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4 sommer-package

sommer-package Solving Mixed Model Equations in R

Description

Sommer is a structural multivariate-univariate linear mixed model solver for multiple random effects
allowing the specification and/or estimation of variance covariance structures. REML estimates can
be obtained using two major methods

Direct-Inversion (Newton-Raphson and Average Information)

Henderson’s mixed model equations (Average Information)

The algorithms are coded in C++ using the Armadillo library to optimize dense matrix operations
common in genomic models. Sommer was designed to include complex covariance structures, e.g.,
unstructured, reduced-rank, diagonal. And also to model relationships between levels of a random
effect, e.g., additive, dominance and epistatic relationship structures.

The direct inversion algorithm available in the mmes function (argument henderson=FALSE) can
deal well with small and medium-size data sets (< 10,000 observations/records for average com-
puters given the computational burden carried by the direct-inversion algorithms) since it works
in the c > r problem and inverts an r x r matrix (being r the number of records and c the num-
ber of coefficients). On the other hand, the Henderson algorithm in the mmes function (argument
henderson=TRUE) can deal with greater number of records (r>250K) as long as the number of co-
efficients to estimate is < 10,000 coefficients (c) since it works in the r > c problem and inverts a c
x c matrix (being c the number of coefficients). The predict.mmes function can be used to obtain
adjusted means. This package returns variance-covariance components, BLUPs, BLUEs, residuals,
fitted values, variances-covariances for fixed and random effects, etc.

Functions for genetic analysis

The package provides kernels to estimate additive (A.mat), dominance (D.mat), epistatic (E.mat),
single-step (H.mat) relationship matrices for diploid and polyploid organisms. It also provides
flexibility to fit other genetic models such as full and half diallel models and random regression
models.

A good converter from letter code to numeric format is implemented in the function atcg1234,
which supports higher ploidy levels than diploid. Additional functions for genetic analysis have
been included such as build a genotypic hybrid marker matrix (build.HMM), plot of genetic maps
(map.plot), creation of manhattan plots (manhattan). If you need to use pedigree you need to
convert your pedigree into a relationship matrix (use the ‘getA‘ function from the pedigreemm
package).

Functions for statistical analysis and S3 methods

The vpredict function can be used to estimate standard errors for linear combinations of variance
components (e.g. ratios like h2). The r2 function calculates reliability. S3 methods are available
for some parameter extraction such as:

+ predict.mmes
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+ fitted.mmes

+ residuals.mmes

+ summary.mmes

+ coef.mmes

+ anova.mmes

+ plot.mmes

Functions for trial analysis

Recently, spatial modeling has been added added to sommer using the two-dimensional spline
(spl2Dc).

Keeping sommer updated

The sommer package is updated on CRAN every 4-months due to CRAN policies but you can find
the latest source at https://github.com/covaruber/sommer. This can be easily installed typing the
following in the R console:

library(devtools)

install_github("covaruber/sommer")

This is recommended if you reported a bug, was fixed and was immediately pushed to GitHub but
not in CRAN until the next update.

Tutorials

For tutorials on how to perform different analysis with sommer please look at the vignettes by
typing in the terminal:

vignette("sommer.qg")

vignette("sommer.gxe")

vignette("sommer.vs.lme4")

vignette("sommer.spatial")

Getting started

The package has been equiped with several datasets to learn how to use the sommer package (and
almost to learn all sort of quantitative genetic analysis):

* DT_halfdiallel, DT_fulldiallel and DT_mohring datasets have examples to fit half and full
diallel designs.

* DT_h2 to calculate heritability

* DT_cornhybrids and DT_technow datasets to perform genomic prediction in hybrid single crosses

* DT_wheat dataset to do genomic prediction in single crosses in species displaying only additive
effects.

* DT_cpdata dataset to fit genomic prediction models within a biparental population coming from
2 highly heterozygous parents including additive, dominance and epistatic effects.

* DT_polyploid to fit genomic prediction and GWAS analysis in polyploids.



6 sommer-package

* DT_gryphon data contains an example of an animal model including pedigree information.

* DT_btdata dataset contains an animal (birds) model.

* DT_legendre simulated dataset for random regression model.

* DT_sleepstudy dataset to know how to translate lme4 models to sommer models.

Differences of sommer >= 4.4.1 with previous versions

Since version 4.4.1, I have unified the use of the two different solving algorithms into the mmes
function by just using the new argument henderson which by default is set to FALSE. Other than
that the rest is the same with the addition that now the identity terms needs to be encapsulated in
the ism function. In addition, now the multi-trait models need to be fitted in the long format. This
are few but major changes to the way sommer models are fitted.

Differences of sommer >= 4.1.7 with previous versions

Since version 4.1.7 I have introduced the mmes-based average information function ‘mmec‘ which
is much faster when dealing with the r > c problem (more records than coefficients to estimate).
This introduces its own covariance structure functons such as vsc(), usc(), dsc(), atc(), csc(). Please
give it a try, although is in early phase of development.

Differences of sommer >= 3.7.0 with previous versions

Since version 3.7 I have completly redefined the specification of the variance-covariance structures
to provide more flexibility to the user. This has particularly helped the residual covariance structures
and the easier combination of custom random effects and overlay models. I think that although this
will bring some uncomfortable situations at the beggining, in the long term this will help users to
fit better models. In esence, I have abandoned the asreml formulation (not the structures available)
given it’s limitations to combine some of the sommer structures but all covariance structures can
now be fitted using the ‘vsm‘ functions.

Differences of sommer >= 3.0.0 with previous versions

Since version 3.0 I have decided to focus in developing the multivariate solver and for doing this I
have decided to remove the M argument (for GWAS analysis) from the mmes function and move it
to it’s own function GWAS.

Before the mmes solver had implemented the usm(trait), diag(trait), at(trait) asreml formulation for
multivariate models that allow to specify the structure of the trait in multivariate models. Therefore
the MVM argument was no longer needed. After version 3.7 now the multi-trait structures can be
specified in the Gt and Gtc arguments of the vsm function.

The Average Information algorithm had been removed in the past from the package because of
its instability to deal with very complex models without good initial values. Now after 3.7 I have
brought it back after I noticed that starting with NR the first three iterations gives enough flexibility
to the AI algorithm.

Keep in mind that sommer uses direct inversion (DI) algorithm which can be very slow for datasets
with many observations (big ’n’). The package is focused in problems of the type p > n (more ran-
dom effect(s) levels than observations) and models with dense covariance structures. For example,
for experiment with dense covariance structures with low-replication (i.e. 2000 records from 1000
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individuals replicated twice with a covariance structure of 1000x1000) sommer will be faster than
MME-based software. Also for genomic problems with large number of random effect levels, i.e.
300 individuals (n) with 100,000 genetic markers (p). On the other hand, for highly replicated trials
with small covariance structures or n > p (i.e. 2000 records from 200 individuals replicated 10 times
with covariance structure of 200x200) asreml or other MME-based algorithms will be much faster
and I recommend you to use that software.

Models Enabled

The core of the package are the mmes (formula-based) function which solve the mixed model equa-
tions. The functions are an interface to call the ‘NR‘ Direct-Inversion Newton-Raphson, ‘AI‘ Direct-
Inversion Average Information or the mmes-based Average Information (Tunnicliffe 1989; Gilmour
et al. 1995; Lee et al. 2016). Since version 2.0 sommer can handle multivariate models. Following
Maier et al. (2015), the multivariate (and by extension the univariate) mixed model implemented
has the form:

where y_i is a vector of trait phenotypes, βi is a vector of fixed effects, u_i is a vector of random
effects for individuals and e_i are residuals for trait i (i = 1,..., t). The random effects (u_1 ... u_i
and e_i) are assumed to be normally distributed with mean zero. X and Z are incidence matrices
for fixed and random effects respectively. The distribution of the multivariate response and the
phenotypic variance covariance (V) are:

where K is the relationship or covariance matrix for the kth random effect (u=1,...,k), and R=I is an
identity matrix for the residual term. The terms σ2

gi and σ2
ϵi denote the genetic (or any of the kth

random terms) and residual variance of trait i, respectively and σg
ij

and σϵ
ij

the genetic (or any
of the kth random terms) and residual covariance between traits i and j (i=1,...,t, and j=1,...,t). The
algorithm implemented optimizes the log likelihood:

where || is the determinant of a matrix. And the REML estimates are updated using a Newton
optimization algorithm of the form:

Where, theta is the vector of variance components for random effects and covariance components
among traits, H^-1 is the inverse of the Hessian matrix of second derivatives for the kth cycle,
dL/dsigma^2_i is the vector of first derivatives of the likelihood with respect to the variance-
covariance components. The Eigen decomposition of the relationship matrix proposed by Lee and
Van Der Werf (2016) was included in the Newton-Raphson algorithm to improve time efficiency.
Additionally, the popular vpredict function to estimate standard errors for linear combinations of
variance components (i.e. heritabilities and genetic correlations) was added to the package as well.

Bug report and contact

If you have any questions or suggestions please post it in https://stackoverflow.com or https://stats.stackexchange.com

I’ll be glad to help or answer any question. I have spent a valuable amount of time developing this
package. Please cite this package in your publication. Type ’citation("sommer")’ to know how to
cite it.

Author(s)

Giovanny Covarrubias-Pazaran
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Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####

####=========================================####
#### EXAMPLES
#### Different models with sommer
####=========================================####

data(DT_example)

# DT <- DT_example
# DT=DT[with(DT, order(Env)), ]
# head(DT)
#
# ####=========================================####



A.mat 9

# #### Univariate homogeneous variance models ####
# ####=========================================####
#
# ## Compound simmetry (CS) model
# ans1 <- mmes(Yield~Env,
# random= ~ Name + Env:Name,
# rcov= ~ units,
# data=DT)
# summary(ans1)
#
# ####===========================================####
# #### Univariate heterogeneous variance models ####
# ####===========================================####
# ## Compound simmetry (CS) + Diagonal (DIAG) model
# ans3 <- mmes(Yield~Env,
# random= ~Name + vsm(dsm(Env),ism(Name)),
# rcov= ~ vsm(dsm(Env),ism(units)),
# data=DT)
# summary(ans3)

A.mat Additive relationship matrix

Description

Calculates the realized additive relationship matrix. Currently is the C++ implementation of van
Raden (2008).

Usage

A.mat(X,min.MAF=0,return.imputed=FALSE)

Arguments

X Matrix (n×m) of unphased genotypes for n lines and m biallelic markers, coded
as {-1,0,1}. Fractional (imputed) and missing values (NA) are allowed.

min.MAF Minimum minor allele frequency. The A matrix is not sensitive to rare alleles,
so by default only monomorphic markers are removed.

return.imputed When TRUE, the imputed marker matrix is returned.

Details

For vanraden method: the marker matrix is centered by subtracting column means M = X −ms
where ms is the coumn means. Then A = MM ′/c, where c =

∑
k dk/k, the mean value of the

diagonal values of the MM ′ portion.



10 add.diallel.vars

Value

If return.imputed = FALSE, the n× n additive relationship matrix is returned.

If return.imputed = TRUE, the function returns a list containing

$A the A matrix

$X the imputed marker matrix

References

Endelman, J.B., and J.-L. Jannink. 2012. Shrinkage estimation of the realized relationship matrix.
G3:Genes, Genomes, Genetics. 2:1405-1413. doi: 10.1534/g3.112.004259

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

####=========================================####
#### random population of 200 lines with 1000 markers
####=========================================####
X <- matrix(rep(0,200*1000),200,1000)
for (i in 1:200) {

X[i,] <- ifelse(runif(1000)<0.5,-1,1)
}

A <- A.mat(X)

####=========================================####
#### take a look at the Genomic relationship matrix
#### (just a small part)
####=========================================####
# colfunc <- colorRampPalette(c("steelblue4","springgreen","yellow"))
# hv <- heatmap(A[1:15,1:15], col = colfunc(100),Colv = "Rowv")
# str(hv)

add.diallel.vars add.diallel.vars

Description

‘add.diallel.vars‘ adds 4 columns to the provided diallel dataset. Specifically, the user provides a
dataset with indicator variables for who is the male and female parent and the function returns the
same dataset with 4 new dummy variables to allow the model fit of diallel models.

Usage

add.diallel.vars(df, par1="Par1", par2="Par2",sep.cross="-")
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Arguments

df a dataset with the two indicator variables for who is the male and female parent.

par1 the name of the column indicating who is the first parent (e.g. male).

par2 the name of the column indicating who is the second parent (e.g. female).

sep.cross the character that should be used when creating the column for cross.id. A
simple paste of the columns par1 and par2.

Value

A new data set with the following 4 new dummy variables to allow the fit of complex diallel
models:

returns a 0 if is a self and a 1 for a cross.

is.crossis.self returns a 0 if is a cross and a 1 is is a self.

cross.type returns a -1 for a direct cross, a 0 for a self and a 1 for a reciprocal cross.

cross.id returns a column psting the par1 and par2 columns.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The overlay function and the DT_mohring example.

Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####
data(DT_mohring)
DT <- DT_mohring
head(DT)
DT2 <- add.diallel.vars(DT,par1="Par1", par2="Par2")
head(DT2)
## see ?DT_mohring for an example on how to use the data to fit diallel models.
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adiag1 Binds arrays corner-to-corner

Description

Array generalization of blockdiag()

Usage

adiag1(... , pad=as.integer(0), do.dimnames=TRUE)

Arguments

... Arrays to be binded together

pad Value to pad array with; note default keeps integer status of arrays

do.dimnames Boolean, with default TRUE meaning to return dimnames if possible. Set to
FALSE if performance is an issue

Details

Binds any number of arrays together, corner-to-corner. Because the function is associative provided
pad is of length 1, this page discusses the two array case.

If x=adiag1(a,b) and dim(a)=c(a_1,...,a_d), dim(b)=c(b_1,...,b_d); then all(dim(x)==dim(a)+dim(b))
and x[1:a_1,...,1:a_d]=a and x[(a_1+1):(a_1+b_1),...,(a_d+1):(a_d+b_d)]=b.

Dimnames are preserved, if both arrays have non-null dimnames, and do.dimnames is TRUE.

Argument pad is usually a length-one vector, but any vector is acceptable; standard recycling is
used. Be aware that the output array (of dimension dim(a)+dim(b)) is filled with (copies of) pad
before a and b are copied. This can be confusing.

Value

Returns an array of dimensions dim(a)+dim(b) as described above.

Note

In adiag1(a,b), if a is a length-one vector, it is coerced to an array of dimensions rep(1,length(dim(b)));
likewise b. If both a and b are length-one vectors, return diag(c(a,b)).

If a and b are arrays, function adiag1() requires length(dim(a))==length(dim(b)) (the func-
tion does not guess which dimensions have been dropped; see examples section). In particular, note
that vectors are not coerced except if of length one.

adiag1() is used when padding magic hypercubes in the context of evaluating subarray sums.

Author(s)

Peter Wolf with some additions by Robin Hankin



anova.mmes 13

Examples

a <- array( 1,c(2,2))
b <- array(-1,c(2,2))
adiag1(a,b)

## dropped dimensions can count:

b2 <- b1 <- b
dim(a) <- c(2,1,2)
dim(b1) <- c(2,2,1)
dim(b2) <- c(1,2,2)

dim(adiag1(a,b1))
dim(adiag1(a,b2))

## dimnames are preserved if not null:

a <- matrix(1,2,2,dimnames=list(col=c("red","blue"),size=c("big","small")))
b <- 8
dim(b) <- c(1,1)
dimnames(b) <- list(col=c("green"),size=c("tiny"))
adiag1(a,b) #dimnames preserved
adiag1(a,8) #dimnames lost because second argument has none.

## non scalar values for pad can be confusing:
q <- matrix(0,3,3)
adiag1(q,q,pad=1:4)

## following example should make the pattern clear:
adiag1(q,q,pad=1:36)

# Now, a use for arrays with dimensions of zero extent:
z <- array(dim=c(0,3))
colnames(z) <- c("foo","bar","baz")

adiag1(a,z) # Observe how this has
# added no (ie zero) rows to "a" but
# three extra columns filled with the pad value

adiag1(a,t(z))
adiag1(z,t(z)) # just the pad value

anova.mmes anova form a GLMM fitted with mmes

Description

anova method for class "mmes".
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Usage

## S3 method for class 'mmes'
anova(object, object2=NULL, ...)

Arguments

object an object of class "mmes"

object2 an object of class "mmes", if NULL the program will provide regular sum of
squares results.

... Further arguments to be passed

Value

vector of anova

Author(s)

Giovanny Covarrubias

See Also

anova, mmes

AR1 Autocorrelation matrix of order 1.

Description

Creates an autocorrelation matrix of order one with parameters specified.

Usage

AR1(x,rho=0.25)

Arguments

x vector of the variable to define the factor levels for the AR1 covariance structure.

rho rho value for the matrix.

Details

Specially useful for constructing covariance structures for rows and ranges to capture better the
spatial variation trends in the field. The rho value is assumed fixed and values of the variance
component will be optimized through REML.
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Value

If everything is defined correctly the function returns:

$nn the correlation matrix

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

x <- 1:4
R1 <- AR1(x,rho=.25)
image(R1)

data(DT_sleepstudy)
DT <- DT_sleepstudy
head(DT)

# define the correlation between Days
D = with(DT, AR1(Days, rho=0.5))
subs = unique(DT$Subject)
# define the correlation between Subjects
S = diag(length(subs))
rownames(S) <- colnames(S) <- subs
# make the kronecker product
DS = kronecker(D,S, make.dimnames = TRUE)
# form the covariance matrix between units
# this is assumes correlation between timepoints
DT$ds <- paste(DT$Days, DT$Subject, sep=":")
DS <- DS[DT$ds, DT$ds]
colnames(DS) <- rownames(DS) <- paste0("u",1:nrow(DS))
# fit the residual model
head(DT)

fm2 <- mmes(Reaction ~ Days,
random= ~ Subject,
rcov = ~vsm(ism(units), Gu=DS), # equivalent to Subject:ar1(Days)
data=DT, tolParInv = 1e-6, verbose = FALSE)

summary(fm2)$varcomp

# the matrix D can take any form: AR1, ARMA, or a custom correlation matrix

ARMA Autocorrelation Moving average.
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Description

Creates an ARMA matrix of order one with parameters specified.

Usage

ARMA(x, rho=0.25, lambda=0.25)

Arguments

x vector of the variable to define the factor levels for the ARMA covariance struc-
ture.

rho rho value for the matrix.

lambda dimensions of the square matrix.

Details

Specially useful for constructing covariance structures for rows and ranges to capture better the
spatial variation trends in the field. The rho value is assumed fixed and values of the variance
component will be optimized through REML.

Value

If everything is defined correctly the function returns:

$nn the correlation matrix

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

x <- 1:4
R1 <- ARMA(x,rho=.25,lambda=0.2)
image(R1)

atcg1234 Letter to number converter

Description

This function was designed to help users to transform their data in letter format to numeric format.
Details in the format are not complex, just a dataframe with markers in columns and individuals
in rows. Only markers, NO extra columns of plant names etc (names of plants can be stored as
rownames). The function expects a matrix of only polymorphic markers, please make sure you
clean your data before using this function. The apply function can help you identify and separate
monomorphic from polymorphic markers.
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Usage

atcg1234(data, ploidy=2, format="ATCG", maf=0, multi=TRUE,
silent=FALSE, by.allele=FALSE, imp=TRUE, ref.alleles=NULL)

Arguments

data a dataframe with markers in columns and individuals in rows. Preferable the
rownames are the ID of the plants so you don’t lose track of what is what.

ploidy a numeric value indicating the ploidy level of the specie. The default is 2 which
means diploid.

format one of the two possible values allowed by the program "ATCG", which means
your calls are in base-pair-letter code, i.e. "AT" in a diploid call, "AATT"
tetraploid etc (just example). Therefore possible codes can be "A", "T", "C",
"G", "-" (deletion), "+" (insertion). Alternatively "AB" format can be used as
well. Commonly this depends from the genotyping technologies used, such as
GBS or microarrays. In addition, we have enabled also the use of single-letter
code used by Cornell, i.e. A=AA, C=CC, T=TT, G=GG, R=AG, Y=CT, S=CG,
W=AT, K=GT, M=AC. In the case of GBS code please make sure that you set the
N codes to regular NAs handled by R. The "ATCG" format also works for the bi-
allelic marker codes from join map such as "lm", "ll","nn", "np","hh","hk","kk"

maf minor allele frequency used to filter the SNP markers, the default is zero which
means all markers are returned in numeric format.

multi a TRUE/FALSE statement indicating if the function should get rid of the mark-
ers with more than 2 alleles. If FALSE, which indicates that if markers with
multiple alleles are found, the alternate and reference alleles will be the first 2
alleles found. This could be risky since some alleles will be masked, i.e. AA
AG AT would take only A and G as reference and alternate alleles, converting
to numeric format 2 1 1, giving the same effect to AG and AT which could be a
wrong assumption. The default is TRUE, removes markers with more than two
alleles.

silent a TRUE/FALSE value indicating if a progress bar should be drawn for each
step of the conversion. The default is silent=FALSE, which means that we want
progress bar to be drawn.

by.allele a TRUE/FALSE value indicating if the program should transform the data in
a zero/one matrix of presence/absense per allele. For example, a marker with
3 alleles A,T,C in a diploid organism will yield 6 possible configurations; AA,
AT, AC, TT, TC, CC. Therefore, the program would create 3 columns for this
marker indicating the presence/absence of each allele for each genotype.

imp a TRUE/FALSE value indicating if the function should impute the missing data
using the median for each marker. If FALSE, then the program will not impute.

ref.alleles a matrix with reference alleles to be used for the conversion. The matrix should
have as many columns as markers with reference alleles and with 2 rows, being
the first row the alternate allele (Alt) and the second row the reference allele
(Ref). Rownames should be "Alt" and "Ref" respectively. If not provided the
program will decide the reference allele.



