
WISHBONE
DMA/Bridge

IP Core

Author: Rudolf Usselmann
rudi@asics.ws

Rev. 0.2
January 28, 2001

Preliminary Draft

Revision History

Rev. Date Author Description

0.1 23/1/01 Rudolf
Usselmann

First Draft
Internal release

0.2 28/1/01 RU First public release

OpenCores WISHBONE DMA/Bridge January 28, 2001
1
Introduction

This core provides DMA transfers between two WISHBONE interfaces. It can
also act as a bridge, allowing masters on each WISHBONE interface to also
directly access slaves on the other interface.

The DMA engine may have up to four channels. The actual number of chan-
nels is user selectable. See Appendix A “Core HW Configuration” on page 19 for
more information.

This implementation is designed to work between two WISHBONE interfaces
running at the same clock.
www.opencores.org Rev. 0.2 Preliminary Draft 1 of 19

January 28, 2001 WISHBONE DMA/Bridge OpenCores
(This page intentionally left blank)
2 of 19 Rev. 0.2 Preliminary Draft www.opencores.org

OpenCores WISHBONE DMA/Bridge January 28, 2001
2
Architecture

Below figure illustrates the overall architecture of the core.

Figure 1: Core Architecture Overview

It consists of 3 main building blocks: Two WISHBONE interfaces, a DMA
engine and pass through logic.

2.1. WISHBONE Interface

The DMA/Bridge core has two master and slave capable WISHBONE inter-
faces. Both interfaces are WISHBONE SoC bus specification Rev. B compliant.

WISHBONE IF 1

DMA
Engine

Pass-
through

WISHBONE IF 0

HW
Handshake

Interrupt
www.opencores.org Rev. 0.2 Preliminary Draft 3 of 19

January 28, 2001 WISHBONE DMA/Bridge OpenCores
This implementation implements a 32 bit bus width and does not support other bus
widths.

2.2. DMA Engine

The DMA engine is a 4 channel DMA engine that support transfers between
the two interfaces and transfers on the same interface (block copy). Each channel
can be programmed to have a different priority. Channels with the same priority
are serviced in a round robin fashion.

2.3. Pass Through

This block performs the pass through operation between the two WISHBONE
interfaces. It includes a two entry deep write buffer in each direction. The write
buffer can be disabled if desired.

WISHBONE

COMPATIBLE
4 of 19 Rev. 0.2 Preliminary Draft www.opencores.org

OpenCores WISHBONE DMA/Bridge January 28, 2001
3
Operation

The DMA engine consists of 4 DMA channels, the actual DMA engine and a
channel prioritizing arbiter.

Figure 2: DMA Engine

3.1. Prioritizing Arbiter

The prioritizing arbiter will select the next channel to process based first on
priority, and secondarily, if all priorities are equal, in a round robin way. Each
channel has a 2 bit priority value associated with it. A value of 0 identifies a chan-
nel with very low priority, a value of 3, identifies a channel with very high priority.
Channels with the same priority are processed in a round robin way, as long as
there are no channels with a higher priority.

Below figure illustrates the internal operation of the channel arbiter.

Channel 0

Prioritizing
arbiter

Channel
priorities

Channel 1

Channel 2

Channel 3

WISHBONE
interface 0

WISHBONE
interface 1

DMA
Engine

M
U
X

www.opencores.org Rev. 0.2 Preliminary Draft 5 of 19

January 28, 2001 WISHBONE DMA/Bridge OpenCores
Figure 3: Channel Arbiter

Care should be taken when using priorities, as channels with lower priorities
may be locked out and never serviced, if channels with higher priority are being
continuously serviced.

Ch. 0 Ch. 1

Ch. 2Ch. 3

Ch. 0 Ch. 1

Ch. 2Ch. 3

Ch. 0 Ch. 1

Ch. 2Ch. 3

Ch. 0 Ch. 1

Ch. 2Ch. 3

Channel priorities

Priority
Encoder

M
U
X

Next
Channel

Priority 0

Priority 2

Priority 1

Priority 3
6 of 19 Rev. 0.2 Preliminary Draft www.opencores.org

OpenCores WISHBONE DMA/Bridge January 28, 2001
3.2. DMA Engine

The DMA engine can be programmed to perform various transfer operations.
This section will illustrate several transfer options and their operation.

3.2.1. Normal DMA operation

This is a simple DMA operation performing a block copy. Below figure illus-
trates the operation.

