Package 'survivalSL'

July 2, 2025

Type Package

Title Super Learner for Survival Prediction from Censored Data

Version 0.98

Depends R (>= 4.0.0), splines, survival

Imports date, graphics, MASS, glmnet, caret, flexsurv,

randomForestSRC, hdnom, survivalPLANN, dplyr, rpart, methods

Description

Several functions and S3 methods to construct a super learner in the presence of censored timesto-event and to evaluate its prognostic capacities.

License GPL (>= 2)

LazyLoad yes

NeedsCompilation no

BugReports https://github.com/foucher-y/survivalSL/issues

Author Yohann Foucher [aut, cre] (ORCID:

<https://orcid.org/0000-0003-0330-7457>), Camille Sabathe [aut] (ORCID: <https://orcid.org/0000-0001-9353-691X>)

Maintainer Yohann Foucher <yohann.foucher@univ-poitiers.fr>

Repository CRAN

Date/Publication 2025-07-02 16:10:02 UTC

Contents

dataDIVAT2	 					2
dataDIVAT3	 					3
dataOFSEP	 •••					4
LIB_AFTgamma	 •••					5
LIB_AFTggamma	 •••			•		6
LIB_AFTllogis	 •••				•	7
LIB_AFTweibull	 •••	 •			•	8
LIB_COXaic	 •••	 •			•	10
LIB COXall	 					11

LIB_COXen	12
LIB_COXIasso	13
LIB_COXridge	14
LIB_PHexponential	16
LIB_PHgompertz	17
LIB_PHspline	18
LIB_PLANN	19
LIB_RSF	20
metrics	21
plot.libsl	23
plot.sltime	
predict.libsl	25
predict.sltime	26
print.libsl	28
F	28
summary.libsl	
	31
	32
	36
	37
	38
	40
	41
tuneRSF	43
	45
· · · · · · · · · · · · · · · · · · ·	43

Index

dataDIVAT2

A Sample from the DIVAT Data Bank.

Description

A data frame with 1912 French kidney transplant recipients from the DIVAT cohort.

Usage

data(dataDIVAT2)

Format

A data frame with the 4 following variables:

- age This numeric vector provides the age of the recipient at the transplantation (in years).
- hla This numeric vector provides the indicator of transplantations with at least 4 HLA incompatibilities between the donor and the recipient (1 for high level and 0 otherwise).
- retransplant This numeric vector provides the indicator of re-transplantation (1 for more than one transplantation and 0 for first kidney transplantation).

- ecd The Expended Criteria Donor (1 for transplantations from ECD and 0 otherwise). ECD are defined by widely accepted criteria, which includes donors older than 60 years of age or 50-59 years of age with two of the following characteristics: history of hypertension, cerebrovascular accident as the cause of death or terminal serum creatinine higher than 1.5 mg/dL.
- times This numeric vector is the follow up times of each patient.
- failures This numeric vector is the event indicator (0=right censored, 1=event). An event is considered when return in dialysis or patient death with functioning graft is observed.

Source

URL: www.divat.fr

References

Le Borgne F, Giraudeau B, Querard AH, Giral M and Foucher Y. Comparisons of the performances of different statistical tests for time-to-event analysis with confounding factors: practical illustrations in kidney transplantation. Statistics in medicine. 30;35(7):1103-16, 2016. <doi:10.1002/sim.6777>

Examples

data(dataDIVAT2)

```
# Compute the non-adjusted Hazard Ratio related to the ECD versus SCD
cox.ecd<-coxph(Surv(times, failures) ~ ecd, data=dataDIVAT2)
summary(cox.ecd) # Hazard Ratio = 1.97
```

dataDIVAT3

A Sample from the DIVAT Data Bank.

Description

A data frame with 4267 French kidney transplant recipients.

Usage

data(dataDIVAT3)

Format

A data frame with 4267 observations for the 8 following variables.

ageR This numeric vector represents the age of the recipient (in years)

sexeR This numeric vector represents the gender of the recipient (1=men, 0=female)

year.tx This numeric vector represents the year of the transplantation

ante.diab This numeric vector represents the diabetes statute (1=yes, 0=no)

- pra This numeric vector represents the pre-graft immunization using the panel reactive antibody (1=detectable, 0=undetectable)
- ageD This numeric vector represents the age of the donor (in years)
- death.time This numeric vector represents the follow up time in days (until death or censoring)
- death This numeric vector represents the death indicator at the follow-up end (1=death, 0=alive)

Source

URL: www.divat.fr

References

Le Borgne et al. Standardized and weighted time-dependent ROC curves to evaluate the intrinsic prognostic capacities of a marker by taking into account confounding factors. Manuscript submitted. Stat Methods Med Res. 27(11):3397-3410, 2018. <doi: 10.1177/0962280217702416.>

Examples

data(dataDIVAT3)

a short summary of the recipient age at the transplantation summary(dataDIVAT3\$ageR)

```
### Kaplan and Meier estimation of the recipient survival
plot(survfit(Surv(death.time/365.25, death) ~ 1, data = dataDIVAT3),
xlab="Post transplantation time (in years)", ylab="Patient survival",
mark.time=FALSE)
```

dataOFSEP

A Simulated Sample from the OFSEP Cohort.

Description

A data frame with 1300 simulated French patients with multiple sclerosis from the OFSEP cohort. The baseline is 1 year after the initiation of the first-line treatment.

Usage

```
data(dataOFSEP)
```

Format

A data frame with 1300 observations for the 3 following variables:

- time This numeric vector represents the follow up time in years (until disease progression or censoring)
- event This numeric vector represents the disease progression indicator at the follow-up end (1=progression, 0=censoring)

- age This numeric vector represents the patient age (in years) at baseline.
- duration This numeric vector represents the disease duration (in days) at baseline.
- period This numeric vector represents the calendar period: 1 in-between 2014 and 2018, and 0 otherwise.
- gender This numeric vector represents the gender: 1 for women.
- relapse This numeric vector represents the diagnosis of at least one relapse since the treatment initiation : 1 if at least one event, and 0 otherwise.
- edss This vector of character string represents the EDSS level: "miss" for missing, "low" for EDSS between 0 to 2, and "high" otherwise.
- t1 This vector of character string represents the new gadolinium-enhancing T1 lesion: "missing", "0" or "1+" for at least 1 lesion.
- t2 This vector of character string represents the new T2 lesions: "no" or "yes".
- rio This numeric vector represents the modified Rio score.

Examples

data(dataOFSEP)

```
### Kaplan and Meier estimation of the disease progression free survival
plot(survfit(Surv(time, event) ~ 1, data = dataOFSEP),
    ylab="Disease progression free survival",
    xlab="Time after the first anniversary of the first-line treatment in years")
```

LIB_AFTgamma	Library of the Super Learner for an Accelerated Failure Time (AFT)
	Model with a Gamma Distribution

Description

Fit an AFT parametric model with a gamma distribution.

Usage

```
LIB_AFTgamma(formula, data)
```

Arguments

formula	A formula object, with the response on the left of a ~ operator, and the terms
	on the right. The response must be a survival object as returned by the Surv
	function.
data	A data frame whose columns correspond to the variables present in the formula.

Details

The model is obtained by using the dist="gamma" in the flexsurvreg package.