18 atcg1234BackTransform

Value

$data a new dataframe of markers in numeric format with markers in columns and individuals in
rows.

Author(s)

Giovanny Covarrubias-Pazaran

Examples

data(DT_polyploid)
genotypes <- GT_polyploid
genotypes[1:5,1:5] # look the original format

####=================================================####
#### convert markers to numeric format polyploid potatoes
####=================================================####
# numo <- atcg1234(data=genotypes, ploidy=4)
# numo$M[1:5,1:5]

####=================================================####
#### convert markers to numeric format diploid rice lines
#### single letter code for inbred lines from GBS pipeline
#### A=AA, T=TT, C=CC, G=GG
####=================================================####
# data(DT_rice)
# X <- GT_rice; X[1:5,1:5]; dim(X)
# numo2 <- atcg1234(data=X, ploidy=2)
# numo2$M[1:5,1:5]

atcg1234BackTransform Letter to number converter

Description

This function was designed to help users back transform the numeric marker matrices from the
function atcg1234 into letters.

Usage

atcg1234BackTransform(marks, refs)

Arguments

marks a centered marker matrix coming from atcg1234.

refs a 2 x m matrix for m markers (columns) and 2 rows where the reference and
alternate alleles for each marker are indicated.
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Value

markers a new marker matrix leter coded according to the reference allele matrix.

Author(s)

Giovanny Covarrubias-Pazaran

Examples

data(DT_polyploid)
genotypes <- GT_polyploid
genotypes[1:5,1:5] # look the original format

# ####=================================================####
# #### convert markers to numeric format polyploid potatoes
# ####=================================================####
# numo <- atcg1234(data=genotypes, ploidy=4)
# numo$M[1:5,1:5]
# numob <- atcg1234BackTransform(marks = numo$M, refs = numo$ref.alleles)
# numob[1:4,1:4]
#
# ####=================================================####
# #### convert markers to numeric format diploid rice lines
# #### single letter code for inbred lines from GBS pipeline
# #### A=AA, T=TT, C=CC, G=GG
# ####=================================================####
# data(DT_rice)
# X <- GT_rice; X[1:5,1:5]; dim(X)
# numo2 <- atcg1234(data=X, ploidy=2)
# numo2$M[1:5,1:5]
# Xb <- atcg1234BackTransform(marks= numo2$M, refs= numo2$ref.alleles)
# Xb[1:4,1:4]

atm atm covariance structure

Description

atm creates a diagonal covariance structure for specific levels of the random effect to be used with
the mmes solver.

Usage

atm(x, levs, thetaC, theta)
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Arguments

x vector of observations for the random effect.

levs levels of the random effect to use for building the incidence matrices.

thetaC an optional symmetric matrix for constraints in the variance-covariance com-
ponents. The symmetric matrix should have as many rows and columns as the
number of levels in the factor ’x’. The values in the matrix define how the
variance-covariance components should be estimated:
0: component will not be estimated
1: component will be estimated and constrained to be positive
2: component will be estimated and unconstrained
3: component will be fixed to the value provided in the theta argument

theta an optional symmetric matrix for initial values of the variance-covariance com-
ponents. The symmetric matrix should have as many rows and columns as the
number of levels in the factor ’x’. The values in the matrix define the initial val-
ues of the variance-covariance components that will be subject to the constraints
provided in thetaC. If not provided, initial values will be calculated as:
theta* = diag(ncol(mm))*.05 + matrix(.1,ncol(mm),ncol(mm))
where mm is the incidence matrix for the factor ’x’. The values provided should
be scaled by the variance of the response variable.
theta = theta*/var(y)

Value

$res a list with the provided vector and the variance covariance structure expected.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

x <- as.factor(c(1:5,1:5,1:5));x
atm(x, c("1","2"))
## how to use the theta and thetaC arguments:
# data(DT_example)
# DT <- DT_example
# theta <- diag(2)*2; theta # initial VCs
# thetaC <- diag(2)*3; thetaC # fixed VCs
# ans1 <- mmes(Yield~Env,
# random= ~ vsm( atm(Env, levs=c("CA.2013", "CA.2011"),
# theta = theta,thetaC = thetaC),ism(Name) ),
# rcov= ~ units, nIters = 1,
# data=DT)
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# summary(ans1)$varcomp

bathy.colors Generate a sequence of colors for plotting bathymetric data.

Description

bathy.colors(n) generates a sequence of n colors along a linear scale from light grey to pure
blue.

Usage

bathy.colors(n, alpha = 1)

Arguments

n The number of colors to return.

alpha Alpha values to be passed to rgb().

Value

A vector of blue scale colors.

Examples

{
# Plot a colorbar using bathy.colors
image(matrix(seq(100), 100), col=bathy.colors(100))
}

bbasis Function for creating B-spline basis functions (Eilers & Marx, 2010)

Description

Construct a B-spline basis of degree deg with ndx-1 equally-spaced internal knots (ndx segments)
on range [x1,xr]. Code copied from Eilers & Marx 2010, WIR: Comp Stat 2, 637-653.

Usage

bbasis(x, xl, xr, ndx, deg)



22 build.HMM

Arguments

x A vector. Data values for spline.

xl A numeric value. Lower bound for data (lower external knot).

xr A numeric value. Upper bound for data (upper external knot).

ndx A numeric value. Number of divisions for x range (equal to number of segments
= number of internal knots + 1)

deg A numeric value. Degree of the polynomial spline.

Details

Not yet amended to coerce values that should be zero to zero!

Value

A matrix with columns holding the P-spline for each value of x. Matrix has ndx+deg columns and
length(x) rows.

build.HMM Build a hybrid marker matrix using parental genotypes from inbred
individuals

Description

Uses the 2 marker matrices from both sets of inbred or partially inbred parents and creates all possi-
ble combinations unless the user specifies which hybrid genotypes to build (custom.hyb argument).
It returns the additive and dominance marker matrices (-1,0,1; homo,het,homo in additive and 0,1,0;
homo,het,homo for dominance).

Usage

build.HMM(M1,M2, custom.hyb=NULL,
return.combos.only=FALSE,separator=":",
n.batch=1000, verbose=TRUE)

Arguments

M1 Matrix (n × m) of unphased genotypes for n inbreds and m biallelic mark-
ers, coded as {-1,0,1}. Fractional (imputed) and missing values (NA) are not
allowed.

M2 Matrix (n × m) of unphased genotypes for n inbreds and m biallelic mark-
ers, coded as {-1,0,1}. Fractional (imputed) and missing values (NA) are not
allowed.

custom.hyb A data frame with columns ’Var1’ ’Var2’, ’hybrid’ which specifies which hy-
brids should be built using the M1 and M2 matrices provided.
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return.combos.only

A TRUE/FALSE statement inicating if the function should skip building the
geotype matrix for hybrids and only return the data frame with all possible com-
binations to be build. In case the user wants to subset the hybrids before building
the marker matrix.

separator Any desired character to be used when pasting the male and female columns to
assign the name to the hybrids.

n.batch An optional integer value to indicate how many hybrids should be constructed
at once. When the number of hybrids and number of markers is big it is better to
partition the problem into multiple matrix products. By default we assume that
no more than 1000 hybrids should be computed at once to use the memory more
efficiently.

verbose A logical value indicating if progress and warning messages should be printed
in the console.

Details

It returns the marker matrix for hybrids coded as additive (-1,0,1; homo,het,homo) and dominance
(0,1,0; homo,het,homo). This function is deviced for building marker matrices for hybrids coming
from inbreds. If the parents are close to inbred >F5 you can try deleting the heterozygote calls (0’s)
and imputing those cells with the most common genotype (1 or -1). The expectation is that for
mostly inbred individuals this may not change drastically the result but will make the results more
interpretable. For non-inbred parents (F1 to F3) the cross of an F1 x F1 has many possibilities and
is not the intention of this function to build genotypes for heterzygote x heterozygote crosses.

Value

It returns the marker matrix for hybrids coded as additive (-1,0,1; homo,het,homo) and dominance
(0,1,0; homo,het,homo).

$HMM.add marker matrix for hybrids coded as additive (-1,0,1; homo,het,homo)

$HMM.dom marker matrix for hybrids coded as dominance (0,1,0; homo,het,homo)

$data.used the data frame used to build the hybrid genotypes

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Nishio M and Satoh M. 2014. Including Dominance Effects in the Genomic BLUP Method for
Genomic Evaluation. Plos One 9(1), doi:10.1371/journal.pone.0085792

Su G, Christensen OF, Ostersen T, Henryon M, Lund MS. 2012. Estimating Additive and Non-
Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nu-
cleotide Polymorphism Markers. PLoS ONE 7(9): e45293. doi:10.1371/journal.pone.0045293



24 coef.mmes

Examples

####=========================================####
#### use Technow data as example
####=========================================####
data(DT_technow)
DT <- DT_technow
Md <- (Md_technow * 2) - 1
Mf <- (Mf_technow * 2) - 1

## first get all possible hybrids
res1 <- build.HMM(Md, Mf,

return.combos.only = TRUE)
head(res1$data.used)

## build the marker matrix for the first 50 hybrids
res2 <- build.HMM(Md, Mf,

custom.hyb = res1$data.used[1:50,]
)

res2$HMM.add[1:5,1:5]
res2$HMM.dom[1:5,1:5]

## now you can use the A.mat(), D.mat() and E.mat() functions
# M <- res2$HMM.add
# A <- A.mat(M)
# D <- D.mat(M)

coef.mmes coef form a GLMM fitted with mmes

Description

coef method for class "mmes".

Usage

## S3 method for class 'mmes'
coef(object, ...)

Arguments

object an object of class "mmes"

... Further arguments to be passed

Value

vector of coef
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Author(s)

Giovanny Covarrubias

See Also

coef, mmes

corImputation Imputing a matrix using correlations

Description

corImputation imputes missing data based on the correlation that exists between row levels.

Usage

corImputation(wide, Gu=NULL, nearest=10, roundR=FALSE)

Arguments

wide numeric matrix with individuals in rows and time variable in columns (e.g.,
environments, genetic markers, etc.).

Gu optional correlation matrix between the individuals or row levels. If NULL it
will be computed as the correlation of t(wide).

nearest integer value describing how many nearest neighbours (the ones showing the
highest correlation) should be used to average and return the imputed value.

roundR a TRUE/FALSE statement describing if the average result should be rounded or
not. This may be specifically useful for categorical data in the form of numbers
(e.g., -1,0,1).

Value

$res a list with the imputed matrix and the original matrix.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744
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Examples

####################################
### imputing genotype data example
####################################
# data(DT_cpdata)
# X <- GT_cpdata
# # add missing data
# v <- sample(1:length(X), 500)
# Xna <- X
# Xna[v]<- NA
# ## impute (can take some time)
# Y <- corImputation(wide=Xna, Gu=NULL, nearest=20, roundR=TRUE)
# cm <- table(Y$imputed[v],X[v])
# ## calculate accuracy
# sum(diag(cm))/length(v)
####################################
### imputing phenotypic data example
####################################
# data(DT_h2)
# X <- reshape(DT_h2[,c("Name","Env","y")], direction = "wide", idvar = "Name",
# timevar = "Env", v.names = "y", sep= "_")
# rownames(X) <- X$Name
# X <- as.matrix(X[,-1])
# head(X)
# # add missing data
# v <- sample(1:length(X), 50)
# Xna <- X
# Xna[v]<- NA
# ## impute
# Y <- corImputation(wide=Xna, Gu=NULL, nearest=20, roundR=TRUE)
# plot(y=Y$imputed[v],x=X[v], xlab="true",ylab="predicted")
# cor(Y$imputed[v],X[v], use = "complete.obs")

covm covariance between random effects

Description

covm merges the incidence matrices and covariance matrices of two random effects to fit an unstruc-
tured model between 2 different random effects to be fitted with the mmes solver.

Usage

covm(ran1, ran2, thetaC=NULL, theta=NULL)
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Arguments

ran1 the random call of the first random effect.
ran2 the random call of the first random effect.
thetaC an optional matrix for constraints in the variance components.
theta an optional symmetric matrix for initial values of the variance-covariance com-

ponents. When providing customized values, these values should be scaled with
respect to the original variance. For example, to provide an initial value of 1 to
a given variance component, theta would be built as:
theta = matrix( 1 / var(response) )
The symmetric matrix should have as many rows and columns as the number of
levels in the factor ’x’. The values in the matrix define the initial values of the
variance-covariance components that will be subject to the constraints provided
in thetaC. If not provided, initial values will be calculated as:
theta = diag(ncol(mm))*.05 + matrix(.1,ncol(mm),ncol(mm))
where mm is the incidence matrix for the factor ’x’.

Details

This implementation aims to fit models where covariance between random variables is expected to
exist. For example, indirect genetic effects.

Value

$Z a incidence matrix Z* = Z Gamma which is the original incidence matrix for the timevar mul-
tiplied by the loadings.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744
Bijma, P. (2014). The quantitative genetics of indirect genetic effects: a selective review of mod-
elling issues. Heredity, 112(1), 61-69.

See Also

The function vsm to know how to use covm in the mmes solver.

Examples

data(DT_ige)
DT <- DT_ige
covRes <- with(DT, covm( vsm(ism(focal)) , vsm(ism(neighbour)) ) )
str(covRes)
# look at DT_ige help page to see how to fit an actual model
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CS Compound symmetry matrix

Description

Creates a compound symmetry matrix with parameters specified.

Usage

CS(x, rho=0.25)

Arguments

x vector of the variable to define the factor levels for the ARMA covariance struc-
ture.

rho rho value for the matrix.

Details

Specially useful for constructing covariance structures for rows and ranges to capture better the
spatial variation trends in the field. The rho value is assumed fixed and values of the variance
component will be optimized through REML.

Value

If everything is defined correctly the function returns:

$nn the correlation matrix

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

x <- 1:4
R1 <- CS(x,rho=.25)
image(R1)
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csm customized covariance structure

Description

csm creates a customized covariance structure for specific levels of the random effect to be used
with the mmes solver.

Usage

csm(x, mm, thetaC, theta)

Arguments

x vector of observations for the random effect.

mm customized variance-covariance structure for the levels of the random effect.

thetaC an optional symmetric matrix for constraints in the variance-covariance com-
ponents. The symmetric matrix should have as many rows and columns as the
number of levels in the factor ’x’. The values in the matrix define how the
variance-covariance components should be estimated:
0: component will not be estimated
1: component will be estimated and constrained to be positive
2: component will be estimated and unconstrained
3: component will be fixed to the value provided in the theta argument

theta an optional symmetric matrix for initial values of the variance-covariance com-
ponents. When providing customized values, these values should be scaled with
respect to the original variance. For example, to provide an initial value of 1 to
a given variance component, theta would be built as:
theta = matrix( 1 / var(response) )
The symmetric matrix should have as many rows and columns as the number of
levels in the factor ’x’. The values in the matrix define the initial values of the
variance-covariance components that will be subject to the constraints provided
in thetaC. If not provided, initial values will be calculated as:
theta = diag(ncol(mm))*.05 + matrix(.1,ncol(mm),ncol(mm))
where mm is the incidence matrix for the factor ’x’.

Value

$res a list with the provided vector and the variance covariance structure expected for the levels of
the random effect.

Author(s)

Giovanny Covarrubias-Pazaran
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References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The function vsm to know how to use csm in the mmes solver.

Examples

x <- as.factor(c(1:5,1:5,1:5));x
csm(x,matrix(1,5,5))

D.mat Dominance relationship matrix

Description

C++ implementation of the dominance matrix. Calculates the realized dominance relationship ma-
trix. Can help to increase the prediction accuracy when 2 conditions are met; 1) The trait has
intermediate to high heritability, 2) The population contains a big number of individuals that are
half or full sibs (HS & FS).

Usage

D.mat(X,nishio=TRUE,min.MAF=0,return.imputed=FALSE)

Arguments

X Matrix (n×m) of unphased genotypes for n lines and m biallelic markers, coded
as {-1,0,1}. Fractional (imputed) and missing values (NA) are allowed.

nishio If TRUE Nishio ans Satoh. (2014), otherwise Su et al. (2012). See references.

min.MAF Minimum minor allele frequency. The D matrix is not sensitive to rare alleles,
so by default only monomorphic markers are removed.

return.imputed When TRUE, the imputed marker matrix is returned.

Details

The additive marker coefficients will be used to compute dominance coefficients as: Xd = 1-abs(X)
for diploids.

For nishio method: the marker matrix is centered by subtracting column means M = Xd − ms
where ms is the column means. Then A = MM ′/c, where c = 2

∑
k pk(1− pk).

For su method: the marker matrix is normalized by subtracting row means M = Xd − 2pq where
2pq is the product of allele frequencies times 2. Then A = MM ′/c, where c = 2

∑
k 2pqk(1− 2pqk).
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Value

If return.imputed = FALSE, the n× n additive relationship matrix is returned.

If return.imputed = TRUE, the function returns a list containing

$D the D matrix

$imputed the imputed marker matrix

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Nishio M and Satoh M. 2014. Including Dominance Effects in the Genomic BLUP Method for
Genomic Evaluation. Plos One 9(1), doi:10.1371/journal.pone.0085792

Su G, Christensen OF, Ostersen T, Henryon M, Lund MS. 2012. Estimating Additive and Non-
Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nu-
cleotide Polymorphism Markers. PLoS ONE 7(9): e45293. doi:10.1371/journal.pone.0045293

Examples

####=========================================####
#### EXAMPLE 1
####=========================================####
####random population of 200 lines with 1000 markers
X <- matrix(rep(0,200*1000),200,1000)
for (i in 1:200) {

X[i,] <- sample(c(-1,0,0,1), size=1000, replace=TRUE)
}

D <- D.mat(X)

dfToMatrix data frame to matrix

Description

This function takes a matrix that is in data frame format and transforms it into a matrix. Other pack-
ages that allows you to obtain an additive relationship matrix from a pedigree is the ‘pedigreemm‘
package.

Usage

dfToMatrix(x, row="Row",column="Column",
value="Ainverse", returnInverse=FALSE,
bend=1e-6)
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Arguments

x ginv element, output from the Ainverse function.

row name of the column in x that indicates the row in the original relationship matrix.

column name of the column in x that indicates the column in the original relationship
matrix.

value name of the column in x that indicates the value for a given row and column in
the original relationship matrix.

returnInverse a TRUE/FALSE value indicating if the inverse of the x matrix should be com-
puted once the data frame x is converted into a matrix.

bend a numeric value to add to the diagonal matrix in case matrix is singular for
inversion.

Value

K pedigree transformed in a relationship matrix.

Kinv inverse of the pedigree transformed in a relationship matrix.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

library(Matrix)
m <- matrix(1:9,3,3)
m <- tcrossprod(m)

mdf <- as.data.frame(as.table(m))
mdf

dfToMatrix(mdf, row = "Var1", column = "Var2",
value = "Freq",returnInverse=FALSE )
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dsm diagonal covariance structure

Description

dsm creates a diagonal covariance structure for the levels of the random effect to be used with the
mmes solver.

Usage

dsm(x, thetaC=NULL, theta=NULL)

Arguments

x vector of observations for the random effect.

thetaC an optional symmetric matrix for constraints in the variance-covariance com-
ponents. The symmetric matrix should have as many rows and columns as the
number of levels in the factor ’x’. The values in the matrix define how the
variance-covariance components should be estimated:
0: component will not be estimated
1: component will be estimated and constrained to be positive
2: component will be estimated and unconstrained
3: component will be fixed to the value provided in the theta argument

theta an optional symmetric matrix for initial values of the variance-covariance com-
ponents. When providing customized values, these values should be scaled with
respect to the original variance. For example, to provide an initial value of 1 to
a given variance component, theta would be built as:
theta = matrix( 1 / var(response) )
The symmetric matrix should have as many rows and columns as the number of
levels in the factor ’x’. The values in the matrix define the initial values of the
variance-covariance components that will be subject to the constraints provided
in thetaC. If not provided, initial values will be calculated as:
diag(ncol(mm))*.05 + matrix(.1,ncol(mm),ncol(mm))
where mm is the incidence matrix for the factor ’x’.

