. Host Interface IOs
	5.2. UTMI IOs