Value

formula	The formula object used for model construction.
model	The estimated model.
data	The data frame used for learning.
times	A vector of numeric values with the times of the predictions.
predictions	A matrix with the predictions of survivals of each subject (lines) for each observed time (columns).

References

Jackson, C. (2016). flexsurv: A Platform for Parametric Survival Modeling in R. Journal of Statistical Software, 70(8), 1-33. doi:10.18637/jss.v070.i08

Examples

data("dataDIVAT2")

The estimation of the model from the first 200 lines

```
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
model <- LIB_AFTgamma(formula=formula, data=dataDIVAT2[1:200,])</pre>
```

```
# The predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="1", lty=1, lwd=2, ylim=c(0,1))
```

LIB_AFTggamma Library of the Super Learner for an Accelerated Failure Time (AFT) Model with a Generalized Gamma Distribution

Description

Fit an AFT parametric model with a generalized gamma distribution.

Usage

```
LIB_AFTggamma(formula, data)
```

Arguments

formula	A formula object, with the response on the left of a ~ operator, and the terms
	on the right. The response must be a survival object as returned by the Surv
	function.
data	A data frame whose columns correspond to the variables present in the formula.

LIB_AFTllogis

Details

The model is obtained by using the dist="gengamma" in the flexsurvreg package.

Value

formula	The formula object used for model construction.
model	The estimated model.
data	The data frame used for learning.
times	A vector of numeric values with the times of the predictions.
predictions	A matrix with the predictions of survivals of each subject (lines) for each observed time (columns).

References

Jackson, C. (2016). flexsurv: A Platform for Parametric Survival Modeling in R. Journal of Statistical Software, 70(8), 1-33. doi:10.18637/jss.v070.i08

Examples

data("dataDIVAT2")

The estimation of the model from the first 200 lines

formula<-Surv(times,failures) ~ age + hla + retransplant + ecd model <- LIB_AFTggamma(formula=formula, data=dataDIVAT2[1:200,])</pre>

```
# The predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="1", lty=1, lwd=2, ylim=c(0,1))
```

LIB_AFTllogis	Library of the Super Learner for an Accelerated Failure Time (AFT)
	Model with a Log Logistic Distribution

Description

Fit an AFT parametric model with a log logistic distribution.

Usage

LIB_AFTllogis(formula, data)

Arguments

formula	A formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data	A data frame whose columns correspond to the variables present in the formula.

Details

The model is obtained by using the dist="llogis" in the flexsurvreg package.

Value

formula	The formula object used for model construction.
model	The estimated model.
data	The data frame used for learning.
times	A vector of numeric values with the times of the predictions.
predictions	A matrix with the predictions of survivals of each subject (lines) for each observed time (columns).

References

Jackson, C. (2016). flexsurv: A Platform for Parametric Survival Modeling in R. Journal of Statistical Software, 70(8), 1-33. doi:10.18637/jss.v070.i08

Examples

data("dataDIVAT2")

The estimation of the model from the first 200 lines

```
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
model <- LIB_AFTllogis(formula=formula, data=dataDIVAT2[1:200,])</pre>
```

```
# The predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="1", lty=1, lwd=2, ylim=c(0,1))
```

LIB_AFTweibull

Library of the Super Learner for an Accelerated Failure Time (AFT) Model with a Weibull Distribution

Description

Fit an AFT parametric model with a Weibull distribution.

LIB_AFTweibull

Usage

LIB_AFTweibull(formula, data)

Arguments

formula	A formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data	A data frame whose columns correspond to the variables present in the formula.

Details

The model is obtained by using the dist="weibull" in the flexsurvreg package.

Value

formula	The formula object used for model construction.
model	The estimated model.
data	The data frame used for learning.
times	A vector of numeric values with the times of the predictions.
predictions	A matrix with the predictions of survivals of each subject (lines) for each observed time (columns).

References

Jackson, C. (2016). flexsurv: A Platform for Parametric Survival Modeling in R. Journal of Statistical Software, 70(8), 1-33. doi:10.18637/jss.v070.i08

Examples

data("dataDIVAT2")

The estimation of the model from the first 200 lines

formula<-Surv(times,failures) ~ age + hla + retransplant + ecd model <- LIB_AFTweibull(formula=formula, data=dataDIVAT2[1:200,])</pre>

```
# The predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="1", lty=1, lwd=2, ylim=c(0,1))
```

LIB_COXaic

Description

Fit a Cox regression for a selection of covariate.

Usage

LIB_COXaic(formula, data, penalty=NULL)

Arguments

formula	A formula object, with the response on the left of a ~ operator, and the predictoes on the right. The response must be a survival object as returned by the Surv function.
data	A data frame whose columns correspond to the variables present in the formula.
penalty	A numerical vector with a length equals to the number of predictors. It allows the integration of covariates into the final model, i.e. with no selection: the value 0 to force the covariate in the model, 1 otherwise. If NULL, all covariates undergo the selection process.

Value

formula	The formula object used for model construction.
model	The estimated model.
data	The data frame used for learning.
times	A vector of numeric values with the times of the predictions.
predictions	A matrix with the predictions of survivals of each subject (lines) for each observed time (columns).

References

Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2011) Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol. 39(5), 1-13, https://www.jstatsoft.org/v39/i05/

Examples

data("dataDIVAT2")

The estimation of the model from the first 200 lines

```
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
model <- LIB_COXaic(formula=formula, data=dataDIVAT2[1:200,])</pre>
```

```
# The predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="l", lty=1, lwd=2, ylim=c(0,1))
```

LIB_COXall

Library of the Super Learner for Cox Regression

Description

Fit a Cox regression for all covariates to be used in the super learner.

Usage

LIB_COXall(formula, data)

Arguments

formula	A formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data	A data frame whose columns correspond to the variables present in the formula.

Details

The Cox regression is obtained by using the survival package.

Value

formula	The formula object used for model construction.
model	The estimated model.
data	The data frame used for learning.
times	A vector of numeric values with the times of the predictions.
predictions	A matrix with the predictions of survivals of each subject (lines) for each observed time (columns).

References

Terry M. Therneau (2021). A Package for Survival Analysis in R. R package version 3.2-13, https://CRAN.R-project.org/package=survival.

Examples

```
data("dataDIVAT2")
# The estimation of the model from the first 200 lines
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
data<-dataDIVAT2[1:200,]
model <- LIB_COXall(formula=formula, data=data)
# The predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",</pre>
```

ylab="Predicted survival", col=1, type="1", lty=1, lwd=2, ylim=c(0,1))

LIB_COXen

Library of the Super Learner for Elastic Net Cox Regression

Description

Fit an elastic net Cox regression for fixed values of the regularization parameters.

Usage

LIB_COXen(formula, data, penalty=NULL, alpha, lambda)

Arguments

formula	A formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data	A data frame whose columns correspond to the variables present in the formula.
penalty	A numerical vector that allows the covariates not to be penalized. We give the value 0 if we do not want the covariate to be penalized otherwise 1. If NULL, all covariates are penalized.
alpha	The value of the regularization parameter alpha for penalizing the partial likeli- hood.
lambda	The value of the regularization parameter lambda for penalizing the partial like- lihood.

Details

The elastic net Cox regression is obtained by using the glmnet package.

12

LIB_COXlasso

Value

formula	The formula object used for model construction.
model	The estimated model.
data	The data frame used for learning.
times	A vector of numeric values with the times of the predictions.
predictions	A matrix with the predictions of survivals of each subject (lines) for each observed time (columns).