Value

$res a list with the provided vector and the variance covariance structure expected for the levels of
the random effect.

Author(s)

Giovanny Covarrubias-Pazaran
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References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

See the function vsm to know how to use dsm in the mmes solver.

Examples

x <- as.factor(c(1:5,1:5,1:5));x
dsm(x)
## how to use the theta and thetaC arguments:
# data(DT_example)
# DT <- DT_example
# theta <- diag(3)*2; theta # initial VCs
# thetaC <- diag(3)*3; thetaC # fixed VCs
# ans1 <- mmes(Yield~Env,
# random= ~ vsm( dsm(Env,theta = theta,thetaC = thetaC),ism(Name) ),
# rcov= ~ units,
# data=DT)
# summary(ans1)$varcomp

DT_augment DT_augment design example.

Description

This dataset contains phenotpic data for one trait evaluated in the experimental design known as
augmented design. This model allows to obtain BLUPs for genotypes that are unreplicated by
dividing the field in blocks and replicating ’check genotypes’ in the blocks and unreplicated geno-
types randomly within the blocks. The presence of check genotypes (usually cultivars) allows the
adjustment of unreplicated genotypes.

The column ’Plot’ indicates the number of plot in the field The column ’Entry’ is a numeric value for
each entry The colum ’Genotype’ is the name of the individual The column ’Block’ is the replicate
or big block The column TSW is the response variable The column check is an indicator column for
checks (0) and non-checks (1) The column Check.Gen is an indicator column for checks (89,90,91)
and non-checks (999)

The dataset has 3 unique checks (Ross=89, MF183=90, Starlight=91) and 50 entries.

Usage

data("DT_augment")

Format

The format is: chr "DT_augment"
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Source

This data was generated by a potato study.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmes

Examples

# ###=========================================####
# ### AUGMENTED DESIGN EXAMPLE
# ###=========================================####
# data(DT_augment)
# DT <- DT_augment
# head(DT)
# ####=========================================####
# #### fit the mixed model and check summary
# ####=========================================####
# mix1 <- mmes(TSW ~ Check.Gen,
# random = ~ Block + Genotype:Check,
# data=DT)
# summary(mix1)$varcomp

DT_btdata Blue Tit Data for a Quantitative Genetic Experiment

Description

a data frame with 828 rows and 7 columns, with variables tarsus length (tarsus) and colour (back)
measured on 828 individuals (animal). The mother of each is also recorded (dam) together with the
foster nest (fosternest) in which the chicks were reared. The date on which the first egg in each nest
hatched (hatchdate) is recorded together with the sex (sex) of the individuals.

Usage

data("DT_btdata")

Format

The format is: chr "DT_btdata"
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References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmes

Examples

# ####=========================================####
# #### For CRAN time limitations most lines in the
# #### examples are silenced with one '#' mark,
# #### remove them and run the examples
# ####=========================================####
# ####=========================================####
# ####=========================================####
# #### EXAMPLE 1
# #### simple example
# ####=========================================####
# ####=========================================####
# data(DT_btdata)
# DT <- DT_btdata
# head(DT)
# mix4 <- mmes(tarsus ~ sex,
# random = ~ dam + fosternest,
# rcov=~units,
# data = DT)
# summary(mix4)$varcomp

# MULTI-TRAIT EXAMPLE
# head(DT)
# DT2 <- stackTrait(DT, traits = c("tarsus","back"))
# head(DT2$long)
# DT2$long=DT2$long[with(DT2$long, order(trait)), ]
#
# mix3 <- mmes(valueS ~ trait:sex - 1, henderson=TRUE,
# random = ~ vsm(usm(trait),ism(dam)) +
# vsm(usm(trait), ism(fosternest)),
# rcov= ~ vsm(dsm(trait),ism(units)),
# data = DT2$long)
#
#
# summary(mix3)$varcomp
# #### calculate the genetic correlation
# cov2cor(mix3$theta[[1]])
# cov2cor(mix3$theta[[2]])
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DT_cornhybrids Corn crosses and markers

Description

This dataset contains phenotpic data for plant height and grain yield for 100 out of 400 possible
hybrids originated from 40 inbred lines belonging to 2 heterotic groups, 20 lines in each, 1600 rows
exist for the 400 possible hybrids evaluated in 4 locations but only 100 crosses have phenotypic
information. The purpose of this data is to show how to predict the other 300 crosses.

The data contains 3 elements. The first is the phenotypic data and the parent information for each
cross evaluated in the 4 locations. 1200 rows should have missing data but the 100 crosses per-
formed were chosen to be able to estimate the GCA and SCA effects of everything.

The second element of the data set is the phenotypic data and other relevant information for the 40.

The third element is the genomic relationship matrix for the 40 inbred lines originated from 511
SNP markers and calculated using the A.mat function.

Usage

data("DT_cornhybrids")

Format

The format is: chr "DT_cornhybrids"

Source

This data was generated by a corn study.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmes

Examples

# ####=========================================####
# #### For CRAN time limitations most lines in the
# #### examples are silenced with one '#' mark,
# #### remove them and run the examples using
# #### command + shift + C |OR| control + shift + C
# ####=========================================####
#
# data(DT_cornhybrids)
# DT <- DT_cornhybrids
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# DTi <- DTi_cornhybrids
# GT <- GT_cornhybrids
# hybrid2 <- DT # extract cross data
# A <- GT
# K1 <- A[levels(hybrid2$GCA1), levels(hybrid2$GCA1)]; dim(K1)
# K2 <- A[levels(hybrid2$GCA2), levels(hybrid2$GCA2)]; dim(K2)
# S <- kronecker(K1, K2) ; dim(S)
# rownames(S) <- colnames(S) <- levels(hybrid2$SCA)
#
# ans <- mmes(Yield ~ Location,
# random = ~ vsm(ism(GCA1),Gu=K1) + vsm(ism(GCA2),Gu=K2), # + vsm(ism(SCA),Gu=S),
# rcov=~units,
# data=hybrid2)
# summary(ans)$varcomp
#
# ## mmec uses the inverse of the relationship matrix
# K1i <- solve(K1 + diag(1e-4,ncol(K1),ncol(K1)))
# K1i <- as(as(as( K1i, "dMatrix"), "generalMatrix"), "CsparseMatrix")
# attr(K1i, 'inverse')=TRUE
# K2i <- solve(K2 + diag(1e-4,ncol(K2),ncol(K2)))
# K2i <- as(as(as( K2i, "dMatrix"), "generalMatrix"), "CsparseMatrix")
# attr(K2i, 'inverse')=TRUE
# Si <- solve(S + diag(1e-4,ncol(S),ncol(S)))
# Si <- as(as(as( Si, "dMatrix"), "generalMatrix"), "CsparseMatrix")
# attr(Si, 'inverse')=TRUE
# ans2 <- mmes(Yield ~ Location,
# random = ~ vsm(ism(GCA1),Gu=K1i) + vsm(ism(GCA2),Gu=K2i), # + vsm(ism(SCA),Gu=Si),
# henderson=TRUE,
# rcov=~units,
# data=hybrid2)
# summary(ans2)$varcomp

DT_cpdata Genotypic and Phenotypic data for a CP population

Description

A CP population or F1 cross is the designation for a cross between 2 highly heterozygote individu-
als; i.e. humans, fruit crops, bredding populations in recurrent selection.

This dataset contains phenotpic data for 363 siblings for an F1 cross. These are averages over 2
environments evaluated for 4 traits; color, yield, fruit average weight, and firmness. The columns
in the CPgeno file are the markers whereas the rows are the individuals. The CPpheno data frame
contains the measurements for the 363 siblings, and as mentioned before are averages over 2 envi-
ronments.

Usage

data("DT_cpdata")
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Format

The format is: chr "DT_cpdata"

Source

This data was simulated for fruit breeding applications.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmes

Examples

# ####=========================================####
# #### For CRAN time limitations most lines in the
# #### examples are silenced with one '#' mark,
# #### remove them and run the examples using
# #### command + shift + C |OR| control + shift + C
# ####=========================================####
#
# data(DT_cpdata)
# DT <- DT_cpdata
# GT <- GT_cpdata
# MP <- MP_cpdata
# #### create the variance-covariance matrix
# A <- A.mat(GT) # additive relationship matrix
# #### look at the data and fit the model
# head(DT)
# mix1 <- mmes(Yield~1, henderson=FALSE,
# random=~vsm(ism(id),Gu=A)
# + Rowf + Colf,
# rcov=~units,
# data=DT)
# summary(mix1)$varcomp
#
# ## mmec uses the inverse of the relationship matrix
# Ai <- solve(A + diag(1e-4,ncol(A),ncol(A)))
# Ai <- as(as(as( Ai, "dMatrix"), "generalMatrix"), "CsparseMatrix")
# attr(Ai, 'inverse')=TRUE
# mix2 <- mmes(Yield~1, henderson=TRUE,
# random=~vsm(ism(id),Gu=Ai)
# + Rowf + Colf,
# rcov=~units,
# data=DT)
# summary(mix2)$varcomp
#
# vg <- summary(mix2)$varcomp[1,1] # genetic variance
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# G <- A*vg # genetic variance-covariance
# Ci <- mix2$Ci # coefficient matrix
# ind <- as.vector(mix2$partitions$`vsm(ism(id), Gu = Ai)`)
# ind <- seq(ind[1],ind[2])
# Ctt <- Ci[ind,ind] # portion of Ci for genotypes
# R2 <- (G - Ctt)/G # reliability matrix
# mean(diag(R2)) # average reliability of the trial
# ####====================####
# #### multivariate model ####
# #### 2 traits ####
# ####====================####
# head(DT)
# DT2 <- stackTrait(DT, traits = c("color","Yield"))
# head(DT2$long)
# A <- A.mat(GT) # additive relationship matrix
# # if using mmes=TRUE you need to provide the inverse
# Ai <- solve(A + diag(1e-4,ncol(A),ncol(A)))
# Ai <- as(as(as( Ai, "dMatrix"), "generalMatrix"), "CsparseMatrix")
# attr(Ai, 'inverse')=TRUE
# #### be patient take some time
# ansm <- mmes( valueS ~ trait, # henderson=TRUE,
# random=~ vsm(usm(trait), ism(id), Gu=A),
# rcov=~ vsm(dsm(trait), ism(units)),
# data=DT2$long)
# cov2cor(ansm$theta[[1]])

DT_example Broad sense heritability calculation.

Description

This dataset contains phenotpic data for 41 potato lines evaluated in 3 environments in an RCBD
design. The phenotypic trait is tuber quality and we show how to obtain an estimate of DT_example
for the trait.

Usage

data("DT_example")

Format

The format is: chr "DT_example"

Source

This data was generated by a potato study.
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References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmes

Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####
####=========================================####
#### EXAMPLES
#### Different models with sommer
####=========================================####

data(DT_example)
DT <- DT_example
A <- A_example
head(DT)

####=========================================####
#### Univariate homogeneous variance models ####
####=========================================####

## Compound simmetry (CS) model
ans1 <- mmes(Yield~Env,

random= ~ Name + Env:Name,
rcov= ~ units,
data=DT)

summary(ans1)$varcomp

# ####===========================================####
# #### Univariate heterogeneous variance models ####
# ####===========================================####
#
# ## Compound simmetry (CS) + Diagonal (DIAG) model
# DT=DT[with(DT, order(Env)), ]
# ans2 <- mmes(Yield~Env,
# random= ~Name + vsm(dsm(Env),ism(Name)),
# rcov= ~ vsm(dsm(Env),ism(units)),
# data=DT)
# summary(ans2)
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DT_expdesigns Data for different experimental designs

Description

The following data is a list containing data frames for different type of experimental designs relevant
in plant breeding:

1) Augmented designs (2 examples)

2) Incomplete block designs (1 example)

3) Split plot design (2 examples)

4) Latin square designs (1 example)

5) North Carolina designs I,II and III

How to fit each is shown at the Examples section. This may help you get introduced to experimental
designs relevant to plant breeding. Good luck.

Format

Different based on the design.

Source

Datasets and more detail about them can be found in the agricolae package. Here we just show the
datasets and how to analyze them using the sommer package.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

# #### =================================== ####
# #### ===== Augmented Block Design 1 ==== ####
# #### =================================== ####
# data(DT_expdesigns)
# DT <- DT_expdesigns
# names(DT)
# data1 <- DT$au1
# head(data1)
# ## response variable: "yield"
# ## check indicator: "entryc" ('nc' for all unreplicated, but personal.name for checks)
# ## blocking factor: "block"
# ## treatments, personal names for replicated and non-replicated: "trt"
# ## check no check indicator: "new"
# mix1 <- mmes(yield~entryc,
# random=~block+trt,
# rcov=~units,
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# data=data1)
# summary(mix1)$varcomp

DT_fulldiallel Full diallel data for corn hybrids

Description

This dataset contains phenotpic data for 36 winter bean hybrids, coming from a full diallel design
and evaluated for 9 traits. The column male and female origin columns are included as well.

Usage

data("DT_fulldiallel")

Format

The format is: chr "DT_fulldiallel"

Source

This data was generated by a winter bean study and originally included in the agridat package.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmes

Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####
data(DT_fulldiallel)
DT <- DT_fulldiallel
head(DT)
mix <- mmes(stems~1, random=~female+male, data=DT)
summary(mix)
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DT_gryphon Gryphon data from the Journal of Animal Ecology

Description

This is a dataset that was included in the Journal of animal ecology by Wilson et al. (2010; see
references) to help users understand how to use mixed models with animal datasets with pedigree
data.

The dataset contains 3 elements:

gryphon; variables indicating the animal, the mother of the animal, sex of the animal, and two
quantitative traits named ’BWT’ and ’TARSUS’.

pedi; dataset with 2 columns indicating the sire and the dam of the animals contained in the gryphon
dataset.

A; additive relationship matrix formed using the ’getA()’ function used over the pedi dataframe.

Usage

data("DT_gryphon")

Format

The format is: chr "DT_gryphon"

Source

This data comes from the Journal of Animal Ecology. Please, if using this data cite Wilson et al.
publication. If using our mixed model solver please cite Covarrubias’ publication.

References

Wilson AJ, et al. (2010) An ecologist’s guide to the animal model. Journal of Animal Ecology
79(1): 13-26.

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmes

Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples using
#### command + shift + C |OR| control + shift + C
####=========================================####
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# data(DT_gryphon)
# DT <- DT_gryphon
# A <- A_gryphon
# P <- P_gryphon
# #### look at the data
# head(DT)
# #### fit the model with no fixed effects (intercept only)
# mix1 <- mmes(BWT~1,
# random=~vsm(ism(ANIMAL),Gu=A),
# rcov=~units,
# data=DT)
# summary(mix1)$varcomp
#
# ## mmes algorithm uses the inverse of the relationship matrix
# Ai <- solve(A + diag(1e-4,ncol(A),ncol(A)))
# Ai <- as(as(as( Ai, "dMatrix"), "generalMatrix"), "CsparseMatrix")
# attr(Ai, 'inverse')=TRUE
# ####====================####
# #### multivariate model ####
# #### 2 traits ####
# ####====================####
# head(DT)
# DT2 <- stackTrait(DT, traits = c("BWT","TARSUS"))
# head(DT2$long)
#
# # #### fit the multivariate model with no fixed effects (intercept only)
# mix2 <- mmes(valueS~trait, henderson=FALSE,
# random=~vsm(usm(trait),ism(ANIMAL),Gu=A),
# rcov=~vsm(dsm(trait),ism(units)),
# data=DT2$long)
# summary(mix2)$varcomp
# cov2cor(mix2$theta[[1]])

DT_h2 Broad sense heritability calculation.

Description

This dataset contains phenotpic data for 41 potato lines evaluated in 5 locations across 3 years in
an RCBD design. The phenotypic trait is tuber quality and we show how to obtain an estimate of
DT_h2 for the trait.

Usage

data("DT_h2")

Format

The format is: chr "DT_h2"
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Source

This data was generated by a potato study.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmes

Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####
data(DT_h2)
DT <- DT_h2
head(DT)
####=========================================####
#### fit the mixed model (very heavy model)
####=========================================####
# DT=DT[with(DT, order(Env)), ]
# ans1 <- mmes(y~Env, henderson=TRUE,
# random=~vsm(dsm(Env),ism(Name)) + vsm(dsm(Env),ism(Block)),
# rcov=~vsm(dsm(Env),ism(units)),
# data=DT)
# summary(ans1)$varcomp
#

DT_halfdiallel half diallel data for corn hybrids

Description

This dataset contains phenotpic data for 21 corn hybrids, with 2 technical repetitions, coming from
a half diallel design and evaluated for sugar content. The column geno indicates the hybrid and
male and female origin columns are included as well.

Usage

data("DT_halfdiallel")

Format

The format is: chr "DT_halfdiallel"
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Source

This data was generated by a corn study.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmes

Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####

data("DT_halfdiallel")
DT <- DT_halfdiallel
head(DT)
DT$femalef <- as.factor(DT$female)
DT$malef <- as.factor(DT$male)
DT$genof <- as.factor(DT$geno)

A <- diag(7); colnames(A) <- rownames(A) <- 1:7;A # if you want to provide a covariance matrix
#### model using overlay
modh <- mmes(sugar~1,

random=~vsm(ism(overlay(femalef,malef, sparse = FALSE)), Gu=A)
+ genof,
data=DT)

summary(modh)$varcomp

# if ussing mmes=TRUE provide Gu with inverses and give more iterations
# Ai <- solve(A + diag(1e-4,ncol(A),ncol(A)))
# Ai <- as(as(as( Ai, "dMatrix"), "generalMatrix"), "CsparseMatrix")
# attr(Ai, 'inverse')=TRUE

DT_ige Data to fit indirect genetic effects.

Description

This dataset contains phenotpic data for 98 individuals where they are measured with the purpose
of identifying the effect of the neighbour in a focal individual.
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Usage

data("DT_ige")

Format

The format is: chr "DT_ige"

Source

This data was masked from a shared study.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmes

Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####
####=========================================####
#### EXAMPLES
#### Different models with sommer
####=========================================####

data(DT_ige)
DT <- DT_ige
# # Indirect genetic effects model without covariance between DGE and IGE
# modIGE <- mmes(trait ~ block, dateWarning = FALSE,
# random = ~ focal + neighbour,
# rcov = ~ units, nIters=100,
# data = DT)
# summary(modIGE)$varcomp
# pmonitor(modIGE)
#
# # Indirect genetic effects model with covariance between DGE and IGE using relationship matrices
# modIGE <- mmes(trait ~ block, dateWarning = FALSE,
# random = ~ covm( vsm(ism(focal)), vsm(ism(neighbour)) ),
# rcov = ~ units, nIters=100,
# data = DT)
# summary(modIGE)$varcomp
# pmonitor(modIGE)
#
# # form relationship matrix
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# Ai <- solve(A_ige + diag(1e-5, nrow(A_ige),nrow(A_ige) ))
# Ai <- as(as(as( Ai, "dMatrix"), "generalMatrix"), "CsparseMatrix")
# attr(Ai, 'inverse')=TRUE
# # Indirect genetic effects model with covariance between DGE and IGE using relationship matrices
# modIGE <- mmes(trait ~ block, dateWarning = FALSE,
# random = ~ covm( vsm(ism(focal), Gu=Ai), vsm(ism(neighbour), Gu=Ai) ),
# rcov = ~ units, nIters=100,
# data = DT)
# summary(modIGE)$varcomp
# pmonitor(modIGE)

DT_legendre Simulated data for random regression

Description

A data frame with 4 columns; SUBJECT, X, Xf and Y to show how to use the Legendre polynomials
in the mmes function using a numeric variable X and a response variable Y.

Usage

data("DT_legendre")

Format

The format is: chr "DT_legendre"

Source

This data was simulated for fruit breeding applications.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmes

Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples using
#### command + shift + C |OR| control + shift + C
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####=========================================####
# you need to install the orthopolynom library to do random regression models
# library(orthopolynom)
# data(DT_legendre)
# DT <- DT_legendre
# mRR2<-mmes(Y~ 1 + Xf
# , random=~ vsm(usm(leg(X,1)),ism(SUBJECT))
# , rcov=~units
# , data=DT)
# summary(mRR2)$varcomp

DT_mohring Full diallel data for corn hybrids

Description

This dataset contains phenotpic data for 36 winter bean hybrids, coming from a full diallel design
and evaluated for 9 traits. The column male and female origin columns are included as well.