Figure 4: Normal DMA operation

In this example the DMA engine performs a block copy from one location to
another, either on the same interface or on a different interfaces. The DMA engine
will leave the bus request signal asserted until it has completed the transfer. The
transfer begins when either the local controller/CPU writes to the channel CSR
register. When the transfer is completed, the DMA engine will assert an interrupt
(if enabled) or go to the idle state. If the auto restart bit (ARS) is set, it immediately
restart the operation. When the ARS bit is set, the DMA engine will continue
restarting until the ARS bit is cleared in the channel CSR register. The software
can also force the channel to stop, by writing a 1 to the STOP bit in the channel
CSR register. In this case the DMA channel will immediately stop and indicate an
error condition by setting the ERR bit in the channel CSR register and asserting an
error interrupt (if enabled).

If CHK_SZ is not zero, the channel has to re-arbitrate for the interfaces after
each CHK_SZ of word have been transferred. This is particularly useful when set-

Read N-1 Read NRead 0 Read 1

Write 0 Write N-1Write 1 Write N

Read 0 Write 0 Read N Write N
Transfers are
performed on
the same interface

Different Interfaces

Interface A

Interface B

Start Done

Bus not relinquished until transfer is completed.
Main bus arbiter is responsible for limiting bus time.

(INT)
www.opencores.org Rev. 0.2 Preliminary Draft 7 of 19

January 28, 2001 WISHBONE DMA/Bridge OpenCores
ting all channels up with the same priority and requiring “fair” bus usage distribu-
tion and low latency.

3.2.2. HW Handshake Mode

Below figure illustrates HW handshake DMA operations, where one full DMA
transfer requires more than one external trigger.

Figure 5: HW Handshake DMA Operation

In this mode the DMA engine will wait for the external trigger (DMA_REQ) to
be asserted before starting the DMA transfer. Each time the trigger is asserted it
will transfer CHK_SZ number of words (one chunk). After each chunk transfer it
will assert DMA_ACK to acknowledge the transfer. After TOT_SZ number of
words have been transferred, a interrupt is asserted (if enabled).

After each chunk transfer the DMA channel has to re-arbitrate internally for
the usage of the WISHBONE interfaces.

If the ARS bit is set, the DMA channel will reload the values programmed in to
the channel registers and restart the operation. This loop will continue until the
ARS bit is cleared or the STOP bit is set. When the STOP bit is set, the DMA
engine will immediately stop the transfer, set the ERR bit, and assert an error inter-
rupt (if enabled).

Transfers are
performed on
the same interface

Different Interfaces

Interface A

Interface B

REQ

Bus not relinquished until a chunk completes.
Main bus arbiter is responsible for limiting bus time.

W N

R NR 0

W 0

R 0 W N

W N

R NR 0

W 0

R 0 W N

ACKREQ

First Chunk Last Chunk

ACK
(INT)
8 of 19 Rev. 0.2 Preliminary Draft www.opencores.org

OpenCores WISHBONE DMA/Bridge January 28, 2001
3.3. Pass Through Operation

In pass through mode, this core acts as a bridge. It does not add any functional-
ity to pass through traffic. The user may select if writes complete immediately or if
they have to complete on the destination interface first. A two entry deep write
buffer is provided in each direction. A delayed write that completes with an error,
can be set up to assert an interrupt. Below figure illustrates the pass though logic.

Figure 6: Pass Through Logic

en
tr

y
0

en
tr

y
1

MUX

entry 0

entry 1

MUX

Control
Logic

DATA_OUT

DATA_IN

DATA_OUT

DATA_IN
www.opencores.org Rev. 0.2 Preliminary Draft 9 of 19

January 28, 2001 WISHBONE DMA/Bridge OpenCores
(This page intentionally left blank)
10 of 19 Rev. 0.2 Preliminary Draft www.opencores.org

OpenCores WISHBONE DMA/Bridge January 28, 2001
4
Core Registers

This section describes all control and status register inside the WISHBONE
DMA/Bridge core. The Address field indicates a relative address in hexadecimal.
Width specifies the number of bits in the register, and Access specifies the valid
access types to that register. Where RW stands for read and write access, RO for
read only access. A ‘C’ appended to RW or RO, indicates that some or all of the
bits are cleared after a read.

Table 1: Control/Status Registers

Name

A
dd

r.