References

Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2011) Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol. 39(5), 1-13, https://www.jstatsoft.org/v39/i05/

Examples

data("dataDIVAT2")

The estimation of the model from the first 200 lignes

```
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
model <- LIB_COXen(formula=formula, data=dataDIVAT2[1:200,], lambda=.1, alpha=.1)</pre>
```

```
# The predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="l", lty=1, lwd=2, ylim=c(0,1))
```

LIB_COXlasso

Library of the Super Learner for Lasso Cox Regression

Description

Fit a Lasso Cox regression for a fixed value of the regularization parameter.

Usage

```
LIB_COXlasso(formula, data, penalty=NULL, lambda)
```

Arguments

formula	A formula object, with the response on the left of a ~ operator, and the terms
	on the right. The response must be a survival object as returned by the Surv
	function.
data	A data frame whose columns correspond to the variables present in the formula.

penalty	A numerical vector with a length equals to the number of predictors. It allows the integration of covariates into the final model, i.e. with no selection: the value 0 to force the covariate in the model, 1 otherwise. If NULL, all covariates undergo the selection process.
lambda	The value of the regularization parameter lambda for penalizing the partial like- lihood.

Details

The Lasso Cox regression is obtained by using the glmnet package.

Value

formula	The formula object used for model construction.
model	The estimated model.
data	The data frame used for learning.
times	A vector of numeric values with the times of the predictions.
predictions	A matrix with the predictions of survivals of each subject (lines) for each observed time (columns).

References

Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2011) Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol. 39(5), 1-13, https://www.jstatsoft.org/v39/i05/

Examples

```
data("dataDIVAT2")
# The estimation of the model from the first 200 lines
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
model <- LIB_COXlasso(formula=formula, data=dataDIVAT2[1:200,], lambda=.1)
# The predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="1", lty=1, lwd=2, ylim=c(0,1))</pre>
```

```
LIB_COXridge
```

Library of the Super Learner for Ridge Cox Regression

Description

Fit a ridge Cox regression for a fixed value of the regularization parameter.

LIB_COXridge

Usage

LIB_COXridge(formula, data, penalty=NULL, lambda)

Arguments

formula	A formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data	A data frame whose columns correspond to the variables present in the formula.
penalty	A numerical vector with a length equals to the number of predictors. It allows the integration of covariates into the final model, i.e. with no selection: the value 0 to force the covariate in the model, 1 otherwise. If NULL, all covariates undergo the selection process.
lambda	The value of the regularization parameter lambda for penalizing the partial like- lihood.

Details

The ridge Cox regression is obtained by using the glmnet package.

Value

formula	The formula object used for model construction.
model	The estimated model.
data	The data frame used for learning.
times	A vector of numeric values with the times of the predictions.
predictions	A matrix with the predictions of survivals of each subject (lines) for each observed time (columns).

References

Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2011) Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol. 39(5), 1-13, https://www.jstatsoft.org/v39/i05/

Examples

```
data("dataDIVAT2")
```

The estimation of the model from the first 200 lines

```
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
model <- LIB_COXridge(formula=formula, data=dataDIVAT2[1:200,], lambda=.1)</pre>
```

```
# The predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="1", lty=1, lwd=2, ylim=c(0,1))
```

LIB_PHexponential

Description

Fit a PH model with an Exponential distribution.

Usage

LIB_PHexponential(formula, data)

Arguments

formula	A formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data	A data frame whose columns correspond to the variables present in the formula.

Details

The model is obtained by using the dist="exp" in the flexsurvreg package.

Value

formula	The formula object used for model construction.
model	The estimated model.
data	The data frame used for learning.
times	A vector of numeric values with the times of the predictions.
predictions	A matrix with the predictions of survivals of each subject (lines) for each observed time (columns).

References

Jackson, C. (2016). flexsurv: A Platform for Parametric Survival Modeling in R. Journal of Statistical Software, 70(8), 1-33. doi:10.18637/jss.v070.i08

Examples

data("dataDIVAT2")

The estimation of the model from the first 200 lines

formula<-Surv(times,failures) ~ age + hla + retransplant + ecd model <- LIB_PHexponential(formula=formula, data=dataDIVAT2[1:200,])</pre>

The predicted survival of the first subject of the training sample

```
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="l", lty=1, lwd=2, ylim=c(0,1))
```

LIB_PHgompertz	Library of the Super Learner for an Proportional Hazards (PH) Model
	with a Gompertz Distribution

Description

Fit a PH parametric model with a Gompertz distribution.

Usage

```
LIB_PHgompertz(formula, data)
```

Arguments

formula	A formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data	A data frame whose columns correspond to the variables present in the formula.

Details

The model is obtained by using the dist="gompertz" in the flexsurvreg package.

Value

formula	The formula object used for model construction.
model	The estimated model.
data	The data frame used for learning.
times	A vector of numeric values with the times of the predictions.
predictions	A matrix with the predictions of survivals of each subject (lines) for each observed time (columns).

References

Jackson, C. (2016). flexsurv: A Platform for Parametric Survival Modeling in R. Journal of Statistical Software, 70(8), 1-33. doi:10.18637/jss.v070.i08

Examples

data("dataDIVAT2")

The estimation of the model from the first 200 lines

formula<-Surv(times,failures) ~ age + hla + retransplant + ecd model <- LIB_PHgompertz(formula=formula, data=dataDIVAT2[1:200,])</pre>

```
# The predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="1", lty=1, lwd=2, ylim=c(0,1))
```

LIB_PHspline	Library of the Super Learner for an Survival Regression using the
	Royston/Parmar Spline Model

Description

Fit an PH model with a survival function is modelled as a natural cubic spline function.

Usage

LIB_PHspline(formula, data, k)

Arguments

formula	A formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data	A data frame whose columns correspond to the variables present in the formula.
k	Number of knots.

Value

formula	The formula object used for model construction.
model	The estimated model.
data	The data frame used for learning.
times	A vector of numeric values with the times of the predictions.
predictions	A matrix with the predictions of survivals of each subject (lines) for each observed time (columns).

References

Jackson, C. (2016). flexsurv: A Platform for Parametric Survival Modeling in R. Journal of Statistical Software, 70(8), 1-33. doi:10.18637/jss.v070.i08

18

LIB_PLANN

Examples

data("dataDIVAT2")

The estimation of the model from the first 200 lines

formula<-Surv(times,failures) ~ age + hla + retransplant + ecd model <- LIB_PHspline(formula=formula, data=dataDIVAT2[1:200,], k=2)</pre>

```
# The predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="1", lty=1, lwd=2, ylim=c(0,1))
```

LIB_PLANN Library of the Super Learner for Survival Neural Network Based on the PLANN Method

Description

Fit a neural network based on the partial logistic regression.

Usage

Arguments

formula	A formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data	A data frame whose columns correspond to the variables present in the formula.
inter	The length of the intervals.
size	The number of units in the hidden layer.
decay	The parameter for weight decay.
maxit	The maximum number of iterations.
MaxNWts	The maximum allowable number of weights.
maxtime	A numeric value with the maximum prognostic time. If NULL, the maximum prognostic time is the maximum value of database times + 1.

Details

This function is based is based on the survivalPLANN from the related package.