Usage

data("DT_mohring")

Format

The format is: chr "DT_mohring"

Source

This data was generated by a winter bean study and originally included in the agridat package.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmes

Examples

# ####=========================================####
# #### For CRAN time limitations most lines in the
# #### examples are silenced with one '#' mark,
# #### remove them and run the examples
# ####=========================================####
# data(DT_mohring)
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# DT <- DT_mohring
# head(DT)
# DT2 <- add.diallel.vars(DT,par1="Par1", par2="Par2")
# head(DT2)
# # is.cross denotes a hybrid (1)
# # is.self denotes an inbred (1)
# # cross.type denotes one way (-1, e.g. AxB) and reciprocal (1, e.g., BxA) and no cross (0)
# # cross.id denotes the name of the cross (same name for direct & reciprocal)
#
# # GRIFFING MODEL 2 with reciprocal effects ###########################
#
# mod1hb <- mmes(Ftime ~ 1, data=DT2,
# random = ~ Block
# # GCA male & female overlayed
# + vsm(ism(overlay(Par1, Par2)))
# # SCA effects (includes cross and selfs)
# + cross.id
# # SCAR reciprocal effects (remaining variance in crosses;
# # if zero there's no reciprocal effects)
# + vsm(dsm(cross.type), ism(cross.id)) )
# summary(mod1hb)$varcomp
#
# ## VarComp VarCompSE Zratio
# ## Block.Ftime-Ftime 0.00000 9.32181 0.000000
# ## overlay(Par1, Par2).Ftime-Ftime 1276.73089 750.17269 1.701916
# ## cross.id.Ftime-Ftime 1110.99090 330.16921 3.364914
# ## cross.id:cross.type.Ftime-Ftime 66.02295 49.26876 1.340057
# ## units.Ftime-Ftime 418.47949 74.56442 5.612321
# ##
# # GRIFFING MODEL 2, no reciprocal effects ##############################
#
# mod1h <- mmes(Ftime ~ Block + is.cross, data=DT2, nIters = 50,
# random = ~
# # GCA effects for all (hybrids and inbreds)
# vsm(ism(overlay(Par1, Par2)))
# # GCA effect (calculated only in hybrids; remaining variance)
# + vsm(ism(is.cross),ism(overlay(Par1, Par2)))
# # SCA effect (calculated in hybrids only)
# + vsm(ism(is.cross), ism(cross.id))
# )
# summary(mod1h)$varcomp
#
# ## VarComp VarCompSE Zratio
# ## overlay(Par1, Par2).Ftime-Ftime 2304.1781 1261.63193 1.826347
# ## overlay(Par1, Par2):is.cross.Ftime-Ftime 613.6040 402.74347 1.523560
# ## cross.id:is.cross.Ftime-Ftime 340.7030 148.56225 2.293335
# ## units.Ftime-Ftime 501.6275 74.36075 6.745864
# ##
# # GRIFFING MODEL 3, no reciprocal effects ###############################
#
# mod1h <- mmes(Ftime ~ Block + is.cross, data=DT2, nIters = 100,
# random = ~
# # GCAC (only for hybrids)
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# vsm(ism(is.cross),ism(overlay(Par1, Par2)))
# # male GCA (only for inbreds)
# + vsm(ism(is.self),ism(Par1))
# # SCA (for hybrids only)
# + vsm(ism(is.cross), ism(cross.id))
# )
# summary(mod1h)$varcomp
# ## VarComp VarCompSE Zratio
# ## overlay(Par1, Par2):is.cross.Ftime-Ftime 927.7895 537.91218 1.724797
# ## Par1:is.self.Ftime-Ftime 9960.9247 5456.58188 1.825488
# ## cross.id:is.cross.Ftime-Ftime 341.4567 148.53667 2.298804
# ## units.Ftime-Ftime 498.5974 73.92066 6.745035
# ##
# # GRIFFING MODEL 2, with reciprocal effects #############################
# # In Mohring: mixed model 3 reduced
#
# mod1h <- mmes(Ftime ~ Block + is.cross, data=DT2, nIters = 100,
# random = ~
# # GCAC (for hybrids only)
# vsm(ism(is.cross),ism(overlay(Par1, Par2)))
# # male GCA (for selfs only)
# + vsm(ism(is.self),ism(Par1))
# # SCA (for hybrids only)
# + vsm(ism(is.cross), ism(cross.id))
# # SCAR reciprocal effects (remaning SCA variance)
# + vsm(ism(cross.type), ism(cross.id))
# )
# summary(mod1h)$varcomp
#
# ## VarComp VarCompSE Zratio
# ## overlay(Par1, Par2):is.cross.Ftime-Ftime 927.78742 537.89981 1.724833
# ## Par1:is.self.Ftime-Ftime 10001.78854 5456.47578 1.833013
# ## cross.id:is.cross.Ftime-Ftime 361.89712 148.54264 2.436318
# ## cross.id:cross.type.Ftime-Ftime 66.43695 49.24492 1.349113
# ## units.Ftime-Ftime 416.82960 74.27202 5.612203
# ##
# # GRIFFING MODEL 3, with RGCA + RSCA ####################################
# # In Mohring: mixed model 3
#
# mod1h <- mmes(Ftime ~ Block + is.cross, data=DT2,nIters = 100,
# random = ~
# # GCAC (for hybrids only)
# vsm(ism(is.cross),ism(overlay(Par1, Par2)))
# # RGCA: exclude selfs (to identify reciprocal GCA effects)
# + vsm(ism(cross.type),ism(overlay(Par1, Par2)))
# # male GCA (for selfs only)
# + vsm(ism(is.self),ism(Par1))
# # SCA (for hybrids only)
# + vsm(ism(is.cross), ism(cross.id))
# # SCAR: exclude selfs (if zero there's no reciprocal SCA effects)
# + vsm(ism(cross.type), ism(cross.id))
# )
# summary(mod1h)$varcomp
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#
# ## VarComp VarCompSE Zratio
# ## overlay(Par1, Par2):is.cross.Ftime-Ftime 927.7843 537.88164 1.7248857
# ## Par1:is.self.Ftime-Ftime 10001.7570 5456.30125 1.8330654
# ## cross.id:is.cross.Ftime-Ftime 361.8958 148.53670 2.4364068
# ## overlay(Par1, Par2):cross.type.Ftime-Ftime 17.9799 19.92428 0.9024114
# ## cross.id:cross.type.Ftime-Ftime 30.9519 46.43908 0.6665054
# ## units.Ftime-Ftime 416.09922 447.2101 0.93043333

DT_polyploid Genotypic and Phenotypic data for a potato polyploid population

Description

This dataset contains phenotpic data for 18 traits measured in 187 individuals from a potato diversity
panel. In addition contains genotypic data for 221 individuals genotyped with 3522 SNP markers.
Please if using this data for your own research make sure you cite Rosyara’s (2015) publication (see
References).

Usage

data("DT_polyploid")

Format

The format is: chr "DT_polyploid"

Source

This data was extracted from Rosyara (2016).

References

If using this data for your own research please cite:

Rosyara Umesh R., Walter S. De Jong, David S. Douches, Jeffrey B. Endelman. Software for
genome-wide association studies in autopolyploids and its application to potato. The Plant Genome
2015.

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmes
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Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples using
#### command + shift + C |OR| control + shift + C
####=========================================####

data(DT_polyploid)
# DT <- DT_polyploid
# GT <- GT_polyploid
# MP <- MP_polyploid
# ####=========================================####
# ####### convert markers to numeric format
# ####=========================================####
# numo <- atcg1234(data=GT, ploidy=4);
# numo$M[1:5,1:5];
# numo$ref.allele[,1:5]
#
# ###=========================================####
# ###### plants with both genotypes and phenotypes
# ###=========================================####
# common <- intersect(DT$Name,rownames(numo$M))
#
# ###=========================================####
# ### get the markers and phenotypes for such inds
# ###=========================================####
# marks <- numo$M[common,]; marks[1:5,1:5]
# DT2 <- DT[match(common,DT$Name),];
# DT2 <- as.data.frame(DT2)
# DT2[1:5,]
#
# ###=========================================####
# ###### Additive relationship matrix, specify ploidy
# ###=========================================####
# A <- A.mat(marks)
# D <- D.mat(marks)
# ###=========================================####
# ### run as mixed model
# ###=========================================####
# ans <- mmes(tuber_shape~1,
# random=~vsm(ism(Name), Gu=A),
# data=DT2)
# summary(ans)$varcomp
# # if using mmes=TRUE provide Gu as inverse
# Ai <- solve(A + diag(1e-4,ncol(A),ncol(A)))
# Ai <- as(as(as( Ai, "dMatrix"), "generalMatrix"), "CsparseMatrix")
# attr(Ai, 'inverse')=TRUE
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DT_rice Rice lines dataset

Description

Information from a collection of 413 rice lines. The DT_rice data set is from Rice Diversity Org.
Program. The lines are genotyped with 36,901 SNP markers and phenotyped for more than 30
traits. This data set was included in the package to play with it. If using it for your research make
sure you cite the original publication from Zhao et al.(2011).

Usage

data(DT_rice)

Format

RicePheno contains the phenotypes RiceGeno contains genotypes letter code RiceGenoN contains
the genotypes in numerical code using atcg1234 converter function

Source

Rice Diversity Organization http://www.ricediversity.org/data/index.cfm.

References

Keyan Zhao, Chih-Wei Tung, Georgia C. Eizenga, Mark H. Wright, M. Liakat Ali, Adam H. Price,
Gareth J. Norton, M. Rafiqul Islam, Andy Reynolds, Jason Mezey, Anna M. McClung, Carlos D.
Bustamante & Susan R. McCouch (2011). Genome-wide association mapping reveals a rich ge-
netic architecture of complex traits in Oryza sativa. Nat Comm 2:467 DOI: 10.1038/ncomms1467,
Published Online 13 Sep 2011.

See Also

The core functions of the package mmes

Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples using
#### command + shift + C |OR| control + shift + C
####=========================================####
data(DT_rice)
# DT <- DT_rice
# GT <- GT_rice
# GTn <- GTn_rice
# head(DT)
# M <- atcg1234(GT)
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# A <- A.mat(M$M)
# mix <- mmes(Protein.content~1,
# random = ~vsm(ism(geno), Gu=A) + geno,
# rcov=~units,
# data=DT)
# summary(mix)$varcomp
# # if using henderson=TRUE provide Gu as inverse
# Ai <- solve(A + diag(1e-6,ncol(A),ncol(A)))
# Ai <- as(as(as( Ai, "dMatrix"), "generalMatrix"), "CsparseMatrix")
# attr(Ai, 'inverse')=TRUE

DT_sleepstudy Reaction times in a sleep deprivation study

Description

The average reaction time per day for subjects in a sleep deprivation study. On day 0 the subjects
had their normal amount of sleep. Starting that night they were restricted to 3 hours of sleep per
night. The observations represent the average reaction time on a series of tests given each day to
each subject. Data from sleepstudy to see how lme4 models can be translated in sommer.

Usage

data("DT_sleepstudy")

Format

The format is: chr "DT_sleepstudy"

Source

These data are from the study described in Belenky et al. (2003), for the sleep deprived group and
for the first 10 days of the study, up to the recovery period.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Gregory Belenky et al. (2003) Patterns of performance degradation and restoration during sleep
restrictions and subsequent recovery: a sleep dose-response study. Journal of Sleep Research 12,
1-12.

See Also

The core functions of the package mmes
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Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####
# library(lme4)
data(DT_sleepstudy)
DT <- DT_sleepstudy
head(DT)
##################################
## lme4
# fm1 <- lmer(Reaction ~ Days + (1 | Subject), data=DT)
# vc <- VarCorr(fm1); print(vc,comp=c("Variance"))
## sommer
fm2 <- mmes(Reaction ~ Days,

random= ~ Subject,
data=DT, tolParInv = 1e-6, verbose = FALSE)

summary(fm2)$varcomp

##################################
## lme4
# fm1 <- lmer(Reaction ~ Days + (Days || Subject), data=DT)
# vc <- VarCorr(fm1); print(vc,comp=c("Variance"))
## sommer
fm2 <- mmes(Reaction ~ Days,

random= ~ Subject + vsm(ism(Days), ism(Subject)),
data=DT, tolParInv = 1e-6, verbose = FALSE)

summary(fm2)$varcomp

##################################
## lme4
# fm1 <- lmer(Reaction ~ Days + (Days | Subject), data=DT)
# vc <- VarCorr(fm1); print(vc,comp=c("Variance"))
## sommer
## no equivalence in sommer to find the correlation between the 2 vc
## this is the most similar which is equivalent to (intercept || slope)
fm2 <- mmes(Reaction ~ Days,

random= ~ Subject + vsm(ism(Days), ism(Subject)),
data=DT, tolParInv = 1e-6, verbose = FALSE)

summary(fm2)$varcomp

##################################
## lme4
# fm1 <- lmer(Reaction ~ Days + (0 + Days | Subject), data=DT)
# vc <- VarCorr(fm1); print(vc,comp=c("Variance"))
## sommer
fm2 <- mmes(Reaction ~ Days,

random= ~ vsm(ism(Days), ism(Subject)),
data=DT, tolParInv = 1e-6, verbose = FALSE)

summary(fm2)$varcomp
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DT_technow Genotypic and Phenotypic data from single cross hybrids (Technow et
al.,2014)

Description

This dataset contains phenotpic data for 2 traits measured in 1254 single cross hybrids coming
from the cross of Flint x Dent heterotic groups. In addition contains the genotipic data (35,478
markers) for each of the 123 Dent lines and 86 Flint lines. The purpose of this data is to demosntrate
the prediction of unrealized crosses (9324 unrealized crosses, 1254 evaluated, total 10578 single
crosses). We have added the additive relationship matrix (A) but can be easily obtained using the
A.mat function on the marker data. Please if using this data for your own research cite Technow et
al. (2014) publication (see References).

Usage

data("DT_technow")

Format

The format is: chr "DT_technow"

Source

This data was extracted from Technow et al. (2014).

References

If using this data for your own research please cite:

Technow et al. 2014. Genome properties and prospects of genomic predictions of hybrid perfor-
mance in a Breeding program of maize. Genetics 197:1343-1355.

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmes

Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples using
#### command + shift + C |OR| control + shift + C
####=========================================####
data(DT_technow)
DT <- DT_technow
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Md <- Md_technow
Mf <- Mf_technow
# Md <- (Md*2) - 1
# Mf <- (Mf*2) - 1
# Ad <- A.mat(Md)
# Af <- A.mat(Mf)
# ###=========================================####
# ###=========================================####
# ans2 <- mmes(GY~1,
# random=~vsm(ism(dent),Gu=Ad) + vsm(ism(flint),Gu=Af),
# rcov=~units,
# data=DT)
# summary(ans2)$varcomp
#
# Adi <- solve(Ad + diag(1e-4,ncol(Ad),ncol(Ad)))
# Adi <- as(as(as( Adi, "dMatrix"), "generalMatrix"), "CsparseMatrix")
# attr(Adi, 'inverse')=TRUE
# Afi <- solve(Af + diag(1e-4,ncol(Af),ncol(Af)))
# Afi <- as(as(as( Afi, "dMatrix"), "generalMatrix"), "CsparseMatrix")
# attr(Afi, 'inverse')=TRUE
# ####====================####
# #### multivariate model ####
# #### 2 traits ####
# ####====================####
# head(DT)
# DT2 <- stackTrait(DT, traits = c("GY","GM"))
# head(DT2$long)
#
# M <- rbind(Md,Mf)
# A <- A.mat(M)
# Ai <- solve(A + diag(1e-4,ncol(A),ncol(A)))
# Ai <- as(as(as( Ai, "dMatrix"), "generalMatrix"), "CsparseMatrix")
# attr(Ai, 'inverse')=TRUE
# DT2$long=DT2$long[with(DT2$long, order(trait)), ]
#
# ans3 <- mmes(valueS~trait, henderson=TRUE,
# random=~vsm(usm(trait),ism(overlay(dent,flint)),Gu=Ai),
# rcov=~ vsm(dsm(trait), ism(units)),
# data=DT2$long)
# summary(ans3)
# cov2cor(ans3$theta[[1]])

DT_wheat wheat lines dataset

Description

Information from a collection of 599 historical CIMMYT wheat lines. The wheat data set is from
CIMMYT’s Global Wheat Program. Historically, this program has conducted numerous interna-
tional trials across a wide variety of wheat-producing environments. The environments represented
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in these trials were grouped into four basic target sets of environments comprising four main agro-
climatic regions previously defined and widely used by CIMMYT’s Global Wheat Breeding Pro-
gram. The phenotypic trait considered here was the average grain yield (GY) of the 599 wheat lines
evaluated in each of these four mega-environments.

A pedigree tracing back many generations was available, and the Browse application of the Interna-
tional Crop Information System (ICIS), as described in (McLaren et al. 2000, 2005) was used for
deriving the relationship matrix A among the 599 lines; it accounts for selection and inbreeding.

Wheat lines were recently genotyped using 1447 Diversity Array Technology (DArT) generated
by Triticarte Pty. Ltd. (Canberra, Australia; http://www.triticarte.com.au). The DArT markers
may take on two values, denoted by their presence or absence. Markers with a minor allele fre-
quency lower than 0.05 were removed, and missing genotypes were imputed with samples from
the marginal distribution of marker genotypes, that is, xij = Bernoulli(p̂j), where p̂j is the es-
timated allele frequency computed from the non-missing genotypes. The number of DArT MMs
after edition was 1279.

Usage

data(DT_wheat)

Format

Matrix Y contains the average grain yield, column 1: Grain yield for environment 1 and so on.

Source

International Maize and Wheat Improvement Center (CIMMYT), Mexico.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

McLaren, C. G., L. Ramos, C. Lopez, and W. Eusebio. 2000. “Applications of the geneaology
manegment system.” In International Crop Information System. Technical Development Manual,
version VI, edited by McLaren, C. G., J.W. White and P.N. Fox. pp. 5.8-5.13. CIMMyT, Mexico:
CIMMyT and IRRI.

McLaren, C. G., R. Bruskiewich, A.M. Portugal, and A.B. Cosico. 2005. The International Rice
Information System. A platform for meta-analysis of rice crop data. Plant Physiology 139: 637-
642.

See Also

The core functions of the package mmes

Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples using
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#### command + shift + C |OR| control + shift + C
####=========================================####
# data(DT_wheat)
# DT <- DT_wheat
# GT <- GT_wheat
# DTlong <- data.frame(pheno=as.vector(DT),
# env=sort(rep(1:4,nrow(DT))),
# id=rep(rownames(DT),4))
# DT <- as.data.frame(DT);colnames(DT) <- paste0("x",1:4);DT$line <- rownames(DT);
# rownames(GT) <- DT$line
# K <- A.mat(GT) # additive relationship matrix
# K[1:4,1:4]
# ###=========================================####
# ###=========================================####
# ### using formula based 'mmes'
# ###=========================================####
# ###=========================================####
# head(DT)
# #### univariate
# mix0 <- mmes(x1~1,
# random = ~vsm(ism(line),Gu=K),
# rcov=~units,
# data=DT)
# summary(mix0)$varcomp
# # if using mmes=TRUE provide Gu as inverse
# Ki <- solve(K + diag(1e-4,ncol(K),ncol(K)))
# Ki <- as(as(as( Ki, "dMatrix"), "generalMatrix"), "CsparseMatrix")
# attr(Ki, 'inverse')=TRUE

DT_yatesoats Yield of oats in a split-block experiment

Description

The yield of oats from a split-plot field trial using three varieties and four levels of manurial treat-
ment. The experiment was laid out in 6 blocks of 3 main plots, each split into 4 sub-plots. The
varieties were applied to the main plots and the manurial (nitrogen) treatments to the sub-plots.

Format

block block factor with 6 levels

nitro nitrogen treatment in hundredweight per acre

Variety genotype factor, 3 levels

yield yield in 1/4 lbs per sub-plot, each 1/80 acre.

row row location

column column location
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Source

Yates, Frank (1935) Complex experiments, Journal of the Royal Statistical Society Suppl. 2, 181–
247.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

Examples

### ========================== ###
### ========================== ###
data(DT_yatesoats)
DT <- DT_yatesoats
head(DT)
# m3 <- mmes(fixed=Y ~ V + N + V:N,
# random = ~ B + B:MP,
# rcov=~units,
# data = DT)
# summary(m3)$varcomp

E.mat Epistatic relationship matrix

Description

Calculates the realized epistatic relationship matrix of second order (additive x additive, additive x
dominance, or dominance x dominance) using hadamard products with the C++ Armadillo library.

Usage

E.mat(X,nishio=TRUE,type="A#A",min.MAF=0.02)

Arguments

X Matrix (n×m) of unphased genotypes for n lines and m biallelic markers, coded
as {-1,0,1}. Fractional (imputed) and missing values (NA) are allowed.

nishio If TRUE Nishio ans Satoh. (2014), otherwise Su et al. (2012) (see Details in the
D.mat help page).

type An argument specifying the type of epistatic relationship matrix desired. The
default is the second order epistasis (additive x additive) type="A#A". Other op-
tions are additive x dominant (type="A#D"), or dominant by dominant (type="D#D").

min.MAF Minimum minor allele frequency. The A matrix is not sensitive to rare alleles,
so by default only monomorphic markers are removed.
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Details

it is computed as the Hadamard product of the epistatic relationship matrix; E=A#A, E=A#D,
E=D#D.