W
id

th

A
cc

es
s

Description

COR 0 32 RW Configuration Register

INT_MSK 1 32 RW Interrupt Mask

INT_SRCA 2 32 ROC Interrupt Source for INTA_O output

INT_SRCB 3 32 ROC Interrupt Source for INTB_O output

Channel 0 Registers

CH0_CSR 8 32 RW Control Status Register

CH0_SZ 9 32 RW Transfer Size

CH0_A0 A 32 RW Address 0

CH0_A1 B 32 RW Address 1

Channel 1 Registers (Optional)

CH1_CSR C 32 RW Control Status Register

CH1_SZ D 32 RW Transfer Size

CH1_A0 E 32 RW Address 0

CH1_A1 F 32 RW Address 1

Channel 2 Registers (Optional)

CH2_CSR 10 32 RW Control Status Register

CH2_SZ 11 32 RW Transfer Size
www.opencores.org Rev. 0.2 Preliminary Draft 11 of 19

January 28, 2001 WISHBONE DMA/Bridge OpenCores
4.1. Configuration Register (COR)

This is the main configuration register of the DMA/Bridge core.

Reset Value:

COR: 00 h

CH2_A0 12 32 RW Address 0

CH2_A1 13 32 RW Address 1

Channel 3 Registers (Optional)

CH3_CSR 14 32 RW Control Status Register

CH3_SZ 15 32 RW Transfer Size

CH3_A0 16 32 RW Address 0

CH3_A1 17 32 RW Address 1

Table 2: COR Register

Bit #

A
cc

es
s

Description

31:10 RO RESERVED

9 RW WBE1
Enable write buffer from Interface 1 to interface 0
0: Write buffer disabled
1: Write buffer enabled

8 RW WBE0
Enable write buffer from Interface 0 to interface 1
0: Write buffer disabled
1: Write buffer enabled

7:6 RW PRI3
Priority of channel 3 (0: lowest priority; 3: highest priority)

5:4 RW PRI2
Priority of channel 2 (0: lowest priority; 3: highest priority)

3:2 RW PRI1
Priority of channel 1 (0: lowest priority; 3: highest priority)

1:0 RW PRI0
Priority of channel 0 (0: lowest priority; 3: highest priority)

Table 1: Control/Status Registers

Name

A
dd

r.

W
id

th

A
cc

es
s

Description
12 of 19 Rev. 0.2 Preliminary Draft www.opencores.org

OpenCores WISHBONE DMA/Bridge January 28, 2001
4.2. Interrupt Mask Register (INT_MSK)

The interrupt mask register defines the functionality of INT_A and INT_B out-
puts.A bit set to a logical 1 enables the generation of the interrupt for that source, a
zero disables the generation of an interrupt.

Reset Value:

INT_MSK: 0000h

Table 3: Interrupt Mask Register

Bit #

A
cc

es
s

Description

31:26 RO RESERVED

25 RW Interrupt B Enable: Delayed write interface 1 to interface 0 error

24 RW Interrupt B Enable: Delayed write interface 0 to interface 1 error

23 RW Interrupt B Enable: Enable DMA Channel 3 Done Interrupt

22 RW Interrupt B Enable: Enable DMA Channel 3 Error Interrupt

21 RW Interrupt B Enable: Enable DMA Channel 2 Done Interrupt

20 RW Interrupt B Enable: Enable DMA Channel 2 Error Interrupt

19 RW Interrupt B Enable: Enable DMA Channel 1 Done Interrupt

18 RW Interrupt B Enable: Enable DMA Channel 1 Error Interrupt

17 RW Interrupt B Enable: Enable DMA Channel 0 Done Interrupt

16 RW Interrupt B Enable: Enable DMA Channel 0 Error Interrupt

15:10 RO RESERVED

9 RW Interrupt A Enable: Delayed write interface 1 to interface 0 error

8 RW Interrupt A Enable: Delayed write interface 0 to interface 1 error

7 RW Interrupt A Enable: Enable DMA Channel 3 Done Interrupt

6 RW Interrupt A Enable: Enable DMA Channel 3 Error Interrupt

5 RW Interrupt A Enable: Enable DMA Channel 2 Done Interrupt

4 RW Interrupt A Enable: Enable DMA Channel 2 Error Interrupt

3 RW Interrupt A Enable: Enable DMA Channel 1 Done Interrupt

2 RW Interrupt A Enable: Enable DMA Channel 1 Error Interrupt

1 RW Interrupt A Enable: Enable DMA Channel 0 Done Interrupt

0 RW Interrupt A Enable: Enable DMA Channel 0 Error Interrupt
www.opencores.org Rev. 0.2 Preliminary Draft 13 of 19

January 28, 2001 WISHBONE DMA/Bridge OpenCores
4.3. Interrupt Source Register (INT_SRCn)

This registers identifies the source of an interrupt. INT_SRCA register indi-
cates the source for INTA_O output, INT_SRCB register indicates the source for
INTB_O output. Whenever the function controller receives an interrupt, the inter-
rupt handler must read this register to determine the source and cause of the inter-
rupt. Some of the bits in this register will be cleared after a read. The software
interrupt handler must make sure it keeps whatever information is required to han-
dle the interrupt.