Value

formula	The formula object used for model construction.
model	The estimated model.
data	The data frame used for learning.
times	A vector of numeric values with the times of the predictions.
predictions	A matrix with the predictions of survivals of each subject (lines) for each observed time (columns).

References

Biganzoli E, Boracchi P, Mariani L, and et al. Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Stat Med, 17:1169-86, 1998.

Examples

```
data("dataDIVAT2")
```

The neural network based from the first 300 individuals of the data base

```
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
model <- LIB_PLANN(formula, data=dataDIVAT2[1:300,],
    inter=0.5, size=32, decay=0.01, maxit=100, MaxNWts=10000, maxtime=NULL)
```

The predicted survival of the first subject of the training sample

```
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="l", lty=1, lwd=2, ylim=c(0,1))
```

LIB_RSF

Library of the Super Learner for Survival Random Survival Forest

Description

Fit survival random forest tree for given values of the regularization parameters.

Usage

```
LIB_RSF(formula, data, nodesize, mtry, ntree, seed=NULL)
```

Arguments

formula	A formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data	A data frame whose columns correspond to the variables present in the formula.
nodesize	The value of the node size.

metrics

mtry	The number of variables randomly sampled as candidates at each split.
ntree	The number of trees.
seed	A random seed to ensure reproducibility during bootstrap sampling. If NULL, a seed is randomly assigned.

Details

The survival random forest tree is obtained by using the randomForestSRC package.

Value

formula	The formula object used for model construction.
model	The estimated model.
data	The data frame used for learning.
times	A vector of numeric values with the times of the predictions.
predictions	A matrix with the predictions of survivals of each subject (lines) for each observed time (columns).

References

Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2011) Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol. 39(5), 1-13, https://www.jstatsoft.org/v39/i05/

Examples

```
data("dataDIVAT2")
# The estimation of the model
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
model <- LIB_RSF(formula, data=dataDIVAT2, nodesize=10,
    mtry=2, ntree=100, seed=NULL)
# The predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="1", lty=1, lwd=2, ylim=c(0,1))</pre>
```

metrics

Metrics to Evaluate the Prognostic Capacities

Description

Compute several metrics to evaluate the prognostic capacities with time-to-event data.

Usage

```
metrics(metric, formula=NULL, data=NULL,
survivals.matrix=NULL, hazards.matrix=NULL, prediction.times=NULL,
object=NULL, pro.time=NULL, ROC.precision=seq(.01, .99, by=.01))
```

Arguments

metric	The metric to compute. See details.
formula	The formula used to build the survivals.matrix.
data	A data frame for in which to look for the variables related to the status of the follow-up time.
survivals.matri	х
	A matrix with the predictions of survivals of each subject (lines) for each prog- nostic times (columns).
hazards.matrix	A matrix with the predictions of hazards of each subject (lines) for each prog- nostic times (columns).
prediction.time	25
	A vector of numeric values with the times of the predictions (same length than the number of columns of prediction.matrix).
pro.time	This optional value of prognostic time represents the maximum delay for which the capacity of the variable is evaluated. The same unit than the one used in the argument times. Not used for the following metrics: "ll", "ibs", and "ibll". Default value is the time at which half of the subjects are still at risk.
object	An object of type libsl, is NULL by default. When a value is assigned to it, the other parameters automatically inherit the formula, predictions, times of predictions and data from the object. When the object is set to NULL, the parameters formula, survivals.matrix, prediction.times and data must be defined.
ROC.precision	An optional argument with the percentiles (between 0 and 1) of the prognostic variable used for computing each point of the time dependent ROC curve. Only used when $metric="auc"$. 0 (min) and 1 (max) are not allowed. By default, the precision is $seq(.01,.99,.01)$.

Details

The following metrics can be used: "bs" for the Brier score at the prognostic time pro.time, "p_ci" and "uno_ci" for the concordance index at the prognostic time pro.time (Pencina and Uno versions), "ll" for the log-likelihood, "ibs" for the integrated Brier score up to the last observed time in the training data, "ibll" for the integrated binomial log-likelihood up to the last observed time, "ribll" for the restricted integrated Brier score up to the prognostic time pro.time, "ribll" for the restricted integrated binomial log-likelihood up to the prognostic time pro.time, "ribll" for the restricted integrated binomial log-likelihood up to the prognostic time pro.time, "bll" for the binomial log-likelihood, "auc" for the area under the time-dependent ROC curve up to the prognostic time pro.time.

Value

A numeric value with the metric estimation.

plot.libsl

Examples

```
data("dataDIVAT2")
# The estimation of the model
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
model <- LIB_COXridge(formula, data=dataDIVAT2, lambda=.1)
# The apparent AUC
metrics(metric="auc", object=model)
# The integrated Brier score up to 10 years post-transplanation
metrics(metric="ribs", object=model, pro.time=10)</pre>
```

plot.libsl Calibration Plot

Description

A calibration plot of an object of the class libsl (library of survival super learner).

Usage

```
## S3 method for class 'libsl'
plot(x, n.groups=5, pro.time=NULL,
newdata=NULL, ...)
```

Arguments

х	An object returned by a library of survival super learner.
n.groups	A numeric value with the number of groups by their class probabilities. The default is 5.
pro.time	The prognostic time at which the calibration plot of the survival probabilities.
newdata	An optional data frame containing the new sample for validation with covari- ate values, follow-up times, and event status. The default value is NULL, the calibration plot is performed from the same subjects of the training sample.
	Additional arguments affecting the plot.

Details

The plot represents the observed survival and the related 95% confidence intervals, which are respectively estimated by the Kaplan and Meier estimator and the Greenwood formula, against the mean of the predictive values for individuals stratified into groups of the same size according to the percentiles. The identity line is usually included for reference.

Value

No return value for this S3 method.

See Also

plot.default

Examples

plot.sltime

Calibration Plot for Super Learner

Description

A calibration plot of a Super Learner obtained by the function survivalSL.

Usage

```
## S3 method for class 'sltime'
plot(x, method="sl", n.groups=5, pro.time=NULL, newdata=NULL,
    ...)
```

Arguments

х	An object returned by the function survivalSL.
method	A character string with the name of the algorithm included in the SL for which the calibration plot is performed. The default is "sl" for the Super Learner.
n.groups	A numeric value with the number of groups by their class probabilities. The default is 5.
pro.time	The prognostic time at which the calibration plot of the survival probabilities.
newdata	An optional data frame containing the new sample for validation with covari- ate values, follow-up times, and event status. The default value is NULL, the calibration plot is performed from the same subjects of the training sample.
	Additional arguments affecting the plot.

24

predict.libsl

Details

The plot represents the observed survival and the related 95% confidence intervals, which are respectively estimated by the Kaplan and Meier estimator and the Greenwood formula, against the mean of the predictive values for individuals stratified into groups of the same size according to the percentiles. The identity line is usually included for reference.

Value

No return value for this S3 method.

See Also

plot.default

Examples

data("dataDIVAT2")

#The outcome model base on a Super Learner from the first 150 individuals of the data base

predict.libsl Prediction from an Flexible Parametric Model

Description

Predict the survival based on a model or algorithm from an object of the class libsl.