Value

The epistatic relationship matrix is returned.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Endelman, J.B., and J.-L. Jannink. 2012. Shrinkage estimation of the realized relationship matrix.
G3:Genes, Genomes, Genetics. 2:1405-1413. doi: 10.1534/g3.112.004259

Nishio M and Satoh M. 2014. Including Dominance Effects in the Genomic BLUP Method for
Genomic Evaluation. Plos One 9(1), doi:10.1371/journal.pone.0085792

Su G, Christensen OF, Ostersen T, Henryon M, Lund MS. 2012. Estimating Additive and Non-
Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nu-
cleotide Polymorphism Markers. PLoS ONE 7(9): e45293. doi:10.1371/journal.pone.0045293

Examples

####=========================================####
####random population of 200 lines with 1000 markers
####=========================================####
X <- matrix(rep(0,200*1000),200,1000)
for (i in 1:200) {

X[i,] <- sample(c(-1,0,0,1), size=1000, replace=TRUE)
}

E <- E.mat(X, type="A#A")
# if heterozygote markers are present can be used "A#D" or "D#D"

fitted.mmes fitted form a LMM fitted with mmes

Description

fitted method for class "mmes".

Usage

## S3 method for class 'mmes'
fitted(object, ...)
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Arguments

object an object of class "mmes"

... Further arguments to be passed to the mmes function

Value

vector of fitted values of the form y.hat = Xb + Zu including all terms of the model.

Author(s)

Giovanny Covarrubias

See Also

fitted, mmes

Examples

# data(DT_cpdata)
# DT <- DT_cpdata
# GT <- GT_cpdata
# MP <- MP_cpdata
# #### create the variance-covariance matrix
# A <- A.mat(GT) # additive relationship matrix
# #### look at the data and fit the model
# head(DT)
# mix1 <- mmes(Yield~1,
# random=~vsm(ism(id),Gu=A)
# + Rowf + Colf + spl2Dc(Row,Col),
# rcov=~units,
# data=DT)
#
# ff=fitted(mix1)
#
# colfunc <- colorRampPalette(c("steelblue4","springgreen","yellow"))
# lattice::wireframe(`u:Row.fitted`~Row*Col, data=ff$dataWithFitted,
# aspect=c(61/87,0.4), drape=TRUE,# col.regions = colfunc,
# light.source=c(10,0,10))
# lattice::levelplot(`u:Row.fitted`~Row*Col, data=ff$dataWithFitted, col.regions = colfunc)

fixm fixed indication matrix

Description

fixm creates a square matrix with 3’s in the diagnals and off-diagonals to quickly specify a fixed
constraint in the Gtc argument of the vsm function.
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Usage

fixm(x, reps=NULL)

Arguments

x integer specifying the number of traits to be fitted for a given random effect.

reps integer specifying the number of times the matrix should be repeated in a list
format to provide easily the constraints in complex models that use the ds(), us()
or cs() structures.

Value

$res a matrix or a list of matrices with the constraints to be provided in the Gtc argument of the
vsm function.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

fixm(4)
fixm(4,2)

GWAS Genome wide association study analysis

Description

THIS FUNCTION IS DEPRECATED. Fits a multivariate/univariate linear mixed model GWAS
by likelihood methods (REML), see the Details section below. It uses the mmer function and its
core coded in C++ using the Armadillo library to optimize dense matrix operations common in
the derect-inversion algorithms. After the model fit extracts the inverse of the phenotypic variance
matrix to perform the association test for the "p" markers. Please check the Details section (Model
enabled) if you have any issue with making the function run.

The sommer package is updated on CRAN every 3-months due to CRAN policies but you can find
the latest source at https://github.com/covaruber/sommer . This can be easily installed typing the
following in the R console:

library(devtools)

install_github("covaruber/sommer")
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This is recommended since bugs fixes will be immediately available in the GitHub source. For
tutorials on how to perform different analysis with sommer please look at the vignettes by typing
in the terminal:

vignette("v1.sommer.quick.start")

vignette("v2.sommer.changes.and.faqs")

vignette("v3.sommer.qg")

vignette("v4.sommer.gxe")

or visit https://covaruber.github.io

Usage

GWAS(fixed, random, rcov, data, weights, W,
nIters=20, tolParConvLL = 1e-03, tolParInv = 1e-06,
init=NULL, constraints=NULL,method="NR",
getPEV=TRUE,naMethodX="exclude",
naMethodY="exclude",returnParam=FALSE,
dateWarning=TRUE,date.warning=TRUE,verbose=FALSE,
stepWeight=NULL, emWeight=NULL,
M=NULL, gTerm=NULL, n.PC = 0, min.MAF = 0.05,
P3D = TRUE)

Arguments

fixed A formula specifying the response variable(s) and fixed effects, i.e:
response ~ covariate for univariate models
cbind(response.i,response.j) ~ covariate for multivariate models
The fcm function can be used to constrain fixed effects in multi-response mod-
els.

random a formula specifying the name of the random effects, i.e. random= ~ genotype
+ year.
Useful functions can be used to fit heterogeneous variances and other special
models (see ’Special Functions’ in the Details section for more information):
vsr(...,Gu,Gt,Gtc) is the main function to specify variance models and spe-
cial structures for random effects. On the ... argument you provide the unknown
variance-covariance structures (i.e. usr,dsr,at,csr) and the random effect where
such covariance structure will be used (the random effect of interest). Gu is
used to provide known covariance matrices among the levels of the random ef-
fect, Gt initial values and Gtc for constraints. Auxiliar functions for building the
variance models are:

rcov a formula specifying the name of the error term, i.e. rcov= ~ units.
The functions that can be used to fit heterogeneous residual variances are the
same used on the random term but the random effect is always "units", i.e.
rcov=~vsr(dsr(Location),units)

data a data frame containing the variables specified in the formulas for response,
fixed, and random effects.
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weights name of the covariate for weights. To be used for the product R = Wsi*R*Wsi,
where * is the matrix product, Wsi is the square root of the inverse of W and R
is the residual matrix.

W Alternatively, instead of providing a vector of weights the user can specify an
entire W matrix (e.g., when covariances exist). To be used first to produce Wis
= solve(chol(W)), and then calculate R = Wsi*R*Wsi.t(), where * is the matrix
product, and R is the residual matrix. Only one of the arguments weights or W
should be used. If both are indicated W will be given the preference.

nIters Maximum number of iterations allowed. Default value is 15.

tolParConvLL Convergence criteria.

tolParInv tolerance parameter for matrix inverse used when singularities are encountered.

init initial values for the variance components. By default this is NULL and variance
components are estimated by the method selected, but in case the user want to
provide initial values for ALL var-cov components this argument is functional.
It has to be provided as a list or an array, where each list element is one variance
component and if multitrait model is pursued each element of the list is a matrix
of variance covariance components among traits. Initial values can also be pro-
vided in the Gt argument of the vsr function.Is highly encouraged to use the Gt
and Gtc arguments of the vsr function instead of this argument

constraints when initial values are provided these have to be accompanied by their con-
straints. See the vsr function for more details on the constraints. Is highly en-
couraged to use the Gt and Gtc arguments of the vsr function instead of this
argument.

method this refers to the method or algorithm to be used for estimating variance com-
ponents. Direct-inversion Newton-Raphson NR and Average Information AI
(Tunnicliffe 1989; Gilmour et al. 1995; Lee et al. 2015).

getPEV a TRUE/FALSE value indicating if the program should return the predicted error
variance and variance for random effects. This option is provided since this can
take a long time for certain models where p > n by a big extent.

naMethodX one of the two possible values; "include" or "exclude". If "include" is selected
then the function will impute the X matrices for fixed effects with the median
value. If "exclude" is selected it will get rid of all rows with missing values for
the X (fixed) covariates. The default is "exclude". The "include" option should
be used carefully.

naMethodY one of the three possible values; "include", "include2" or "exclude". If "include"
is selected then the function will impute the response variables with the median
value. The difference between "include" and "include2" is only available in
the multitrait models when the imputation can happen for the entire matrix of
responses or only for complete cases ("include2"). If "exclude" is selected it will
get rid of rows in responses where missing values are present for the estimation
of variance components. The default is "exclude".

returnParam a TRUE/FALSE value to indicate if the program should return the parameters
used for modeling without fitting the model.

dateWarning a TRUE/FALSE value to indicate if the program should warn you when is time
to update the sommer package.
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date.warning a TRUE/FALSE value to indicate if the program should warn you when is time
to update the sommer package.

verbose a TRUE/FALSE value to indicate if the program should return the progress of
the iterative algorithm.

stepWeight A vector of values (of length equal to the number of iterations) indicating the
weight used to multiply the update (delta) for variance components at each iter-
ation. If NULL the 1st iteration will be multiplied by 0.5, the 2nd by 0.7, and
the rest by 0.9. This argument can help to avoid that variance components go
outside the parameter space in the initial iterations which doesn’t happen very
often with the NR method but it can be detected by looking at the behavior of
the likelihood. In that case you may want to give a smaller weight to the initial
8-10 iterations.

emWeight A vector of values (of length equal to the number of iterations) indicating with
values between 0 and 1 the weight assigned to the EM information matrix. And
the values 1 - emWeight will be applied to the NR/AI information matrix to
produce a joint information matrix. If NULL weights for EM information matrix
are zero and 1 for the NR/AI information matrix.

M The marker matrix containing the marker scores for each level of the random
effect selected in the gTerm argument, coded as numeric based on the number
of reference alleles in the genotype call, e.g. (-1,0,1) = (aa,Aa,AA), levels in
diploid individuals. Individuals in rows and markers in columns. No additional
columns should be provided, is a purely numerical matrix. Similar logic applies
to polyploid individuals, e.g. (-3,-2,-1,0,1,2,3) = (aaaa,aaaA,aaAA,Aaaa,AAaa,AAAa,AAAA).

gTerm a character vector indicating the random effect linked to the marker matrix M
(i.e. the genetic term) in the model. The random effect selected should have
the same number of levels than the number of rows of M. When fitting only a
random effect without a special covariance structure (e.g., dsr, usr, etc.) you
will need to add the call ’u:’ to the name of the random effect given the behavior
of the naming rules of the solver when having a simple random effect without
covariance structure.

n.PC Number of principal components to include as fixed effects. Default is 0 (equals
K model).

min.MAF Specifies the minimum minor allele frequency (MAF). If a marker has a MAF
less than min.MAF, it is assigned a zero score.

P3D When P3D=TRUE, variance components are estimated by REML only once,
without any markers in the model and then a for loop for hypothesis testing is
performed. When P3D=FALSE, variance components are estimated by REML
for each marker separately. The latter can be quite time consuming. As many
models will be run as number of marker.

Details

Citation

Type citation("sommer") to know how to cite the sommer package in your publications.

Models Enabled



GWAS 69

For details about the models enabled and more information about the covariance structures please
check the help page of the package (sommer). In general the GWAS model implemented in sommer
to obtain marker effect is a generalized linear model of the form:

b = (X’V-X)X’V-y

with X = ZMi

where: b is the marker effect (dimensions 1 x mt) y is the response variable (univariate or multi-
variate) (dimensions 1 x nt) V- is the inverse of the phenotypic variance matrix (dimensions nt x nt)
Z is the incidence matrix for the random effect selected (gTerm argument) to perform the GWAS
(dimensions nt x ut) Mi is the ith column of the marker matrix (M argument) (dimensions u x m)

for t traits, n observations, m markers and u levels of the random effect. Depending if P3D is
TRUE or FALSE the V- matrix will be calculated once and used for all marker tests (P3D=TRUE)
or estimated through REML for each marker (P3D=FALSE).

vignette(’sommer.start’)

Bug report and contact
If you have any technical questions or suggestions please post it in https://stackoverflow.com or
https://stats.stackexchange.com.

If you have any bug report please go to https://github.com/covaruber/sommer or send me an email
to address it asap.

Value

If all parameters are correctly indicated the program will return a list with the following information:

Vi the inverse of the phenotypic variance matrix V^- = (ZGZ+R)^-1

sigma a list with the values of the variance-covariance components with one list ele-
ment for each random effect.

sigma_scaled a list with the values of the scaled variance-covariance components with one list
element for each random effect.

sigmaSE Hessian matrix containing the variance-covariance for the variance components.
SE’s can be obtained taking the square root of the diagonal values of the Hessian.

Beta a data frame for trait BLUEs (fixed effects).

VarBeta a variance-covariance matrix for trait BLUEs

U a list (one element for each random effect) with a data frame for trait BLUPs.

VarU a list (one element for each random effect) with the variance-covariance matrix
for trait BLUPs.

PevU a list (one element for each random effect) with the predicted error variance
matrix for trait BLUPs.

fitted Fitted values y.hat=XB

residuals Residual values e = Y - XB

AIC Akaike information criterion

BIC Bayesian information criterion

convergence a TRUE/FALSE statement indicating if the model converged.
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monitor The values of log-likelihood and variance-covariance components across itera-
tions during the REML estimation.

scores marker scores (-log_(10)p) for the traits

method The method for extimation of variance components specified by the user.

constraints contraints used in the mixed models for the random effects.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G. Genome assisted prediction of quantitative traits using the R package som-
mer. PLoS ONE 2016, 11(6): doi:10.1371/journal.pone.0156744

Covarrubias-Pazaran G. 2018. Software update: Moving the R package sommer to multivariate
mixed models for genome-assisted prediction. doi: https://doi.org/10.1101/354639

Bernardo Rex. 2010. Breeding for quantitative traits in plants. Second edition. Stemma Press. 390
pp.

Gilmour et al. 1995. Average Information REML: An efficient algorithm for variance parameter
estimation in linear mixed models. Biometrics 51(4):1440-1450.

Kang et al. 2008. Efficient control of population structure in model organism association mapping.
Genetics 178:1709-1723.

Lee, D.-J., Durban, M., and Eilers, P.H.C. (2013). Efficient two-dimensional smoothing with P-
spline ANOVA mixed models and nested bases. Computational Statistics and Data Analysis, 61, 22
- 37.

Lee et al. 2015. MTG2: An efficient algorithm for multivariate linear mixed model analysis based
on genomic information. Cold Spring Harbor. doi: http://dx.doi.org/10.1101/027201.

Maier et al. 2015. Joint analysis of psychiatric disorders increases accuracy of risk prediction for
schizophrenia, bipolar disorder, and major depressive disorder. Am J Hum Genet; 96(2):283-294.

Rodriguez-Alvarez, Maria Xose, et al. Correcting for spatial heterogeneity in plant breeding exper-
iments with P-splines. Spatial Statistics 23 (2018): 52-71.

Searle. 1993. Applying the EM algorithm to calculating ML and REML estimates of variance
components. Paper invited for the 1993 American Statistical Association Meeting, San Francisco.

Yu et al. 2006. A unified mixed-model method for association mapping that accounts for multiple
levels of relatedness. Genetics 38:203-208.

Tunnicliffe W. 1989. On the use of marginal likelihood in time series model estimation. JRSS
51(1):15-27.

Zhang et al. 2010. Mixed linear model approach adapted for genome-wide association studies. Nat.
Genet. 42:355-360.
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Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples using
#### command + shift + C |OR| control + shift + C
####=========================================####
#####========================================####
##### potato example
#####========================================####
#
# data(DT_polyploid)
# DT <- DT_polyploid
# GT <- GT_polyploid
# MP <- MP_polyploid
# ####=========================================####
# ####### convert markers to numeric format
# ####=========================================####
# numo <- atcg1234(data=GT, ploidy=4);
# numo$M[1:5,1:5];
# numo$ref.allele[,1:5]
#
# ###=========================================####
# ###### plants with both genotypes and phenotypes
# ###=========================================####
# common <- intersect(DT$Name,rownames(numo$M))
#
# ###=========================================####
# ### get the markers and phenotypes for such inds
# ###=========================================####
# marks <- numo$M[common,]; marks[1:5,1:5]
# DT2 <- DT[match(common,DT$Name),];
# DT2 <- as.data.frame(DT2)
# DT2[1:5,]
#
# ###=========================================####
# ###### Additive relationship matrix, specify ploidy
# ###=========================================####
# A <- A.mat(marks)
# ###=========================================####
# ### run it as GWAS model
# ###=========================================####
# ans2 <- GWAS(tuber_shape~1,
# random=~vsr(Name,Gu=A),
# rcov=~units,
# gTerm = "u:Name",
# M=marks, data=DT2)
# plot(ans2$scores[,1])

H.mat Combined relationship matrix H
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Description

Given a matrix A and a matrix G returns a H matrix with the C++ Armadillo library.

Usage

H.mat(A, G, tau = 1, omega = 1, tolparinv=1e-6)

Arguments

A Additive relationship matrix based on pedigree.

G Additive relationship matrix based on marker data.

tau As described by Martini et al. (2018).

omega As described by Martini et al. (2018).

tolparinv Tolerance parameter for matrix inverse used when singularities are encountered
in the estimation procedure.

Details

See references

Value

H Matrix with the relationship between the individuals based on pedigree and corrected by molec-
ular information

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Martini, J. W., Schrauf, M. F., Garcia-Baccino, C. A., Pimentel, E. C., Munilla, S., Rogberg-Munoz,
A., ... & Simianer, H. (2018). The effect of the H-1 scaling factors tau and omega on the structure
of H in the single-step procedure. Genetics Selection Evolution, 50(1), 16.

Examples

####=========================================####
####random population of 200 lines with 1000 markers
####=========================================####
M <- matrix(rep(0,200*1000),200,1000)
for (i in 1:200) {

M[i,] <- sample(c(-1,0,0,1), size=1000, replace=TRUE)
}
rownames(M) <- 1:nrow(M)
v <- sample(1:nrow(M),100)
M2 <- M[v,]

A <- A.mat(M) # assume this is a pedigree-based matrix for the sake of example
G <- A.mat(M2)
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H <- H.mat(A,G)
# colfunc <- colorRampPalette(c("steelblue4","springgreen","yellow"))
# hv <- heatmap(H[1:15,1:15], col = colfunc(100),Colv = "Rowv")

imputev Imputing a numeric or character vector

Description

This function is a very simple function to impute a numeric or character vector with the mean or
median value of the vector.

Usage

imputev(x, method="median")

Arguments

x a numeric or character vector.

method the method to choose between mean or median.

Value

$x a numeric or character vector imputed with the method selected.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

####=========================================####
#### generate your mickey mouse -log10(p-values)
####=========================================####
set.seed(1253)
x <- rnorm(100)
x[sample(1:100,10)] <- NA
imputev(x)
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ism identity covariance structure

Description

ism creates an identity covariance structure for the levels of the random effect to be used with
the mmes solver. Any random effect with a special covariance structure should end with an ism()
structure.

Usage

ism(x, thetaC=NULL, theta=NULL)

Arguments

x vector of observations for the random effect.

thetaC an optional 1 x 1 matrix for constraints in the variance-covariance components.
The values in the matrix define how the variance-covariance components should
be estimated:
0: component will not be estimated
1: component will be estimated and constrained to be positive (default)
2: component will be estimated and unconstrained
3: component will be fixed to the value provided in the theta argument

theta an optional 1 x 1 matrix for initial values of the variance-covariance component.
When providing customized values, these values should be scaled with respect
to the original variance. For example, to provide an initial value of 1 to a given
variance component, theta would be built as:
theta = matrix( 1 / var(response) )
The values in the matrix define the initial values of the variance-covariance com-
ponents that will be subject to the constraints provided in thetaC. If not provided,
initial values (theta) will be 0.15

Value

$res a list with the provided vector and the variance covariance structure expected for the levels of
the random effect.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744
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See Also

See the function vsm to know how to use ism in the mmes solver.

Examples

x <- as.factor(c(1:5,1:5,1:5));x
ism(x)

# data(DT_example)
# ans1 <- mmes(Yield~Env,
# random= ~ vsm( ism( Name ) ),
# data=DT_example)
# summary(ans1)$varcomp

jet.colors Generate a sequence of colors alog the jet colormap.

Description

jet.colors(n) generates a sequence of n colors from dark blue to cyan to yellow to dark red. It is
similar to the default color schemes in Python’s matplotlib or MATLAB.

Usage

jet.colors(n, alpha = 1)

Arguments

n The number of colors to return.

alpha The transparency value of the colors. See ?rgb for details.

Value

A vector of colors along the jet colorramp.

Examples

{
# Plot a colorbar with jet.colors
image(matrix(seq(100), 100), col=jet.colors(100))
}
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LD.decay Calculation of linkage disequilibrium decay

Description

This function calculates the LD decay based on a marker matrix and a map with distances between
markers in cM or base pairs.

