
5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

PCI_TARGET_UNIT

PCI_IO_MUX

pci_io_mux_ad_load_crit.v

PCI_IN_REG

(one for each byte lane)

backoff (registered)

trdy_critical (combinatorial) stop_critical (combinatorial)

devs_critical (combinatorial)

wire trdy_w_frm

wire fast_back_to_back

wire ctrl_en
assign fetch_pcir_fifo_out

assign load_medium_reg_out
assign sel_fifo_mreg_out

assign load_to_pciw_fifo_out

POTENTIAL PROBLEM #3:
Since IRDY is de-asserted a couple of NS after
clk rises, the combinatorial logic in one of
the connected blocks may not see IRDY before
the clk signal internal to the FPGA as a
result of PAR rises (this is a routing issue,
but it is caused by the original logic PAR is
attempting to route).

POTENTIAL PROBLEM #2:
Since IRDY & TRDY are
used in combinatorial
logic sometimes, the
fact that they are
both asserted for only
a few NS may cause the
logic to work
incorrectly.

CLK33

TRDY

IRDY

TRDY falls only 2-3 NS before CLK33 rises

IRDY rises only 2-3 NS after CLK33 rises

SUPPOSITION:
Perhaps both IRDY & TRDY should only be used as registered variables so they exist for one complete
clock cycle for the combinatorial logic. Unfortunately, I am not familiar enough yet with the
logic, nor am I sure I am right in the first place to make these changes.

assign pci_trdy_out = ~(trdy_w ||
(trdy_w_frm && ~pci_frame_in) ||
(trdy_w_frm_irdy && ~pci_frame_in &&
pci_irdy_in))

(pci_irdy_reg_in used in these wires/assigns)

POTENTIAL PROBLEM #1:
Since TRDY is assigned based on the
IRDYnon-registered input, then pci_trdy_out,
even if it is subsequently registered, may be
too short to allow the rest of the logic to
work correctly when IRDY & TRDY are crowding
CLK from opposite directions.

assign load_to_conf_out

PCI_TARGET32_SM

assign load_to_conf_out =
((state_transfere_reg && cnf_progress &&
rw_cbe0 && ~pci_irdy_reg_in &&
~bckp_trdy_reg) || (state_transfere_reg
&& norm_access_to_conf_reg && rw_cbe0 &&
~pci_irdy_reg_in && ~bckp_trdy_reg)) ;

WHERE I STARTED FROM:
Basically, what happened is that I am unable
to write to the command register in PCI space
yet in order to set the memory enable bit, or
change the BAR0. In searching why, I can see
that load_to_conf_out does not assert. I am
suspecting a timing problem because IRDY is
asserted from the master initiating this
configuration write and it de-asserts only
2NS after CLK33 rises.

Charles Krinke cfk@pacbell.net A

IRDY/TRDY Relationships

B
1 1Friday, July 05, 2002

Title

Size Document Number Rev

Date: Sheet of

load_out
load_on_transfer_in

load_in

pci_irdy_reg_outpci_irdy_in

pciu_pciif_irdy_reg_in pci_irdy_reg_in

pciu_pciif_irdy_in pci_irdy_inIRDY

TRDY

1
2
3
4 1

2

3

20 1

20 1

3 2

en
cl

k