Reset Value:

INT_SRC: 0000h

4.4. Channel Registers

Each channel has 4 registers associated with it. These registers have exactly the
same definition for each channel.

Figure 7: Channel Registers

Table 4: Interrupt Source Register

Bit #

A
cc

es
s

Description

31:10 RO RESERVED

9 ROC Delayed write interface 1 to interface 0 error

8 ROC Delayed write interface 0 to interface 1 error

7 ROC DMA Channel 3 Done

6 ROC DMA Channel 3 Error

5 ROC DMA Channel 2 Done

4 ROC DMA Channel 2 Error

3 ROC DMA Channel 1 Done

2 ROC DMA Channel 1 Error

1 ROC DMA Channel 0 Done

0 ROC DMA Channel 0 Error

Transfer Size

Control/Status BitsCHn_CSR:

CHn_A0:

031

CHn_SZ:

CHn_A1: Address for Interface 1

Address for Interface 0
14 of 19 Rev. 0.2 Preliminary Draft www.opencores.org

OpenCores WISHBONE DMA/Bridge January 28, 2001
4.4.1. Channel CSR Register (CHn_CSR)

The configuration and status bits specify the operation mode of the channel, as
well as reporting any specific channel status.

Reset Value:

CHn_CSR: 0000h

Table 5: Channel CSR Register

Bit #

A
cc

es
s

Description

31:11 RO RESERVED

10 RO ERR
DMA channel stopped due to error

9 RO DONE
DMA channel done
(This bit will not be set unless the ARS bit is cleared)

8 RO BUSY
DMA channel busy

7 WO STOP
Writing a 1 to this register will cause it to stop it current transfer and set
the ERR bit.

6 RO RESERVED

5 RW ARS
Automatically restart the channel when transfer completes
0: Auto restart disabled
1: Automatically restart the DMA channel after TOT_SZ of bytes have
been transferred. The original values programmed in to the channel reg-
isters are reloaded and the transfers starts over again.

4 RW MODE
0: Normal Mode
1: HW Handshake Mode

3 RW INC_SRC
0: Do not increment source address
1: Increment source address

2 RW INC_DST
0: Do not increment destination address
1: Increment destination address

1 RW SRC_SEL
0: Interface 0 is the source
1: Interface 1 is the source

0 RW DST_SEL
0: Interface 0 is the destination
1: Interface 1 is the destination
www.opencores.org Rev. 0.2 Preliminary Draft 15 of 19

January 28, 2001 WISHBONE DMA/Bridge OpenCores
4.4.2. Channel Size Register (CHn_SZ)

The transfer size register specifies the total and “chunk” transfer sizes for each
channel.

Reset Value:

CHn_SZ: 0000h

4.4.3. Channel Address Registers (CHn_Am)

The address registers specify the source and destination address. Address reg-
ister 0 is the source address, address register 1 is the destination address. Both reg-
isters are 32 bit wide.

Reset Value:

CHn_Am: 0000h

Table 6: Channel Size Register

Bit #

A
cc

es
s

Description

31:27 RO RESERVED

26:16 RW CHK_SZ
Chunk transfer size. Specifies the number of words (4 byte entities) to
be transferred at one given time (Not implying they are buffered, but that
they will be transferred for each start event in one bus request cycle). If
chunk size is zero, the DMA engine will always perform TOT_SZ trans-
fers. Maximum chunk size is 8K bytes.

15:12 RO RESERVED

11:0 RW TOT_SZ
Total transfer Size. Specifies the number of words (4 byte entities) to be
transferred. Maximum total transfer size is16K bytes.
16 of 19 Rev. 0.2 Preliminary Draft www.opencores.org

OpenCores WISHBONE DMA/Bridge January 28, 2001
5
Core IOs

This chapter lists all IOs of the DMA/Bridge core.