Usage

LD.decay(markers,map,silent=FALSE,unlinked=FALSE,gamma=0.95)

Arguments

markers a numeric matrix of markers (columns) by individuals (rows) in -1, 0, 1 format.

map a data frame with 3 columns "Locus" (name of markers), "LG" (linkage group
or chromosome), and "Position" (in cM or base pairs).

silent a TRUE/FALSE value statement indicating if the program should or should not
display the progress bar. silent=TRUE means that will not be displayed.

unlinked a TRUE/FALSE value statement indicating if the program should or should not
calculate the alpha(see next argument) percentile of interchromosomal LD.

gamma a percentile value for LD breakage to be used in the calculation of interchromo-
somal LD extent.

Value

$resp a list with 3 elements; "by.LG", "all.LG", "LDM". The first element (by.LG) is a list with as
many elements as chromosomes where each contains a matrix with 3 columns, the distance,
the r2 value, and the p-value associated to the chi-square test for disequilibrium. The second
element (all.LG) has a big matrix with distance, r2 values and p-values, for each point from
all chromosomes in a single data.frame. The third element (LDM) is the matrix of linkage
disequilibrium between pairs of markers.
If unlinked is selected the program should return the gamma percentile interchromosomal LD
(r2) for each chromosome and average.

References

Laido, Giovanni, et al. Linkage disequilibrium and genome-wide association mapping in tetraploid
wheat (Triticum turgidum L.). PloS one 9.4 (2014): e95211.

Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples using
#### command + shift + C |OR| control + shift + C



leg 77

####=========================================####
data(DT_cpdata)
#### get the marker matrix
CPgeno <- GT_cpdata; CPgeno[1:5,1:5]
#### get the map
mapCP <- MP_cpdata; head(mapCP)
names(mapCP) <- c("Locus","Position","LG")
#### with example purposes we only do 3 chromosomes
mapCP <- mapCP[which(mapCP$LG <= 3),]
#### run the function
# res <- LD.decay(CPgeno, mapCP)
# names(res)
#### subset only markers with significant LD
# res$all.LG <- res$all.LG[which(res$all.LG$p < .001),]
#### plot the LD decay
# with(res$all.LG, plot(r2~d,col=transp("cadetblue"),
# xlim=c(0,55), ylim=c(0,1),
# pch=20,cex=0.5,yaxt="n",
# xaxt="n",ylab=expression(r^2),
# xlab="Distance in cM")
# )
# axis(1, at=seq(0,55,5), labels=seq(0,55,5))
# axis(2,at=seq(0,1,.1), labels=seq(0,1,.1), las=1)

#### if you want to add the loess regression lines
#### this could take a long time!!!
# mod <- loess(r2 ~ d, data=res$all.LG)
# par(new=T)
# lilo <- predict(mod,data.frame(d=1:55))
# plot(lilo, bty="n", xaxt="n", yaxt="n", col="green",
# type="l", ylim=c(0,1),ylab="",xlab="",lwd=2)
# res3 <- LD.decay(markers=CPgeno, map=mapCP,
# unlinked = TRUE,gamma = .95)
# abline(h=res3$all.LG, col="red")

leg Legendre polynomial matrix

Description

Legendre polynomials of order ’n’ are created given a vector ’x’ and normalized to lay between
values u and v.

Usage

leg(x,n=1,u=-1,v=1, intercept=TRUE, intercept1=FALSE)
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Arguments

x numeric vector to be used for the polynomial.

n order of the Legendre polynomials.

u lower bound for the polynomial.

v upper bound for the polynomial.

intercept a TRUE/FALSE value indicating if the intercept should be included.

intercept1 a TRUE/FALSE value indicating if the intercept should have value 1 (is multi-
plied by sqrt(2)).

Value

$S3 an Legendre polynomial matrix of order n.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

x <- sort(rep(1:3,100))
# you need to install the orthopolynom library
# leg(x, n=1)
# leg(x, n=2)

# see dataset data(DT_legendre) for a random regression modeling example

logspace Decreasing logarithmic trend

Description

logspace creates a vector with decreasing logaritmic trend.

Usage

logspace(x, p=1)

Arguments

x sequence of values to pass through the function.

p power to be applied to the values.
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Value

$res a vector of length n with logarithmic decrease trend.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmes

Examples

plot(logspace(1:100,p=1))
plot(logspace(1:100,p=2))
plot(logspace(1:100,p=3))

manhattan Creating a manhattan plot

Description

This function was designed to create a manhattan plot using a data frame with columns "Chrom"
(Chromosome), "Position" and "p.val" (significance for the test).

Usage

manhattan(map, col=NULL, fdr.level=0.05, show.fdr=TRUE, PVCN=NULL, ylim=NULL, ...)

Arguments

map the data frame with 3 columns with names; "Chrom" (Chromosome), "Position"
and "p.val" (significance for the test).

col colors prefered by the user to be used in the manhattan plot. The default is
NULL which will use the red-blue palette.

fdr.level false discovery rate to be drawn in the plot.

show.fdr a TRUE/FALSE value indicating if the FDR value should be shown in the man-
hattan plot or not. By default is TRUE meaning that will be displayed.

PVCN In case the user wants to provide the name of the column that should be treated
as the "p.val" column expected by the program in the ’map’ argument.
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ylim the y axis limits for the manhattan plot if the user wants to customize it. By
default the plot will reflect the minimum and maximum values found.

... additional arguments to be passed to the plot function such as pch, cex, etc.

Value

If all parameters are correctly indicated the program will return:

$plot.data a manhattan plot

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

#random population of 200 lines with 1000 markers
M <- matrix(rep(0,200*1000),1000,200)
for (i in 1:200) {

M[,i] <- ifelse(runif(1000)<0.5,-1,1)
}
colnames(M) <- 1:200
set.seed(1234)
pp <- abs(rnorm(500,0,3));pp[23:34] <- abs(rnorm(12,0,20))
geno <- data.frame(Locus=paste("m",1:500, sep="."),Chrom=sort(rep(c(1:5),100)),

Position=rep(seq(1,100,1),5),
p.val=pp, check.names=FALSE)

geno$Locus <- as.character(geno$Locus)
## look at the data, 5LGs, 100 markers in each
## -log(p.val) value for simulated trait
head(geno)
tail(geno)
manhattan(geno)

map.plot Creating a genetic map plot

Description

This function was designed to create a genetic map plot using a data frame indicating the Linkage
Group (LG), Position and marker names (Locus).
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Usage

map.plot(data, trait = NULL, trait.scale = "same",
col.chr = NULL, col.trait = NULL, type = "hist", cex = 0.4,
lwd = 1, cex.axis = 0.4, cex.trait=0.8, jump = 5)

Arguments

data the data frame with 3 columns with names; Locus, LG and Position

trait if something wants to be plotted next the linkage groups the user must indicate
the name of the column containing the values to be ploted, i.e. p-values, LOD
scores, X2 segregation distortion values, etc.

trait.scale is trait is not NULL, this is a character value indicating if the y axis limits for the
trait plotted next to the chromosomes should be the same or different for each
linkage group. The default value is "same", which means that the same y axis
limit is conserved across linkage groups. For giving an individual y axis limit
for each linkage group write "diff".

col.chr a vector with color names for the chromosomes. If NULL they will be drawn in
gray-black scale.

col.trait a vector with color names for the dots, lines or histogram for the trait plotted
next to the LG’s

type a character value indicating if the trait should be plotted as scatterplot ‘dot‘,
histogram ‘hist‘, line ‘line‘ next to the chromosomes.

cex the cex value determining the size of the cM position labels in the LGs

lwd the width of the lines in the plot

cex.axis the cex value for sizing the labels of LGs and traits plotted (top labels)

cex.trait the cex value for sizing the dots or lines of the trait plotted

jump a scalar value indicating how often should be drawn a number next to the LG
indicating the position. The default is 5 which means every 5 cM a label will be
drawn, i.e. 0,5,10,15,... cM.

Value

If all parameters are correctly indicated the program will return:

$plot.data a plot with the LGs and the information used to create a plot

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744
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Examples

#random population of 200 lines with 1000 markers
M <- matrix(rep(0,200*1000),1000,200)
for (i in 1:200) {

M[,i] <- ifelse(runif(1000)<0.5,-1,1)
}
colnames(M) <- 1:200
set.seed(1234)
geno <- data.frame(Locus=paste("m",1:500, sep="."),LG=sort(rep(c(1:5),100)),

Position=rep(seq(1,100,1),5),
X2=rnorm(500,10,4), check.names=FALSE)

geno$Locus <- as.character(geno$Locus)
## look at the data, 5LGs, 100 markers in each
## X2 value for segregation distortion simulated
head(geno)
tail(geno)
table(geno$LG) # 5 LGs, 100 marks
map.plot(geno, trait="X2", type="line")
map.plot(geno, trait="X2", type="hist")
map.plot(geno, trait="X2", type="dot")

# data("DT_cpdata")
# MP <- MP_cpdata
# colnames(MP)[3] <- c("LG")
# head(MP)
# map.plot(MP, type="line", cex=0.6)

mmer mixed model equations for r records

Description

The mmer function has been DEPRECATED but uses the Direct-Inversion Newton-Raphson or
Average Information

Usage

mmer(fixed, random, rcov, data, weights, W, nIters=20, tolParConvLL = 1e-03,
tolParInv = 1e-06, init=NULL, constraints=NULL,method="NR", getPEV=TRUE,
naMethodX="exclude", naMethodY="exclude",returnParam=FALSE,

dateWarning=TRUE,date.warning=TRUE,verbose=TRUE, reshapeOutput=TRUE, stepWeight=NULL,
emWeight=NULL, contrasts=NULL)

Arguments

fixed A formula specifying the response variable(s) and fixed effects, e.g.:
response ~ covariate for univariate models
cbind(response.i,response.j) ~ covariate for multivariate models
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random A formula specifying the name of the random effects, e.g. random= ~ genotype
+ year.

rcov A formula specifying the name of the error term, e.g., rcov= ~ units.
Special heterogeneous and special variance models and constraints for the resid-
ual part are the same used on the random term but the name of the random effect
is always "units" which can be thought as a column with as many levels as rows
in the data, e.g., rcov=~vsr(dsr(covariate),units)

data A data frame containing the variables specified in the formulas for response,
fixed, and random effects.

weights Name of the covariate for weights. To be used for the product R = Wsi*R*Wsi,
where * is the matrix product, Wsi is the square root of the inverse of W and R
is the residual matrix.

W Alternatively, instead of providing a vector of weights the user can specify an
entire W matrix (e.g., when covariances exist). To be used first to produce Wis
= solve(chol(W)), and then calculate R = Wsi*R*Wsi.t(), where * is the matrix
product, and R is the residual matrix. Only one of the arguments weights or W
should be used. If both are indicated W will be given the preference.

nIters Maximum number of iterations allowed.

tolParConvLL Convergence criteria for the change in log-likelihood.

tolParInv Tolerance parameter for matrix inverse used when singularities are encountered
in the estimation procedure.

init Initial values for the variance components. By default this is NULL and initial
values for the variance components are provided by the algorithm, but in case the
user want to provide initial values for ALL var-cov components this argument is
functional. It has to be provided as a list, where each list element corresponds to
one random effect (1x1 matrix) and if multitrait model is pursued each element
of the list is a matrix of variance covariance components among traits for such
random effect. Initial values can also be provided in the Gti argument. Is highly
encouraged to use the Gti and Gtc arguments of the vsr function instead of this
argument, but these argument can be used to provide all initial values at once

constraints When initial values are provided these have to be accompanied by their con-
straints. See the vsr function for more details on the constraints. Is highly en-
couraged to use the Gti and Gtc arguments of the vsr function instead of this
argument but these argument can be used to provide all constraints at once.

method This refers to the method or algorithm to be used for estimating variance com-
ponents. Direct-inversion Newton-Raphson NR and Average Information AI
(Tunnicliffe 1989; Gilmour et al. 1995; Lee et al. 2015).

getPEV A TRUE/FALSE value indicating if the program should return the predicted
error variance and variance for random effects. This option is provided since
this can take a long time for certain models where p is > n by a big extent.

naMethodX One of the two possible values; "include" or "exclude". If "include" is selected
then the function will impute the X matrices for fixed effects with the median
value. If "exclude" is selected it will get rid of all rows with missing values for
the X (fixed) covariates. The default is "exclude". The "include" option should
be used carefully.
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naMethodY One of the three possible values; "include", "include2" or "exclude" (default) to
treat the observations in response variable to be used in the estimation of vari-
ance components. The first option "include" will impute the response variables
for all rows with the median value, whereas "include2" imputes the responses
only for rows where there is observation(s) for at least one of the responses (only
available in the multi-response models). If "exclude" is selected (default) it will
get rid of rows in response(s) where missing values are present for at least one
of the responses.

returnParam A TRUE/FALSE value to indicate if the program should return the parameters
to be used for fitting the model instead of fitting the model.

dateWarning A TRUE/FALSE value to indicate if the program should warn you when is time
to update the sommer package.

date.warning A TRUE/FALSE value to indicate if the program should warn you when is time
to update the sommer package. This argument will be removed soon, just left
for backcompatibility.

verbose A TRUE/FALSE value to indicate if the program should return the progress of
the iterative algorithm.

reshapeOutput A TRUE/FALSE value to indicate if the output should be reshaped to be easier to
interpret for the user, some information is missing from the multivariate models
for an easy interpretation.

stepWeight A vector of values (of length equal to the number of iterations) indicating the
weight used to multiply the update (delta) for variance components at each iter-
ation. If NULL the 1st iteration will be multiplied by 0.5, the 2nd by 0.7, and
the rest by 0.9. This argument can help to avoid that variance components go
outside the parameter space in the initial iterations which doesn’t happen very
often with the NR method but it can be detected by looking at the behavior of
the likelihood. In that case you may want to give a smaller weight to the initial
8-10 iterations.

emWeight A vector of values (of length equal to the number of iterations) indicating with
values between 0 and 1 the weight assigned to the EM information matrix. And
the values 1 - emWeight will be applied to the NR/AI information matrix to
produce a joint information matrix.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

Details

The use of this function requires a good understanding of mixed models. Please review the ’som-
mer.quick.start’ vignette and pay attention to details like format of your random and fixed variables
(e.g. character and factor variables have different properties when returning BLUEs or BLUPs,
please see the ’sommer.changes.and.faqs’ vignette).

For tutorials on how to perform different analysis with sommer please look at the vignettes by
typing in the terminal:

vignette("v1.sommer.quick.start")

vignette("v2.sommer.changes.and.faqs")

vignette("v3.sommer.qg")
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vignette("v4.sommer.gxe")

Citation
Type citation("sommer") to know how to cite the sommer package in your publications.

Additional Functions
Additional functions for genetic analysis have been included such as relationship matrix building
(A.mat, D.mat, E.mat, H.mat), build a genotypic hybrid marker matrix (build.HMM), plot of ge-
netic maps (map.plot), and manhattan plots (manhattan). If you need to build a pedigree-based
relationship matrix use the getA function from the pedigreemm package.

Bug report and contact
If you have any technical questions or suggestions please post it in https://stackoverflow.com or
https://stats.stackexchange.com

If you have any bug report please go to https://github.com/covaruber/sommer or send me an email to
address it asap, just make sure you have read the vignettes carefully before sending your question.

Models Enabled
For details about the models enabled and more information about the covariance structures please
check the help page of the package (sommer).

Value

If all parameters are correctly indicated the program will return a list with the following information:

Vi the inverse of the phenotypic variance matrix V^- = (ZGZ+R)^-1

P the projection matrix Vi - [Vi*(X*Vi*X)^-*Vi]

sigma a list with the values of the variance-covariance components with one list ele-
ment for each random effect.

sigma_scaled a list with the values of the scaled variance-covariance components with one list
element for each random effect.

sigmaSE Hessian matrix containing the variance-covariance for the variance components.
SE’s can be obtained taking the square root of the diagonal values of the Hessian.

Beta a data frame for trait BLUEs (fixed effects).

VarBeta a variance-covariance matrix for trait BLUEs

U a list (one element for each random effect) with a data frame for trait BLUPs.

VarU a list (one element for each random effect) with the variance-covariance matrix
for trait BLUPs.

PevU a list (one element for each random effect) with the predicted error variance
matrix for trait BLUPs.

fitted Fitted values y.hat=XB

residuals Residual values e = Y - XB

AIC Akaike information criterion

BIC Bayesian information criterion

convergence a TRUE/FALSE statement indicating if the model converged.
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monitor The values of log-likelihood and variance-covariance components across itera-
tions during the REML estimation.

percChange The percent change of variance components across iterations. There should be
one column less than the number of iterations. Calculated as percChange =
((x_i/x_i-1) - 1) * 100 where i is the ith iteration.

dL The vector of first derivatives of the likelihood with respect to the ith variance-
covariance component.

dL2 The matrix of second derivatives of the likelihood with respect to the i.j th
variance-covariance component.

method The method for extimation of variance components specified by the user.

call Formula for fixed, random and rcov used.

constraints contraints used in the mixed models for the random effects.

constraintsF contraints used in the mixed models for the fixed effects.

data The dataset used in the model after removing missing records for the response
variable.

dataOriginal The original dataset used in the model.

terms The name of terms for responses, fixed, random and residual effects in the
model.

termsN The number of effects associated to fixed, random and residual effects in the
model.

sigmaVector a vectorized version of the sigma element (variance-covariance components) to
match easily the standard errors of the var-cov components stored in the element
sigmaSE.

reshapeOutput The value provided to the mmer function for the argument with the same name.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G. Genome assisted prediction of quantitative traits using the R package som-
mer. PLoS ONE 2016, 11(6): doi:10.1371/journal.pone.0156744

Covarrubias-Pazaran G. 2018. Software update: Moving the R package sommer to multivariate
mixed models for genome-assisted prediction. doi: https://doi.org/10.1101/354639

Bernardo Rex. 2010. Breeding for quantitative traits in plants. Second edition. Stemma Press. 390
pp.

Gilmour et al. 1995. Average Information REML: An efficient algorithm for variance parameter
estimation in linear mixed models. Biometrics 51(4):1440-1450.

Kang et al. 2008. Efficient control of population structure in model organism association mapping.
Genetics 178:1709-1723.

Lee, D.-J., Durban, M., and Eilers, P.H.C. (2013). Efficient two-dimensional smoothing with P-
spline ANOVA mixed models and nested bases. Computational Statistics and Data Analysis, 61, 22
- 37.
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Lee et al. 2015. MTG2: An efficient algorithm for multivariate linear mixed model analysis based
on genomic information. Cold Spring Harbor. doi: http://dx.doi.org/10.1101/027201.

Maier et al. 2015. Joint analysis of psychiatric disorders increases accuracy of risk prediction for
schizophrenia, bipolar disorder, and major depressive disorder. Am J Hum Genet; 96(2):283-294.

Rodriguez-Alvarez, Maria Xose, et al. Correcting for spatial heterogeneity in plant breeding exper-
iments with P-splines. Spatial Statistics 23 (2018): 52-71.

Searle. 1993. Applying the EM algorithm to calculating ML and REML estimates of variance
components. Paper invited for the 1993 American Statistical Association Meeting, San Francisco.

Yu et al. 2006. A unified mixed-model method for association mapping that accounts for multiple
levels of relatedness. Genetics 38:203-208.

Tunnicliffe W. 1989. On the use of marginal likelihood in time series model estimation. JRSS
51(1):15-27.

Zhang et al. 2010. Mixed linear model approach adapted for genome-wide association studies. Nat.
Genet. 42:355-360.

Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####

####=========================================####
#### EXAMPLES
#### Different models with sommer
####=========================================####

data(DT_example)
DT <- DT_example
head(DT)

####=========================================####
#### Univariate homogeneous variance models ####
####=========================================####

## Compound simmetry (CS) model
ans1 <- mmer(Yield~Env,

random= ~ Name + Env:Name,
rcov= ~ units,
data=DT)

summary(ans1)
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mmes mixed model equations solver

Description

The mmes function uses either the direct inversion or the Henderson mixed model equations algo-
rithms coded in C++ using the Armadillo library to optimize matrix operations. For problems of
the type c > r (more coefficients to estimate than records available), the direct inversion algorithm
is faster (using the argument henderson=FALSE; default). For more records than coefficients set
henderson=TRUE and make sure that you provide the relationship matrix as an inverse (see vsm()
function for details).