Usage

```
## S3 method for class 'libsl'
predict(object, newdata, newtimes, ...)
```

Arguments

object	An object of the class libsl.
newdata	An optional data frame containing covariate values at which to produce pre- dicted values. The default value is NULL, the predicted values are computed for the subjects of the training sample.
newtimes	The times at which to produce predicted values. The default value is NULL, the predicted values are computed for the observed times in the training data frame.
	For future methods.

Value

times	A vector of numeric values with the times of the predictions.
predictions	A matrix with the predictions of survivals of each subject (lines) for each observed time (columns).

Examples

data("dataDIVAT2")

The estimation of the model from the first 200 lines

```
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
model <- LIB_PHgompertz(formula, data=dataDIVAT2[1:200,])</pre>
```

Predicted survival for 2 new subjects
pred <- predict(model,
 newdata=data.frame(age=c(52,52), hla=c(0,1), retransplant=c(1,1), ecd=c(0,1)))</pre>

lines(y=pred\$predictions[2,], x=pred\$times, col=2, type="1", lty=1, lwd=2)

legend("bottomright", col=c(1,2), lty=1, lwd=2, c("Subject #1", "Subject #2"))

predict.sltime Prediction from a Super Learner for Censored Outcomes

Description

Predict the survival of new observations based on an SL by using the survivalSL function.

Usage

```
## S3 method for class 'sltime'
predict(object, newdata, newtimes, ...)
```

predict.sltime

Arguments

object	An object returned by the function survivalSL.
newdata	An optional data frame containing covariate values at which to produce pre- dicted values. The default value is NULL, the predicted values are computed for the subjects of the training sample.
newtimes	The times at which to produce predicted values. The default value is NULL, the predicted values are computed for the observed times in the training data frame.
	For future methods.

Value

predictions	A list of matrix with the predictions of survivals of each subject (lines) for each observed time (columns) for each model used for the superlearner construction and the superlearner itself.
times	A vector of numeric values with the times of the predictions.

See Also

survivalSL.

Examples

data("dataDIVAT2")

The training of the super learner from the first 150 individuals of the data base

print.libsl

Description

Print the model or algorithm.

Usage

```
## S3 method for class 'libsl'
print(x, ...)
```

Arguments

х	A 'libsl' object.
	For future methods.

Value

No return value for this S3 method.

Examples

```
data("dataDIVAT2")
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
model <- LIB_AFTgamma(formula, data=dataDIVAT2[1:100,])
print(model)</pre>
```

print.sltime S3 Method for Printing an 'sltime' Object

Description

Print the contribution of learners included in the super learner.

Usage

```
## S3 method for class 'sltime'
print(x, digits=7, ...)
```

summary.libsl

Arguments

х	An object returned by the function survivalSL.
digits	An optional integer for the number of digits to print when printing numeric values.
	For future methods.

Value

No return value for this S3 method.

Examples

print(sl1, digits=4)

summary.libsl	Summaries of a Learner
---------------	------------------------

Description

Return predictive performances of a model or algorithm obtained by a library of the class libsl.

Usage

Arguments

object	An object returned by a library of the class libsl.
newdata	An optional data frame containing the new sample for validation with covari- ate values, follow-up times, and event status. The default value is NULL, the summary is performed on the same subjects of the training sample.
ROC.precision	An optional argument with the percentiles (between 0 and 1) of the prognostic variable used for computing each point of the time dependent ROC curve. 0 (min) and 1 (max) are not allowed. By default, the precision is $seq(.01, .99, .01)$.
digits	An optional integer for the number of digits to print when printing numeric values.

pro.time	This optional value of prognostic time represents the maximum delay for which
	the capacity of the variable is evaluated. The same unit than the one used in
	the argument times. Not used for the following metrics: "ll", "ibs", and "ibll".
	Default value is the time at which half of the subjects are still at risk.
	Additional arguments affecting the summary which are passed from libsl by default.

Details

The following metrics can be used : "bs" for the Brier score at the prognostic time pro.time, "p_ci" and "uno_ci" for the concordance index at the prognostic time pro.time (Pencina and Uno versions), "ll" for the log-likelihood, "ibs" for the integrated Brier score up to the last observed time in the training data, "ibll" for the integrated binomial log-likelihood up to the last observed time in the training data, "ribs" for the restricted integrated Brier score up to the prognostic time pro.time, "ribll" for the restricted integrated binomial log-likelihood up to the prognostic time pro.time, "bll" for the binomial log-likelihood, "auc" for the area under the time-dependent ROC curve up to the prognostic time pro.time.

Value

metrics	A data frame containing the computed predictive performance metrics
library	The name of the library used for model training.
pro.time	The prognostic time used for evaluation.
ROC.precision	The precision values used for the ROC curve computation.

Examples

```
data("dataDIVAT2")
# The training of the gompertz model with the first 400 patients
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
data<-dataDIVAT2[1:400,]
model <- LIB_PHgompertz(formula, data=data)
# The prognostic capacities from the same training sample
summary(model)
# The prognostic capacities from a validation of the next 150 patients
# (up to 4 years for several indicators)
#newdata<-dataDIVAT2[401:550,]</pre>
```

```
#summary(model, pro.time=4, newdata=newdata)
```

summary.sltime

Description

Return goodness-of-fit indicators of a Super Learner obtained by the function survivalSL.

Usage

```
## S3 method for class 'sltime'
summary(object, newdata=NULL, method="sl",
ROC.precision=seq(.01,.99,.01), digits=7, pro.time=NULL, ...)
```

Arguments

object	An object returned by the function survivalSL.
method	A character string with the name of the algorithm included in the SL for which the summary is performed. The default is "sl" for the Super Learner.
newdata	An optional data frame containing the new sample for validation with covari- ate values, follow-up times, and event status. The default value is NULL, the summary is performed on the same subjects of the training sample.
ROC.precision	An optional argument with the percentiles (between 0 and 1) of the prognostic variable used for computing each point of the time dependent ROC curve. 0 (min) and 1 (max) are not allowed. By default, the precision is $seq(.01, .99, .01)$.
digits	An optional integer for the number of digits to print when printing numeric values.
pro.time	This optional value of prognostic time represents the maximum delay for which the capacity of the variable is evaluated. The same unit than the one used in the argument times. Not used for the following metrics: "ll", "ibs", and "ibll". Default value is the time at which half of the subjects are still at risk.
	Additional arguments affecting the summary which are passed from libsl by default.

Details

The following metrics can be used : "bs" for the Brier score at the prognostic time pro.time, "p_ci" and "uno_ci" for the concordance index at the prognostic time pro.time (Pencina and Uno versions), "ll" for the log-likelihood, "ibs" for the integrated Brier score up to the last observed time in the training data, "ibll" for the integrated binomial log-likelihood up to the last observed time in the training data, "ribs" for the restricted integrated Brier score up to the prognostic time pro.time, "ribll" for the restricted integrated binomial log-likelihood up to the prognostic time pro.time, "bll" for the binomial log-likelihood, "auc" for the area under the time-dependent ROC curve up to the prognostic time pro.time.

Value

metrics	A data frame containing the computed predictive performance metrics.
library	The name of the library used for model training.
pro.time	The prognostic time used for evaluation.
ROC.precision	The precision values used for the ROC curve computation.

See Also

survivalSL.