5.1. Interface IOs

Both interfaces are WISHBONE Rev B compliant. The DMA/Bridge core, can
be a slave or master on either interface.

Table 7: Host Interface (WISHBONE)

Name

W
id

th

D
ir

ec
ti

on

Description

CSP_I 1 I Core pass-through select (From Address decoder)

CSR_I 1 I Core registers select (From Address decoder), interface 0 only

ADDR_I 32 I Address Input (for Slave)

ADDR_O 32 O Address Output (from Master)

DATA_I 32 I Data Input

DATA_O 32 O Data Output

SEL_I 4 I Input for Slave. Indicates which bytes are valid on the data bus.
Whenever this signal is not 1111b during a valid access, the
ERR_O is asserted.

SEL_O 4 O Output from master. Indicates which bytes are valid on the data
bus. Whenever this signal is not 1111b during a valid access, the
ERR_O is asserted.

ACK_O 1 O Output from slave. Acknowledgment Output. Indicates a normal
Cycle termination.

ACK_I 1 I Input for master. Acknowledgment Output. Indicates a normal
Cycle termination.

ERR_O 1 O Output from slave. Error acknowledgment output. Indicates an
abnormal cycle termination.

ERR_I 1 I Input for master. Error acknowledgment output. Indicates an
abnormal cycle termination.
www.opencores.org Rev. 0.2 Preliminary Draft 17 of 19

January 28, 2001 WISHBONE DMA/Bridge OpenCores
5.2. Additional Control IOs

This section describes additional control signals. Except for the clock and reset
signals all other signals are special extensions and directly a part of the WISH-
BONE specification.

RTY_O 1 O Output from slave. Retry Output. Indicates that the interface is not
ready, and the master should retry this operation.

RTY_I 1 I Input for master. Retry Output. Indicates that the interface is not
ready, and the master should retry this operation.

WE_I 1 I Input for slave. Indicates a Write Cycle when asserted high.

WE_O 1 O Output from master. Indicates a Write Cycle when asserted high.

STB_I 1 I Input for slave. Indicates the beginning of a valid transfer cycle.

STB_O 1 O Output from master. Indicates the beginning of a valid transfer
cycle.

Table 8: Additional IOs

Name

W
id

th

D
ir

ec
ti

on

Description

CLK_I 1 I Clock input

RST_I 1 I Reset Input

REQ_0 1 I DMA Request to channel 0 (trigger input)

REQ_1 1 I DMA Request to channel 1 (trigger input)

REQ_2 1 I DMA Request to channel 2 (trigger input)

REQ_3 1 I DMA Request to channel 3 (trigger input)

ACK_0 1 O DMA Acknowledge channel 0 (Asserted when the DMA is done
with the transfer)

ACK_1 1 O DMA Acknowledge channel 1 (Asserted when the DMA is done
with the transfer)

ACK_2 1 O DMA Acknowledge channel 2 (Asserted when the DMA is done
with the transfer)

ACK_3 1 O DMA Acknowledge channel 3 (Asserted when the DMA is done
with the transfer)

INTA_O 1 O Interrupt Output A

INTB_O 1 O Interrupt Output B

Table 7: Host Interface (WISHBONE)

Name

W
id

th

D
ir

ec
ti

on

Description
18 of 19 Rev. 0.2 Preliminary Draft www.opencores.org

OpenCores WISHBONE DMA/Bridge January 28, 2001
Appendix A
Core HW Configuration

This Appendix describes the configuration of the core. This step is performed
before final Synthesis and tape-out of the core.
www.opencores.org Rev. 0.2 Preliminary Draft 19 of 19

	1 Introduction
	2 Architecture
	2.1. WISHBONE Interface
	2.2. DMA Engine
	2.3. Pass Through

	3 Operation
	3.1. Prioritizing Arbiter
	3.2. DMA Engine
	3.2.1. Normal DMA operation
	3.2.2. HW Handshake Mode

	3.3. Pass Through Operation

	4 Core Registers
	4.1. Configuration Register (COR)
	4.2. Interrupt Mask Register (INT_MSK)
	4.3. Interrupt Source Register (INT_SRCn)
	4.4. Channel Registers
	4.4.1. Channel CSR Register (CHn_CSR)
	4.4.2. Channel Size Register (CHn_SZ)
	4.4.3. Channel Address Registers (CHn_Am)

	5 Core IOs
	5.1. Interface IOs
	5.2. Additional Control IOs

	Appendix A Core HW Configuration