Usage

mmes(fixed, random, rcov, data, W, nIters=50, tolParConvLL = 1e-04,
tolParConvNorm = 1e-04, tolParInv = 1e-06, naMethodX="exclude",
naMethodY="exclude", returnParam=FALSE, dateWarning=TRUE,
verbose=TRUE,addScaleParam=NULL, stepWeight=NULL, emWeight=NULL,
contrasts=NULL, getPEV=TRUE, henderson=FALSE)

Arguments

fixed A formula specifying the response variable(s) and fixed effects, i.e:
response ~ covariate

random A formula specifying the name of the random effects, e.g., random= ~ genotype
+ year.
Useful functions can be used to fit heterogeneous variances and other special
models (see ’Special Functions’ in the Details section for more information):
vsm(...,Gu) is the main function to specify variance models and special struc-
tures for random effects. On the ... argument you provide the unknown variance-
covariance structures (e.g., usm,dsm,atm,csm) and the random effect where such
covariance structure will be used (the random effect of interest). Gu is used
to provide known covariance matrices among the levels of the random effect.
Inverse matrices when the argument henderson=TRUE, and raw (non-inverse)
matrices when henderson=FALSE (default direct inversion). Auxiliar functions
for building the variance models are:
** dsm(x), usm(x), rrm(x,y,z) , ism(x),csm(x), and atm(x,levs) can be
used to specify unknown diagonal, unstructured, reduced-rank, identity, and
customized unstructured and diagonal covariance structures respectively to be
estimated by REML.
** unsm(x), fixm(x) and diag(x) can be used to build easily matrices to spec-
ify constraints in the Gtc argument of the vsm() function.
** overlay(), spl2Dc(), and leg(), redmm() functions can be used to specify
overlayed of design matrices of random effects, two dimensional spline, random
regression, and dimensionality-reduction models within the vsm() function.
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rcov A formula specifying the name of the error term, e.g., rcov= ~ units.
Special heterogeneous and special variance models and constraints for the resid-
ual part are the same used on the random term but the name of the random effect
is always "units" which can be thought as a column with as many levels as rows
in the data, e.g., rcov=~vsm(dsm(covariate),ism(units))
When fitting structures at the level of residuals please make sure that your data
is sorted based on the factors defining the structure. For example, for rcov= ~
vsm(dsm(xx), ism(units)) sort the datatset by the variable xx.

data A data frame containing the variables specified in the formulas for response,
fixed, and random effects.

W Weights matrix (e.g., when covariance among plots exist). Internally W is
squared and inverted as Wsi = solve(chol(W)), then the residual matrix is calcu-
lated as R = Wsi*O*Wsi.t(), where * is the matrix product, and O is the original
residual matrix.

nIters Maximum number of iterations allowed.

tolParConvLL Convergence criteria based in the change of log-likelihood between iteration i
and i-1.

tolParConvNorm When using the Henderson method this argument is the convergence criteria
based in the norm proposed by Jensen, Madsen and Thompson (1997):
e1 = || InfMatInv.diag()/sqrt(N) * dLu ||
where InfMatInv.diag() is the diagonal of the inverse of the information matrix,
N is the total number of variance components, and dLu is the vector of first
derivatives.

tolParInv Tolerance parameter for matrix inverse used when singularities are encountered
in the estimation procedure. By default the value is 1e-06. This parameter
should be fairly small because the it is used to bend matrices like the informa-
tion matrix in the henderson algorithm or the coefficient matrix when it is not
positive-definite.

naMethodX One of the two possible values; "include" or "exclude". If "include" is selected
then the function will impute the X matrices for fixed effects with the median
value. If "exclude" is selected it will get rid of all rows with missing values for
the X (fixed) covariates. The default is "exclude". The "include" option should
be used carefully.

naMethodY One of the three possible values; "include", "include2" or "exclude" (default) to
treat the observations in response variable to be used in the estimation of vari-
ance components. The first option "include" will impute the response variables
for all rows with the median value, whereas "include2" imputes the responses
only for rows where there is observation(s) for at least one of the responses (only
available in the multi-response models). If "exclude" is selected (default) it will
get rid of rows in response(s) where missing values are present for at least one
of the responses.

returnParam A TRUE/FALSE value to indicate if the program should return the parameters
to be used for fitting the model instead of fitting the model.

dateWarning A TRUE/FALSE value to indicate if the program should warn you when is time
to update the sommer package.
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verbose A TRUE/FALSE value to indicate if the program should return the progress of
the iterative algorithm.

addScaleParam additional scale parameters for the thetaF matrix when using Henderson method
(henderson=TRUE).

stepWeight A vector of values (of length equal to the number of iterations) indicating the
weight used to multiply the update (delta) for variance components at each iter-
ation. If NULL the 1st iteration will be multiplied by 0.5, the 2nd by 0.7, and the
rest by 0.9. This argument can help to avoid that variance components go out-
side the parameter space in the initial iterations which happens very often with
the AI method but it can be detected by looking at the behavior of the likelihood.
In that case you may want to give a smaller weight.

emWeight A vector of values (of length equal to the number of iterations) indicating with
values between 0 and 1 the weight assigned to the EM information matrix. And
the values 1 - emWeight will be applied to the AI information matrix to produce
a joint information matrix. By default the function gives a weight to the EM
algorithm of a logarithmic decrease rate using the following code:
stan(logspace(seq(1,-1,- 2/nIters), p=3)) .

contrasts an optional list. See the contrasts.arg of model.matrix.default.

getPEV a logical value indicating if PEV should be returned when the direct inversion
algorithm is used. It does not apply when henderson argument is TRUE.

henderson a logical value indicating if the solving algorithm should be direct inversion
(henderson is FALSE) or Henderson’s method (henderson is TRUE). Default is
direct inversion.

Details

The use of this function requires a good understanding of mixed models. Please review the ’som-
mer.quick.start’ vignette and pay attention to details like format of your random and fixed variables
(e.g. character and factor variables have different properties when returning BLUEs or BLUPs).

For tutorials on how to perform different analysis with sommer please look at the vignettes by
typing in the terminal:

vignette("v1.sommer.quick.start")

vignette("v2.sommer.changes.and.faqs")

vignette("v3.sommer.qg")

vignette("v4.sommer.gxe")

Citation
Type citation("sommer") to know how to cite the sommer package in your publications.

Special variance structures
vsm(atm(x,levels),ism(y))

can be used to specify heterogeneous variance for the "y" covariate at specific levels of the covariate
"x", e.g., random=~vsm(at(Location,c("A","B")),ism(ID)) fits a variance component for ID at levels
A and B of the covariate Location.

vsm(dsm(x),ism(y))
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can be used to specify a diagonal covariance structure for the "y" covariate for all levels of the
covariate "x", e.g., random=~vsm(dsm(Location),ism(ID)) fits a variance component for ID at all
levels of the covariate Location.

vsm(usm(x),ism(y))

can be used to specify an unstructured covariance structure for the "y" covariate for all levels of the
covariate "x", e.g., random=~vsm(usm(Location),ism(ID)) fits variance and covariance components
for ID at all levels of the covariate Location.

vsm(usm(rrm(x,y,z,nPC)),ism(y))

can be used to specify an unstructured covariance structure for the "y" effect for all levels of the co-
variate "x", and a response variable "z", e.g., random=~vsm(rrm(Location,ID,response, nPC=2),ism(ID))
fits a reduced-rank factor analytic covariance for ID at 2 principal components of the covariate Lo-
cation.

vsm(ism(overlay(...,rlist=NULL,prefix=NULL)))

can be used to specify overlay of design matrices between consecutive random effects specified,
e.g., random=~vsm(ism(overlay(male,female))) overlays (overlaps) the incidence matrices for the
male and female random effects to obtain a single variance component for both effects. The ‘rlist‘
argument is a list with each element being a numeric value that multiplies the incidence matrix to
be overlayed. See overlay for details.Can be combined with vsm().

vsm(ism(redmm(x,M,nPC)))

can be used to create a reduced model matrix of an effect (x) assumed to be a linear function of
some feature matrix (M), e.g., random=~vsm(ism(redmm(x,M))) creates an incidence matrix from
a very large set of features (M) that belong to the levels of x to create a reduced model matrix. See
redmm for details.Can be combined with vsm().

vsm(leg(x,n),ism(y))

can be used to fit a random regression model using a numerical variable x that marks the trayectory
for the random effect y. The leg function can be combined with the special functions dsm, usm at
and csm. For example random=~vsm(leg(x,1),ism(y)) or random=~vsm(usm(leg(x,1)),ism(y)).

spl2Dc(x.coord, y.coord, at.var, at.levels))

can be used to fit a 2-dimensional spline (e.g., spatial modeling) using coordinates x.coord and
y.coord (in numeric class) assuming multiple variance components. The 2D spline can be fitted at
specific levels using the at.var and at.levels arguments. For example random=~spl2Dc(x.coord=Row,y.coord=Range,at.var=FIELD).

Covariance between random effects
covm( vsm(ism(ran1)), vsm(ism(ran2)) )

can be used to specify covariance between two different random effects, e.g., random=~covm(
vsm(ism(x1)), vsm(ism(x2)) ) where two random effects in their own vsm() structure are encapsu-
lated. Only applies for simple random effects.

S3 methods
S3 methods are available for some parameter extraction such as fitted.mmes, residuals.mmes,
summary.mmes, randef, coef.mmes, anova.mmes, plot.mmes, and predict.mmes to obtain ad-
justed means. In addition, the vpredict function (replacement of the pin function) can be used to
estimate standard errors for linear combinations of variance components (e.g., ratios like h2). The
r2 function calculates reliability.

Additional Functions
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Additional functions for genetic analysis have been included such as relationship matrix building
(A.mat, D.mat, E.mat, H.mat), build a genotypic hybrid marker matrix (build.HMM), plot of ge-
netic maps (map.plot), and manhattan plots (manhattan). If you need to build a pedigree-based
relationship matrix use the getA function from the pedigreemm package.

Bug report and contact
If you have any technical questions or suggestions please post it in https://stackoverflow.com or
https://stats.stackexchange.com

If you have any bug report please go to https://github.com/covaruber/sommer or send me an email to
address it asap, just make sure you have read the vignettes carefully before sending your question.

Example Datasets
The package has been equiped with several datasets to learn how to use the sommer package:

* DT_halfdiallel, DT_fulldiallel and DT_mohring datasets have examples to fit half and full
diallel designs.

* DT_h2 to calculate heritability

* DT_cornhybrids and DT_technow datasets to perform genomic prediction in hybrid single crosses

* DT_wheat dataset to do genomic prediction in single crosses in species displaying only additive
effects.

* DT_cpdata dataset to fit genomic prediction models within a biparental population coming from
2 highly heterozygous parents including additive, dominance and epistatic effects.

* DT_polyploid to fit genomic prediction and GWAS analysis in polyploids.

* DT_gryphon data contains an example of an animal model including pedigree information.

* DT_btdata dataset contains an animal (birds) model.

* DT_legendre simulated dataset for random regression model.

* DT_sleepstudy dataset to know how to translate lme4 models to sommer models.

* DT_ige dataset to show how to fit indirect genetic effect models.

Models Enabled
For details about the models enabled and more information about the covariance structures please
check the help page of the package (sommer).

Value

If all parameters are correctly indicated the program will return a list with the following information:

data the dataset used in the model fitting.

Dtable the table to be used for the predict function to help the program recognize the
factors available.

llik the vector of log-likelihoods across iterations

b the vector of fixed effect.

u the vector of random effect.

bu the vector of fixed and random effects together.

Ci the inverse of the coefficient matrix.
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Ci_11 the inverse of the coefficient matrix pertaining to the fixed effects.

theta a list of estimated variance covariance matrices. Each element of the list corre-
sponds to the different random and residual components

theta_se inverse of the information matrix.

InfMat information matrix.

monitor The values of the variance-covariance components across iterations during the
REML estimation.

AIC Akaike information criterion

BIC Bayesian information criterion

convergence a TRUE/FALSE statement indicating if the model converged.

partitions a list where each element contains a matrix indicating where each random effect
starts and ends.

partitionsX a list where each element contains a matrix indicating where each fixed effect
starts and ends.

percDelta the matrix of percentage change in deltas (see tolParConvNorm argument).

normMonitor the matrix of the three norms calculated (see tolParConvNorm argument).

toBoundary the matrix of variance components that were forced to the boundary across iter-
ations.

Cchol the Cholesky decomposition of the coefficient matrix.

y the response vector.

W the column binded matrix W = [X Z]

uList a list containing the BLUPs in data frame format where rows are levels of the
random effects and column the different factors at which the random effect is
fitted. This is specially useful for diagonal and unstructured models.

uPevList a list containing the BLUPs in data frame format where rows are levels of the
random effects and column the different factors at which the random effect is
fitted. This is specially useful for diagonal and unstructured models.

args the fixed, random and residual formulas from the mmes model.

constraints The vector of constraints.

Author(s)

Coded by Giovanny Covarrubias-Pazaran with contributions of Christelle Fernandez Camacho to
the henderson algorithm.

References

Covarrubias-Pazaran G. Genome assisted prediction of quantitative traits using the R package som-
mer. PLoS ONE 2016, 11(6): doi:10.1371/journal.pone.0156744

Jensen, J., Mantysaari, E. A., Madsen, P., and Thompson, R. (1997). Residual maximum likeli-
hood estimation of (co) variance components in multivariate mixed linear models using average
information. Journal of the Indian Society of Agricultural Statistics, 49, 215-236.
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Sanderson, C., & Curtin, R. (2025). Armadillo: An Efficient Framework for Numerical Linear
Algebra. arXiv preprint arXiv:2502.03000.

Gilmour et al. 1995. Average Information REML: An efficient algorithm for variance parameter
estimation in linear mixed models. Biometrics 51(4):1440-1450.

Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####

data(DT_example)
DT <- DT_example
head(DT)

####=========================================####
#### Univariate homogeneous variance models ####
####=========================================####

## Compound simmetry (CS) model
ans1 <- mmes(Yield~Env,

random= ~ Name + Env:Name,
rcov= ~ units,
data=DT)

summary(ans1)

# ####===========================================####
# #### Univariate heterogeneous variance models ####
# ####===========================================####
# DT=DT[with(DT, order(Env)), ]
# ## Compound simmetry (CS) + Diagonal (DIAG) model
# ans2 <- mmes(Yield~Env,
# random= ~Name + vsm(dsm(Env),ism(Name)),
# rcov= ~ vsm(dsm(Env),ism(units)),
# data=DT)
# summary(ans2)
#
# ####===========================================####
# #### Univariate unstructured variance models ####
# ####===========================================####
#
# ans3 <- mmes(Yield~Env,
# random=~ vsm(usm(Env),ism(Name)),
# rcov=~vsm(dsm(Env),ism(units)),
# data=DT)
# summary(ans3)
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neMarker Effective population size based on marker matrix

Description

‘neMarker‘ uses a marker matrix to approximate the effective population size (Ne) by discovering
how many individuals are needed to sample all possible alleles in a population.

Usage

neMarker(M, neExplore=NULL, maxMarker=1000, nSamples=5)

Arguments

M marker matrix coded in a numerical faashion (any allele dosage is fine).

neExplore a vector of numbers with the effective population sizes to be explored.

maxMarker maximum number of markers to use for the analysis.

nSamples number of individuals to sample for the Ne calculation.

Value

$S3 A vector with allele coverage based on different number of individuals

Author(s)

Giovanny Covarrubias-Pazaran

References

Not based on any theory published yet but in a solid intuition on what is really important for a
breeding program when we ask what is the effective population size

Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####

# data(DT_cpdata) # Madison cranberries
# DT <- DT_cpdata
# GT <- GT_cpdata
# MP <- MP_cpdata
# M <- GT
# # run the function
# ne <- neMarker(M, neExplore = seq(2,30,2), nSamples = 10)
# ################
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# data(DT_technow) # maize
# M <- Md_technow # dent
# M <- (M*2) - 1
# M <- M + 1
# # run the function
# ne <- neMarker(M, neExplore = seq(5,100,5), nSamples = 10)
# ##
# M <- Mf_technow # flint
# M <- (M*2) - 1
# M <- M + 1
# # run the function
# ne <- neMarker(M, neExplore = seq(5,100,5), nSamples = 10)
# ################
# data(DT_wheat) # cimmyt wheat
# M <- GT_wheat + 1
# # run the function
# ne <- neMarker(M, neExplore = seq(5,60,5), nSamples = 10)
# ###############
# data(DT_rice) # Zhao rice
# M <- atcg1234(GT_rice)$M
# # run the function
# ne <- neMarker(M, neExplore = seq(10,100,10), nSamples = 10)
# ###############
# data(DT_polyploid) # endelman potatoes
# M <- atcg1234(data=GT_polyploid, ploidy=4)$M
# # run the function
# ne <- neMarker(M, neExplore = seq(10,100,10), nSamples = 10)
#
# library(ggplot2) #For making plots
# ggplot(ne,aes(x=Ne,y=allelesCovered))+
# geom_ribbon(aes(x=Ne,ymin=allelesCovered-allelesCoveredSe,
# ymax=allelesCovered+allelesCoveredSe),
# alpha=0.2,linetype=0)+
# geom_line(linewidth=1)+
# guides(alpha=FALSE)+
# theme_bw()+
# scale_x_continuous("Individual number")+
# scale_y_continuous("Allele coverage") +
# geom_hline(yintercept = 0.95) +
# geom_hline(yintercept = 0.975)

overlay Overlay Matrix

Description

‘overlay‘ adds r times the design matrix for model term t to the existing design matrix. Specifically,
if the model up to this point has p effects and t has a effects, the a columns of the design matrix
for t are multiplied by the scalar r (default value 1.0). This can be used to force a correlation of 1
between two terms as in a diallel analysis.
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Usage

overlay(..., rlist=NULL, prefix=NULL, sparse=FALSE)

Arguments

... as many vectors as desired to overlay.

rlist a list of scalar values indicating the times that each incidence matrix overlayed
should be multiplied by. By default r=1.

prefix a character name to be added before the column names of the final overlay ma-
trix. This may be useful if you have entries with names starting with numbers
which programs such as asreml doesn’t like, or for posterior extraction of pa-
rameters, that way ’grep’ing is easier.

sparse a TRUE/FALSE statement specifying if the matrices should be built as sparse or
regular matrices.

Value

$S3 an incidence matrix with as many columns levels in the vectors provided to build the incidence
matrix.

Author(s)

Giovanny Covarrubias-Pazaran

References

Fikret Isik. 2009. Analysis of Diallel Mating Designs. North Carolina State University, Raleigh,
USA.

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmes and a function for creating dummy variables for diallel
models named add.diallel.vars.

Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####
data("DT_halfdiallel")
DT <- DT_halfdiallel
head(DT)
DT$femalef <- as.factor(DT$female)
DT$malef <- as.factor(DT$male)
DT$genof <- as.factor(DT$geno)
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with(DT, overlay(femalef,malef, sparse = TRUE))
with(DT, overlay(femalef,malef, sparse = FALSE))

plot.mmes plot form a LMM plot with mmes

Description

plot method for class "mmes".

Usage

## S3 method for class 'mmes'
plot(x,stnd=TRUE, ...)

Arguments

x an object of class "mmes"

stnd argument for ploting the residuals to know if they should be standarized.

... Further arguments to be passed

Value

vector of plot

Author(s)

Giovanny Covarrubias <covarrubiasp@wisc.edu>

See Also

plot, mmes

Examples

data(DT_yatesoats)
DT <- DT_yatesoats
head(DT)
m3 <- mmes(fixed=Y ~ V + N + V:N,

random = ~ B + B:MP,
rcov=~units,
data = DT)

plot(m3)
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pmonitor plot the change of VC across iterations

Description

plot for monitoring.

Usage

pmonitor(object, ...)

Arguments

object model object of class "mmes"

... Further arguments to be passed to the plot function.

Value

vector of plot

Author(s)

Giovanny Covarrubias

See Also

plot, mmes

Examples

data(DT_yatesoats)
DT <- DT_yatesoats
head(DT)
m3 <- mmes(fixed=Y ~ V + N + V:N,

random = ~ B + B:MP,
rcov=~units,
data = DT)

pmonitor(m3)
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predict.mmes Predict form of a LMM fitted with mmes

Description

predict method for class "mmes".

Usage

## S3 method for class 'mmes'
predict(object, Dtable=NULL, D, ...)

Arguments

object a mixed model of class "mmes"

Dtable a table specifying the terms to be included or averaged.
An "include" term means that the model matrices for that fixed or random effect
is filled with 1’s for the positions where column names and row names match.
An "include and average" term means that the model matrices for that fixed or
random effect is filled with 1/#1’s in that row.
An "average" term alone means that all rows for such fixed or random effect will
be filled with 1/#levels in the effect.
If a term is not considered "include" or "average" is then totally ignored in the
BLUP and SE calculation.
The default rule to invoke when the user doesn’t provide the Dtable is to include
and average all terms that match the argument D.

D a character string specifying the variable used to extract levels for the rows of the
D matrix and its construction. Alternatively, the D matrix (of class dgCMatrix)
specifying the matrix to be used for the predictions directly.

... Further arguments to be passed.