Examples

```
#data("dataDIVAT2")
#formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
#sl1 <- survivalSL(formula, method=c("LIB_AFTgamma", "LIB_PHgompertz"
#,"LIB_AFTllogis"), metric="auc",
    #data=dataDIVAT2[1:100,],
    #pro.time = 12,
    #cv=3)
# The prognostic capacities from the same training sample
#summary(sl1)</pre>
```

survivalSL

Super Learner for Censored Outcomes

Description

This function allows to compute a Super Learner (SL) to predict survival outcomes.

Usage

```
survivalSL(formula, data, methods, metric="auc", penalty=NULL,
cv=10, param.tune=NULL, pro.time=NULL,
optim.local.min=FALSE, ROC.precision=seq(.01,.99,.01),
param.weights.fix=NULL, param.weights.init=NULL,
seed=NULL, optim.method="Nelder-Mead", maxit=1000,
show_progress=TRUE)
```

Arguments

formula	A formula object, with the response on the left of a ~ operator, and the terms
	on the right. The response must be a survival object as returned by the Surv
	function.
data	A data frame whose columns correspond to the variables present in the formula.

32

survivalSL

methods	A vector of characters with the names of the algorithms included in the SL. At least two algorithms have to be included.
metric	The loss function or metric used to estimate the weights of the algorithms in the SL. See details.
penalty	A numerical vector that allows the integration of covariates into the final model after selection (It concerns "LIB_COXaic".) or/and allows the covariates not to be penalized (It concerns : "LIB_COXen" "LIB_COXlasso" and "LIB_COXridge".). We give the value 0 if we want to force the covariate in the model or/and not to be penalized otherwise 1. If NULL, all covariates undergo the selection process or/and penalization process.
CV	The number of splits for cross-validation. The default value is 10.
param.tune	A list with a length equals to the number of algorithms included in methods. If NULL, the tunning parameters are estimated (see details).
pro.time	This optional value of prognostic time represents the maximum delay for which the capacity of the variable is evaluated. The same unit than the one used in the argument times. Not used for the following metrics: "ll", "ibs", and "ibll". Default value is the time at which half of the subjects are still at risk.
optim.local.mir	1
	An optional logical value. If TRUE, the optimization is performed twice to better ensure the estimation of the weights. If FALSE (default value), the optimization is performed once.
ROC.precision	The percentiles (between 0 and 1) of the prognostic variable used for computing each point of the time dependent ROC curve. Only used when $metric="auc"$. 0 (min) and 1 (max) are not allowed. By default: $seq(.01,.99,.01)$.
param.weights.f	
	A vector with the parameters of the multinomial logistic regression which gen- erates the weights of the algorithms declared in methods. When completed, the related parameters are not estimated. The default value is NULL: the parameters are estimated by a cv-fold cross-validation. See details.
param.weights.i	
	A vector with the initial values of the parameters of the multinomial logistic regression which generates the weights of the algorithms declared in methods. The default value is NULL: the initial values are equaled to 0. See details.
seed	A random seed to ensure reproducibility. If NULL, a seed is randomly assigned.
optim.method	The optimization method used to estimate the weights. It can be either "SANN" or "Nelder-Mead". By default we use Nelder-Mead.
maxit	The number of iterations during the weight optimization process. By default, it is set to 1000.
show_progress	Parameter to display the progress bar. By default, it is set to TRUE.

Details

Each object of the list declared in param.tune must have the same name than the names of the methods included in the SL. If param.tune = NULL, survivalSL has already predefined default grids of tunning parameters for each algorithm in this case. The final tunning parameters are chosen

33

thanks to cv-fold cross-validation (except for LIB_RSF, which uses the Out Of Bag observations to select the best hyperparameters based on the optimal value of the chosen metric). The following metrics can be used : "bs" for the Brier score at the prognostic time pro.time, "p_ci" and "uno_ci" for the concordance index at the prognostic time pro.time (Pencina and Uno versions), "ll" for the log-likelihood, "ibs" for the integrated Brier score up to the last observed time in the training data, "ibll" for the integrated binomial log-likelihood up to the prognostic time pro.time, "ribll" for the restricted integrated Brier score up to the prognostic time pro.time, "lime, "bll" for the restricted integrated Brier score up to the prognostic time pro.time, "ribll" for the restricted integrated Brier score up to the prognostic time pro.time, "lime, "bll" for the restricted integrated Brier score up to the prognostic time pro.time, "lime, "bll" for the restricted integrated Brier score up to the prognostic time pro.time, "time, "bll" for the restricted integrated Brier score up to the prognostic time pro.time, "bll" for the restricted integrated Brier score up to the prognostic time pro.time, "bll" for the prognostic time pro.time, "lime, "bll" for the restricted integrated binomial log-likelihood up to the prognostic time pro.time, "bll" for the binomial log-likelihood, "auc" for the area under the time-dependent ROC curve up to the prognostic time pro.time.

The following learners are available:

Names	Description	Package
"LIB_AFTgamma"	Gamma-distributed AFT model	flexsurv
"LIB_AFTggamma"	Generalized Gamma-distributed AFT model	flexsurv
"LIB_AFTweibull"	Weibull-distributed AFT model	flexsurv
"LIB_PHexponential"	Exponential-distributed PH model	flexsurv
"LIB_PHgompertz"	Gompertz-distributed PH model	flexsurv
"LIB_PHspline"	Spline-based PH model	flexsurv
"LIB_COXall"	Usual Cox model	survival
"LIB_COXaic"	Cox model with AIC-based forward selection	MASS
"LIB_COXen"	Elastic Net Cox model	glmnet
"LIB_COXlasso"	Lasso Cox model	glmnet
"LIB_COXridge"	Ridge Cox model	glmnet
"LIB_RSF"	Survival Random Forest	randomForestSRC
"LIB_PLANN"	Survival Neural Network	survivalPLANN

The following loss functions for the estimation of the super learner weights are available (metric):

- Area under the ROC curve ("auc")
- Pencina concordance index ("p_ci")
- Uno concordance index ("uno_ci")
- Brier score ("bs")
- Binomial log-likelihood ("bll")
- Integrated Brier score ("ibs")
- Integrated binomial log-likelihood ("ibl1")
- Restricted integrated Brier score ("ribs")
- Restricted integrated binomial log-Likelihood ("ribl1")
- Log-Likelihood ("11")

Value

times	A vector of numeric values with the times of the predictions.
predictions	It corresponds to a matrix with the survival predictions related to the SL.

survivalSL

FitALL	It corresponds to a list of matrix with the survival predictions related to each of the learner used for the SL construction.
formula	The formula object used for the SL construction.
data	The data frame used for learning.
ROC.precision	The percentiles (between 0 and 1) of the prognostic variable used for computing each point of the time dependent ROC curve.
cv	The number of splits for cross-validation.
methods	A vector of characters with the names of the algorithms included in the SL.
pro.time	The maximum delay for which the capacity of the variable is evaluated.
models	A list with the estimated models/algorithms included in the SL.
weights	A list composed by two vectors: the regressions coefficients of the logistic multinomial regression and the resulting weights' values.
metric	A list composed by two vectors: the loss function used to estimate the weights of the algorithms in the SL and its cross validation value.
param.tune	The estimated tunning parameters.
seed	The random seed used.
optim.method	The optimization method used.

References

Polley E and van der Laanet M. Super Learner In Prediction. http://biostats.bepress.com. 2010.

Examples

tuneCOXen

Description

This function finds the optimal lambda and alpha parameters for an elastic net Cox regression.

Usage

```
tuneCOXen(formula, data, penalty=NULL,
    cv=10, parallel=FALSE, alpha=seq(.1,.9,.1), lambda=NULL, seed=NULL)
```

Arguments

formula	A formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data	A data frame for training the model with the same covariates as in the formula.
penalty	A numerical vector that allows the covariates not to be penalized. We give the value 0 if we do not want the covariate to be penalized otherwise 1. If NULL, all covariates are penalized.
CV	The value of the number of folds. The default value is 10.
parallel	If TRUE, use parallel foreach to fit each fold. The default is FALSE.
alpha	The values of the regularization parameter alpha optimized over.
lambda	The values of the regularization parameter lambda optimized over.
seed	A random seed to ensure reproducibility during the cv process. If NULL, a seed is randomly assigned.

Details

The function runs the cv.glmnet function of the glmnet package.

Value

optimal	The values of lambda and alpha that gives the minimum cross-validated de- viance.
results	The data frame with the cross-validated deviance for each lambda and alpha values.

References

Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2011) Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol. 39(5), 1-13, https://www.jstatsoft.org/v39/i05/

tuneCOXlasso

Examples

```
data("dataDIVAT2")
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
tune.model <- tuneCOXen(formula=formula, data=dataDIVAT2, cv=5,
    alpha=seq(.1, 1, by=.1), lambda=seq(.1, 1, by=.1))
tune.model$optimal$lambda # the estimated lambda value
# The estimation of the training modelwith the corresponding lambda value
model <- LIB_COXen(formula, data=dataDIVAT2,
    alpha=tune.model$optimal$alpha,
    lambda=tune.model$optimal$lambda)
# The resulted predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="1", lty=1, lwd=2, ylim=c(0,1))</pre>
```

tuneCOXlasso

Tune Lasso Cox Regression

Description

This function finds the optimal lambda parameter for a Lasso Cox regression.

Usage

```
tuneCOXlasso(formula, data, penalty=NULL,
    cv=10, parallel=FALSE, lambda=NULL, seed=NULL)
```

Arguments

formula	A formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data	A data frame for training the model with the same covariates as in the formula.
penalty	A numerical vector that allows the covariates not to be penalized. We give the value 0 if we do not want the covariate to be penalized otherwise 1. If NULL, all covariates are penalized.
cv	The value of the number of folds. The default value is 10.
parallel	If TRUE, use parallel foreach to fit each fold. The default is FALSE.
lambda	The values of the regularization parameter lambda optimized over.
seed	A random seed to ensure reproducibility during the cv process. If NULL, a seed is randomly assigned.

Details

The function runs the cv.glmnet function of the glmnet package.

Value

optimal	The value of lambda that gives the minimum cross-validated deviance.
results	The data frame with the cross-validated deviance for each lambda value.

References

Simon et al. (2011) Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol. 39(5), 1-13, https://www.jstatsoft.org/v39/i05/

Examples

```
data("dataDIVAT2")
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
tune.model <- tuneCOXlasso(formula=formula, data=dataDIVAT2,
    cv=5, lambda=seq(0, 10, by=.1))
tune.model$optimal$lambda # the estimated lambda value
# The estimation of the training modelwith the corresponding lambda value
model <- LIB_COXlasso(formula, data=dataDIVAT2,
    lambda=tune.model$optimal$lambda)
# The resulted predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",</pre>
```

```
ylab="Predicted survival", col=1, type="l", lty=1, lwd=2, ylim=c(0,1))
```

tuneCOXridge

```
Tune Ridge Cox Regression
```

Description

This function finds the optimal lambda parameter for a ridge Cox regression.

Usage

tuneCOXridge

Arguments

formula	A formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data	A data frame for training the model with the same covariates as in the formula.
penalty	A numerical vector that allows the covariates not to be penalized. We give the value 0 if we do not want the covariate to be penalized otherwise 1. If NULL, all covariates are penalized.
CV	The value of the number of folds. The default value is 10.
parallel	If TRUE, use parallel foreach to fit each fold. The default is FALSE.
lambda	The values of the regularization parameter lambda optimized over.
seed	A random seed to ensure reproducibility during the cv process. If NULL, a seed is randomly assigned.

Details

The function runs the cv.glmnet function of the glmnet package.

Value

optimal	The value of lambda that gives the minimum cross-validated deviance.
results	The data frame with the cross-validated deviance for each lambda value.

References

Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2011) Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol. 39(5), 1-13, https://www.jstatsoft.org/v39/i05/

Examples

```
data("dataDIVAT2")
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
tune.model <- tuneCOXridge(formula=formula, data=dataDIVAT2,
    cv=5, lambda=seq(0, 10, by=.1))
tune.model$optimal$lambda # the estimated lambda value
# The estimation of the training modelwith the corresponding lambda value
model <- LIB_COXridge(formula, data=dataDIVAT2,
    lambda=tune.model$optimal$lambda)
# The resulted predicted survival of the first subject of the training sample
plot(y=model$predictions[1,], x=model$times, xlab="Time (years)",</pre>
```

tunePHspline

Description

This function finds the optimal number of knots of the spline function.

Usage

```
tunePHspline(formula,
data, cv=10, metric="auc", k=1:4, pro.time=NULL,
seed=NULL, ROC.precision=seq(.01, .99, by=.01))
```

Arguments

formula	A formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data	A data frame for training the model with the same covariates as in the formula.
CV	The value of the number of folds. The default value is 10.
metric	The loss function or metric. See details. Default metric is Area Under ROC ("auc").
k	The number of knots optimized over.
pro.time	This optional value of prognostic time represents the maximum delay for which the capacity of the variable is evaluated. The same unit than the one used in the argument times. Not used for the following metrics: "ll", "ibs", and "ibll". Default value is the time at which half of the subjects are still at risk.
seed	A random seed to ensure reproducibility during the cv process. If NULL, a seed is randomly assigned.
ROC.precision	The percentiles (between 0 and 1) of the prognostic variable used for computing each point of the time dependent ROC curve. Only used when $metric="auc"$. 0 (min) and 1 (max) are not allowed. By default: $seq(.01,.99,.01)$.

Details

The function runs the flexsurvspline function of the flexsurv package. The following metrics can be used : "bs" for the Brier score at the prognostic time pro.time, "p_ci" and "uno_ci" for the concordance index at the prognostic time pro.time (Pencina and Uno versions), "ll" for the log-likelihood, "ibs" for the integrated Brier score up to the last observed time in the training data, "ibll" for the integrated binomial log-likelihood up to the last observed time in the training data, "ribs" for the restricted integrated Brier score up to the prognostic time pro.time, "ribll" for the restricted integrated Brier score up to the prognostic time pro.time, "ribll" for the integrated binomial log-likelihood up to the prognostic time pro.time, "bll" for the binomial log-likelihood, "auc" for the area under the time-dependent ROC curve up to the prognostic time pro.time.

Value

optimal	The value of k that optimizes the cross-validated value of the metric/loss function.
results	The data frame with the cross-validated value of the metric/loss function according to k.

References

Royston, P. and Parmar, M. (2002). Flexible parametric proportional-hazards and proportional odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Statistics in Medicine 21(1):2175-2197. doi: 10.1002/sim.1203

Examples

```
data("dataDIVAT2")
# The estimation of the hyperparameters on the first 150 patients
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
tune.model <- tunePHspline(formula=formula,
data=dataDIVAT2[1:150,], cv=3, metric="auc",
k=1:2, pro.time=NULL,seed=123,
ROC.precision=seq(.01, .99, by=.02))
# the estimated nodesize value
tune.model$optimal
tune.model$ptimal
tune.model$results</pre>
```

tunePLANN

Tune a Survival Neural Network Based on the PLANN Method

Description

This function finds the optimal inter, size, decay, maxit, and MaxNWts parameters for the survival neural network.

Usage

```
tunePLANN(formula, data, cv=10, inter=1, size=c(2, 4, 6, 8, 10),
decay=c(0.001, 0.01, 0.02, 0.05), maxit=100, MaxNWts=10000, maxtime=NULL,
seed=NULL,metric="auc", pro.time=NULL,
ROC.precision=seq(.01, .99, by=.01))
```

Arguments

formula	A formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data	A data frame for training the model with the same covariates as in the formula.
CV	The value of the number of folds. The default value is 10.
metric	The loss function or metric. See details. Default metric is Area Under ROC ("auc").
inter	The length of the intervals.
size	The number of units in the hidden layer.
decay	The parameter for weight decay.
maxit	The maximum number of iterations.
MaxNWts	The maximum allowable number of weights.
maxtime	A numeric value with the maximum prognostic. If NULL, the maximum prognostic time is the highest time observed in the data + 1.
pro.time	This optional value of prognostic time represents the maximum delay for which the capacity of the variable is evaluated. The same unit than the one used in the argument times. Not used for the following metrics: "ll", "ibs", and "ibll". Default value is the time at which half of the subjects are still at risk.
seed	A random seed to ensure reproducibility during the cv process. If NULL, a seed is randomly assigned.
ROC.precision	The percentiles (between 0 and 1) of the prognostic variable used for computing each point of the time dependent ROC curve. Only used when metric="auc". 0 (min) and 1 (max) are not allowed. By default: $seq(.01,.99,.01)$.

Details

The function runs the flexsurvspline function of the flexsurv package. The following metrics can be used : "bs" for the Brier score at the prognostic time pro.time, "p_ci" and "uno_ci" for the concordance index at the prognostic time pro.time (Pencina and Uno versions), "ll" for the log-likelihood, "ibs" for the integrated Brier score up to the last observed time in the training data, "ibll" for the integrated binomial log-likelihood up to the last observed time pro.time, "ribl" for the restricted integrated Brier score up to the prognostic time pro.time, "ribll" for the integrated binomial log-likelihood up to the prognostic time pro.time, "bll" for the binomial log-likelihood up to the prognostic time pro.time, "bll" for the binomial log-likelihood, "auc" for the area under the time-dependent ROC curve up to the prognostic time pro.time.

Value

optimal	The value of inter, size, decay, maxit, and MaxNWts that optimizes the cross-validated value of the metric/loss function.
results	The data frame with the cross-validated value of the metric/loss function according to inter, size, decay, maxit, and MaxNWts.

tuneRSF

References

Biganzoli E, Boracchi P, Mariani L, and et al. Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Stat Med, 17:1169-86, 1998.

Examples

```
data("dataDIVAT2")
```

```
formula<-Surv(times,failures) ~ age + hla + retransplant + ecd
tune.model <- tunePLANN(formula=formula, data=dataDIVAT2[1:150,],
cv=5, inter=c(2,1), size=c(16,32), decay=0.01, maxit=100, MaxNWts=1000,
maxtime=NULL,seed=123,metric="auc",
pro.time=NULL,ROC.precision=seq(.01, .99, by=.01))
```

tune.model\$optimal # the optimal hyperparameters

tune.model\$results

```
tuneRSF
```

Tune a Survival Random Forest

Description

This function finds the optimal nodesize, mtry, and ntree parameters for a survival random forest tree.

Usage

```
tuneRSF(formula, data, nodesize=c(2, 4, 6, 10, 20, 30, 50, 100),
    mtry, ntree=500, seed=NULL)
```

Arguments

formula	A formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data	A data frame for training the model with the same covariates as in the formula.
nodesize	The values of the node size optimized over.
mtry	The numbers of variables randomly sampled as candidates at each split opti- mized over.
ntree	The numbers of trees optimized over.
seed	A random seed to ensure reproducibility during the bootstrapping process. If NULL, a seed is randomly assigned.

Details

The function runs the tune.rfsrc function of the randomForestSRC package.

tuneRSF

Value

optimal	The value of lambda that gives the minimum mean cross-validated error.
results	The data frame with the mean cross-validated errors for each lambda values.

References

Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.

Examples

data("dataDIVAT2")

formula<-Surv(times,failures) ~ age + hla + retransplant + ecd</pre>

tune.model <- tuneRSF(formula, data=dataDIVAT2, nodesize=c(100, 250, 500), mtry=1, ntree=100)

tune.model\$optimal # the estimated nodesize value

The estimation of the training modelwith the corresponding lambda value model <- LIB_RSF(formula, data=dataDIVAT2, nodesize=tune.model\$optimal\$nodesize, mtry=1, ntree=100)

The resulted predicted survival of the first subject of the training sample
plot(y=model\$predictions[1,], x=model\$times, xlab="Time (years)",
ylab="Predicted survival", col=1, type="l", lty=1, lwd=2, ylim=c(0,1))

Index

* Dataset dataDIVAT2, 2 dataDIVAT3, 3 dataOFSEP, 4 * Metrics metrics, 21 * Plotting plot.libsl, 23 plot.sltime, 24 * Predicting predict.libsl, 25 predict.sltime, 26 * Printing print.libsl, 28 print.sltime, 28 * Summarizing summary.libsl, 29 summary.sltime, 31 * Super Learner Library LIB_AFTgamma, 5 LIB_AFTggamma, 6 LIB_AFTllogis, 7 LIB_AFTweibull, 8 LIB_COXaic, 10 LIB_COXall, 11 LIB_COXen, 12 LIB_COXlasso, 13 LIB_COXridge, 14 LIB_PHexponential, 16 LIB_PHgompertz, 17 LIB_PHspline, 18 LIB_PLANN, 19 LIB_RSF, 20 * Super Learner survivalSL, 32 * Tunning tuneCOXen, 36 tuneCOXlasso, 37 tuneCOXridge, 38

tunePHspline, 40 tunePLANN, 41 tuneRSF, 43 dataDIVAT2, 2 dataDIVAT3, 3 dataOFSEP, 4 LIB_AFTgamma, 5 LIB_AFTggamma, 6 LIB_AFTllogis, 7 LIB_AFTweibull, 8 LIB_COXaic, 10 LIB_COXall, 11 LIB_COXen, 12 LIB_COXlasso, 13 LIB_COXridge, 14 LIB_PHexponential, 16 LIB_PHgompertz, 17 LIB_PHspline, 18 LIB_PLANN, 19 LIB_RSF, 20 metrics, 21 plot.default, 24, 25 plot.libsl, 23 plot.sltime, 24 predict.libsl, 25 predict.sltime, 26 print.libsl, 28 print.sltime, 28 summary.libsl, 29 summary.sltime, 31 survivalSL, 27, 32, 32 tuneCOXen, 36 tuneCOXlasso, 37 tuneCOXridge, 38 tunePHspline, 40

INDEX

tunePLANN, 41 tuneRSF, 43

46