Details

This function allows to produce predictions specifying those variables that define the margins of the
hypertable to be predicted (argument D). Predictions are obtained for each combination of values
of the specified variables that is present in the data set used to fit the model. See vignettes for more
details.

For predicted values the pertinent design matrices X and Z together with BLUEs (b) and BLUPs
(u) are multiplied and added together.

predicted.value equal Xb + Zu.1 + ... + Zu.n

For computing standard errors for predictions the parts of the coefficient matrix:

C11 equal (X.t() V.inv() X).inv()

C12 equal 0 - [(X.t() V.inv() X).inv() X.t() V.inv() G Z]

C22 equal PEV equal G - [Z.t() G[V.inv() - (V.inv() X X.t() V.inv() X V.inv() X)]G Z.t()]
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In practive C equals ( W.t() V.inv() W ).inv()

when both fixed and random effects are present in the inclusion set. If only fixed and random effects
are included, only the respective terms from the SE for fixed or random effects are calculated.

Value

pvals the table of predictions according to the specified arguments.

vcov the variance covariance for the predictions.

D the model matrix for predictions as defined in Welham et al.(2004).

Dtable the table specifying the terms to include and terms to be averaged.

Author(s)

Giovanny Covarrubias-Pazaran

References

Welham, S., Cullis, B., Gogel, B., Gilmour, A., and Thompson, R. (2004). Prediction in linear
mixed models. Australian and New Zealand Journal of Statistics, 46, 325 - 347.

See Also

predict, mmes

Examples

data(DT_yatesoats)
DT <- DT_yatesoats
m3 <- mmes(fixed=Y ~ V + N + V:N ,

random = ~ B + B:MP,
rcov=~units,
data = DT)

#############################
## predict means for nitrogen
#############################
Dt <- m3$Dtable; Dt
# first fixed effect just average
Dt[1,"average"] = TRUE
# second fixed effect include
Dt[2,"include"] = TRUE
# third fixed effect include and average
Dt[3,"include"] = TRUE
Dt[3,"average"] = TRUE
Dt

pp=predict(object=m3, Dtable=Dt, D="N")
pp$pvals

#############################
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## predict means for variety
#############################

Dt <- m3$Dtable; Dt
# first fixed effect include
Dt[1,"include"] = TRUE
# second fixed effect just average
Dt[2,"average"] = TRUE
# third fixed effect include and average
Dt[3,"include"] = TRUE
Dt[3,"average"] = TRUE
Dt

pp=predict(object=m3, Dtable=Dt, D="V")
pp$pvals

#############################
## predict means for nitrogen:variety
#############################
# prediction matrix D based on (equivalent to classify in asreml)
Dt <- m3$Dtable; Dt
# first fixed effect include and average
Dt[1,"include"] = TRUE
Dt[1,"average"] = TRUE
# second fixed effect include and average
Dt[2,"include"] = TRUE
Dt[2,"average"] = TRUE
# third fixed effect include and average
Dt[3,"include"] = TRUE
Dt[3,"average"] = TRUE
Dt

pp=predict(object=m3, Dtable=Dt, D="N:V")
pp$pvals

propMissing Proportion of missing data

Description

propMissing quick calculation of the proportion of missing data in a vector.

Usage

propMissing(x)

Arguments

x vector of observations.
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Value

$res a numeric value with the proportion of missing data.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommec. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

x <- c(1:10, NA)
propMissing(x)

r2 Reliability

Description

Calculates the reliability of BLUPs in a sommer model.

Usage

r2(object, object2=NULL)

Arguments

object Model fitted with the mmes function.
object2 An optional model identical to object in the first argument but fitted with the

argument returnParam set to TRUE to access the relationship matrices from the
fitted model.

Details

The reliability method calculated is the classical animal model: R2=(G-PEV)/G

Value

result a list with as many elements as random effects fitted containing reliabilities for individual
BLUPs.

References

Mrode, R. A. (2014). Linear models for the prediction of animal breeding values. Cabi.

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744
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See Also

mmes – the core function of the package

Examples

####=========================================####
#### Example population
####=========================================####
data(DT_example)
DT <- DT_example
head(DT)
ans1 <- mmes(Yield~Env,

random= ~ Name + Env:Name,
rcov= ~ units,
data=DT)

rel=r2(ans1)

randef extracting random effects

Description

This function is extracts the random effects from a mixed model fitted by mmer.

Usage

randef(object)

Arguments

object an mmer object

Value

$randef a list structure with the random effects or BLUPs.

Examples

# randef(model)
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redmm Reduced Model Matrix

Description

‘redmm‘ reduces a model matrix by performing a singular value decomposition or Cholesky on an
incidence matrix.

Usage

redmm(x, M = NULL, Lam=NULL, nPC=50, cholD=FALSE, returnLam=FALSE)

Arguments

x as vector with values to form a model matrix or the complete incidence matrix
itself for an effect of interest.

M an optional matrix of features explaining the levels of x. If not provided is
assumed that the entire incidence matrix has been provided in x. But if provided,
the decomposition occurs in the matrix M.

Lam a matrix of loadings in case is already available to avoid recomputing it.

nPC number of principal components to keep from the matrix of loadings to form the
model matrix.

cholD should a Cholesky or a Singular value decomposition should be used. The de-
fault is the SVD.

returnLam should the function return the loading matrix in addition to the incidence matrix.
Default is FALSE.

Value

$S3 A list with 3 elements:
1) The model matrix to be used in the mixed modeling.
2) The reduced matrix of loadings (nPC columns).
3) The full matrix of loadings.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

See Also

The core functions of the package mmes
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Examples

####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####

data(DT_technow)
DT <- DT_technow
Md <- Md_technow

M <- tcrossprod(Md)
xx = with(DT, redmm(x=dent, M=M, nPC=10, returnLam=TRUE))

# ans <- mmes(GY~1,
# # new model matrix instead of dent
# random=~vsm(ism(xx$Z)),
# rcov=~units,
# data=DT)
# summary(ans)$varcomp
# u = xx$Lam * ans$uList[[1]] # change * for matrix product

residuals.mmes Residuals form a GLMM fitted with mmes

Description

residuals method for class "mmes".

Usage

## S3 method for class 'mmes'
residuals(object, ...)

Arguments

object an object of class "mmes"

... Further arguments to be passed

Value

vector of residuals of the form e = y - Xb - Zu, the so called conditional residuals.

Author(s)

Giovanny Covarrubias
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See Also

residuals, mmes

rrm reduced rank covariance structure

Description

rrm creates a reduced rank factor analytic covariance structure by selecting the n vectors of the
L matrix of the Cholesky decomposition or the U vectors of the SVD decomposition (loadings or
latent covariates) to create a new incidence matrix of latent covariates that can be used with the
mmes solver to fit random regressions on the latent covariates.

Usage

rrm(x=NULL, H=NULL, nPC=2, returnGamma=FALSE, cholD=TRUE)

Arguments

x vector of the dataset containing the variable to be used to form the incidence
matrix.

H two-way table of identifiers (rows; e.g., genotypes) by features (columns; e.g.,
environments) effects. Row names and column names are required. No missing
data is allowed.

nPC number of principal components to keep from the loadings matrix.

returnGamma a TRUE/FALSE argument specifying if the function should return the matrix of
loadings used to build the incidence matrix for the model. The default is FALSE
so it returns only the incidence matrix.

cholD a TRUE/FALSE argument specifying if the Cholesky decomposition should be
calculated or the singular value decomposition should be used instead.

Details

This implementation of a version of the reduced rank factor analytic models uses the so-called
principal component (PC) models (Meyer, 2009) which assumes specific effects (psi) are equal to
0. The model is as follows:

y = Xb + Zu + e

where the variance of u ~ MVN(0, Sigma)

Sigma = (Gamma_t Gamma) + Psi

Extended factor analytic model:
y = Xb + Z(I Gamma)c + Zs + e = Xb + Z*c + Zs + e

where y is the response variable, X and Z are incidence matrices for fixed and random effects re-
spectively, I is a diagonal matrix, Gamma are the factor loadings for c common factor scores, and s
are the specific effects, e is the vector of residuals.
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Reduced rank model:

y = Xb + Z(I Gamma)c + e = Xb + Z*c + e

which is equal to the one above but assumes specific effects = 0.

The algorithm in rrm is the following:

1) uses a wide-format table of timevar (m columns) by idvar (q rows) named H to form the initial
variance-covariance matrix (Sigma) which is calculated as Sigma = H’H of dimensions m x m
(column dimensions, e.g., environments x environments).

2) The Sigma matrix is then center and scaled.

3) A Cholesky (L matrix) or SVD decomposition (U D V’) is performed in the Sigma matrix.

4) n vectors from L (when Cholesky is used) or U sqrt(D) (when SVD is used) are kept to form
Gamma. Gamma = L[,1:nPc] or Gamma = U[,1:nPC]. These are the so-called loadings (L for all
loadings, Gamma for the subset of loadings).

4) Gamma is used to form a new incidence matrix as Z* = Z Gamma

5) This matrix is later used for the REML machinery to be used with the usc (unstructured) or dsm
(diagonal) structures to estimate variance components and factor scores. The resulting BLUPs from
the mixed model are the optimized factor scores. Pretty much as a random regression over latent
covariates.

This implementation does not update the loadings (latent covariates) during the REML process,
only estimates the REML factor scores for fixed loadings. This is different to other software (e.g.,
asreml) where the loadings are updated during the REML process as well.

BLUPs for genotypes in all locations can be recovered as:

u = Gamma * u_scores

The resulting loadings (Gamma) and factor scores can be thought as an equivalent to the classical
factor analysis.

Value

$Z a incidence matrix Z* = Z Gamma which is the original incidence matrix for the timevar mul-
tiplied by the loadings.

$Gamma a matrix of loadings or latent covariates.

$Sigma the covariance matrix used to calculate Gamma.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Meyer K (2009) Factor analytic models for genotype by environment type problems and structured
covariance matrices. Genetics Selection Evolution, 41:21
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See Also

The function vsm to know how to use rrm in the mmes solver.

Examples

data(DT_h2)
DT <- DT_h2
DT=DT[with(DT, order(Env)), ]
head(DT)
indNames <- na.omit(unique(DT$Name))
A <- diag(length(indNames))
rownames(A) <- colnames(A) <- indNames

# fit diagonal model first to produce H matrix
ansDG <- mmes(y~Env, henderson=TRUE,

random=~ vsm(dsm(Env), ism(Name)),
rcov=~units, nIters = 100,
data=DT)

H0 <- ansDG$uList$`vsm(dsm(Env), ism(Name))` # GxE table

# reduced rank model
ansFA <- mmes(y~Env, henderson=TRUE,

random=~vsm( usm(rrm(Env, H = H0, nPC = 3)) , ism(Name)) + # rr
vsm(dsm(Env), ism(Name)), # diag

rcov=~units,
# we recommend giving more iterations to these models
nIters = 100,
data=DT)

vcFA <- ansFA$theta[[1]]
vcDG <- ansFA$theta[[2]]

loadings=with(DT, rrm(Env, nPC = 3, H = H0, returnGamma = TRUE) )$Gamma
scores <- ansFA$uList[[1]]

vcUS <- loadings %*% vcFA %*% t(loadings)
G <- vcUS + vcDG
# colfunc <- colorRampPalette(c("steelblue4","springgreen","yellow"))
# hv <- heatmap(cov2cor(G), col = colfunc(100), symm = TRUE)

uFA <- scores %*% t(loadings)
uDG <- ansFA$uList[[2]]
u <- uFA + uDG
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simGECorMat Create a GE correlation matrix for simulation purposes.

Description

Makes a simple correlation matrix based on the number of environments and megaenvironments
desired.

Usage

simGECorMat(nEnv,nMegaEnv,mu=0.7, v=0.2, mu2=0, v2=0.3)

Arguments

nEnv Number of environments to simulate. Needs to be divisible by the nMegaEnv
argument.

nMegaEnv Number of megaenvironments to simulate.

mu Mean value of the genetic correlation within megaenvironments.

v variance in the genetic correlation within megaenvironments.

mu2 Mean value of the genetic correlation between megaenvironments.

v2 variance in the genetic correlation between megaenvironments.

Details

Simple simulation of a correlation matrix for environments and megaenvironments.

Value

G the correlation matrix

$G the correlation matrix

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

simGECorMat(9,3)



spl2Dc 111

spl2Dc Two-dimensional penalised tensor-product of marginal B-Spline basis.

Description

Auxiliary function used for modelling the spatial or environmental effect as a two-dimensional
penalised tensor-product (isotropic approach) based on Lee et al. (2013) and Rodriguez-Alvarez et
al. (2018). This is a modified wrapper of some portions of the SpATS package to build a single
incidence matrix containing all the columns from tensor products of the x and y coordinates and it
fits such matrix as a single random effect. Then the heterogeneous covariances structure capabilities
of sommer can be used to enhance the model fit. You may be interested in reading and citing not
only sommec but also Wageningen publications if using this 2D spline methodology.

Usage

spl2Dc(x.coord,y.coord,at.var=NULL,at.levels=NULL, type="PSANOVA",
nsegments = c(10,10), penaltyord = c(2,2), degree = c(3,3),
nestorder = c(1,1), thetaC=NULL, theta=NULL, sp=FALSE)

Arguments

x.coord vector of coordinates on the x-axis direction (i.e. row) to use in the 2 dimen-
sional spline.

y.coord vector of coordinates on the y-axis direction (i.e. range or column) to use in the
2 dimensional spline.

at.var vector of indication variable where heterogeneous variance is required (e.g., a
different spl2D for each field).

at.levels character vector with the names of the leves for the at term that should be used,
if missing all levels are used.

type one of the two methods "PSANOVA" or "SAP". See details below.

nsegments numerical vector of length 2 containing the number of segments for each marginal
(strictly nsegments - 1 is the number of internal knots in the domain of the co-
variate). Atomic values are also valid, being recycled. Default set to 10.

penaltyord numerical vector of length 2 containing the penalty order for each marginal.
Atomic values are also valid, being recycled. Default set to 2 (second order).
Currently, only second order penalties are allowed.

degree numerical vector of length 2 containing the order of the polynomial of the B-
spline basis for each marginal. Atomic values are also valid, being recycled.
Default set to 3 (cubic B-splines).

nestorder numerical vector of length 2 containing the divisor of the number of segments
(nsegments) to be used for the construction of the nested B-spline basis for
the smooth-by-smooth interaction component. In this case, the nested B-spline
basis will be constructed assuming a total of nsegments/nestorder segments.
Default set to 1, which implies that nested basis are not used. See SAP for more
details.
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thetaC an optional matrix for constraints in the variance components.

theta an optional matrix for initial values of the variance components.

sp a TRUE/FALSE statement to indicate if the VC from this structure should be
multiplied by the scale parameter added in the mmes function through the addScaleParam
argument in the mmes function .

Details

The following documentation is taken from the SpATS package. Please refer to this package
and associated publications if you are interested in going deeper on this technique:
Within the P-spline framework, anisotropic low-rank tensor-product smoothers have become the
general approach for modelling multidimensional surfaces (Eilers and Marx 2003; Wood 2006). In
the original SpATS package, was proposed to model the spatial or environmental effect by means of
the tensor-product of B-splines basis functions. In other words, was proposed to model the spatial
trend as a smooth bivariate surface jointly defined over the the spatial coordinates. Accordingly, the
current function has been designed to allow the user to specify the spatial coordinates that the spatial
trend is a function of. There is no restriction about how the spatial coordinates shall be specified:
these can be the longitude and latitude of the position of the plot on the field or the column and
row numbers. The only restriction is that the variables defining the spatial coordinates should be
numeric (in contrast to factors).

As far as estimation is concerned, we have used in this package the equivalence between P-splines
and linear mixed models (Currie and Durban, 2002). Under this approach, the smoothing param-
eters are expressed as the ratio between variance components. Moreover, the smooth components
are decomposed in two parts: one which is not penalised (and treated as fixed) and one with is
penalised (and treated as random). For the two-dimensional case, the mixed model representation
leads also to a very interesting decomposition of the penalised part of the bivariate surface in three
different components (Lee and Durban, 2011): (a) a component that contains the smooth main ef-
fect (smooth trend) along one of the covariates that the surface is a function of (as, e.g, the x-spatial
coordinate or column position of the plot in the field), (b) a component that contains the smooth
main effect (smooth trend) along the other covariate (i.e., the y-spatial coordinate or row position);
and (c) a smooth interaction component (sum of the linear-by-smooth interaction components and
the smooth-by-smooth interaction component).

The original implementation of SpATS assumes two different smoothing parameters, i.e., one for
each covariate in the smooth component. Accordingly, the same smoothing parameters are used for
both, the main effects and the smooth interaction. However, this approach can be extended to deal
with the ANOVA-type decomposition presented in Lee and Durban (2011). In their approach, four
different smoothing parameters are considered for the smooth surface, that are in concordance with
the aforementioned decomposition: (a) two smoothing parameter, one for each of the main effects;
and (b) two smoothing parameter for the smooth interaction component.

It should be noted that, the computational burden associated with the estimation of the two-dimensional
tensor-product smoother might be prohibitive if the dimension of the marginal bases is large. In
these cases, Lee et al. (2013) propose to reduce the computational cost by using nested bases. The
idea is to reduce the dimension of the marginal bases (and therefore the associated number of pa-
rameters to be estimated), but only for the smooth-by-smooth interaction component. As pointed
out by the authors, this simplification can be justified by the fact that the main effects would in fact
explain most of the structure (or spatial trend) presented in the data, and so a less rich representa-
tion of the smooth-by-smooth interaction component could be needed. In order to ensure that the
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reduced bivariate surface is in fact nested to the model including only the main effects, Lee et al.
(2013) show that the number of segments used for the nested basis should be a divisor of the number
of segments used in the original basis (nsegments argument). In the present function, the divisor
of the number of segments is specified through the argument nestorder. For a more detailed re-
view on this topic, see Lee (2010) and Lee et al. (2013). The "PSANOVA" approach represents an
alternative method. In this case, the smooth bivariate surface (or spatial trend) is decomposed in
five different components each of them depending on a single smoothing parameter (see Lee et al.,
2013).

—————–

As mentioned at the beginning, the piece of documentation stated above was taken completely from
the SpATS package in order to provide a deeper explanation. In practice, sommec uses some pieces
of code from SpATS to build the design matrix containing all the columns from tensor products
of the x and y coordinates and it fits such matrix as a single random effect. As a result the same
variance component is assumed for the linear, linear by linear, linear by spline, and spline by spline
interactions. This results in a less flexible approach than the one proposed by Rodriguez-Alvarez et
al. (2018) but still makes a pretty good job to model the spatial variation. Use under your own risk.

References

Rodriguez-Alvarez, M.X, Boer, M.P., van Eeuwijk, F.A., and Eilers, P.H.C. (2018). SpATS: Spatial
Analysis of Field Trials with Splines. R package version 1.0-9. https://CRAN.R-project.org/package=SpATS.

Rodriguez-Alvarez, M.X., et al. (2015) Fast smoothng parameter separaton n multdmensonal gen-
eralzed P-splnes: the SAP algorthm. Statistics and Computing 25.5: 941-957.

Lee, D.-J., Durban, M., and Eilers, P.H.C. (2013). Efficient two-dimensional smoothing with P-
spline ANOVA mixed models and nested bases. Computational Statistics and Data Analysis, 61, 22
- 37.

Gilmour, A.R., Cullis, B.R., and Verbyla, A.P. (1997). Accounting for Natural and Extraneous Vari-
ation in the Analysis of Field Experiments. Journal of Agricultural, Biological, and Environmental
Statistics, 2, 269 - 293.

See Also

mmes

Examples

## ============================ ##
## example to use spl2Dc()
## ============================ ##
data(DT_cpdata)
# DT <- DT_cpdata
# GT <- GT_cpdata
# MP <- MP_cpdata
# A <- A.mat(GT)
## ============================ ##
## mimic 2 fields
## ============================ ##
# aa <- DT; bb <- DT
# aa$FIELD <- "A";bb$FIELD <- "B"
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# set.seed(1234)
# aa$Yield <- aa$Yield + rnorm(length(aa$Yield),0,4)
# DT2 <- rbind(aa,bb)
# head(DT2)
# mix <- mmes(Yield~1, henderson = F,
# random=~
# vsm(dsm(FIELD),ism(Rowf)) +
# vsm(dsm(FIELD),ism(Colf)) +
# spl2Dc(Row,Col,at.var=FIELD),
# rcov=~vsm(dsm(FIELD),ism(units)),
# data=DT2)
#
# # extract spatial effects
# blup <- mix$uList$`spl2Dc(Row, Col, at.var = FIELD`
# head(blup) # 2 fields
# # recreate the incidence matrices
# xx=with(DT2, spl2Dc(Row,Col,at.var=FIELD))
# # get fitted values Zu for spatial effects and add them to the dataset
# field1 <- xx$Z$`A:all` %*% blup[,1]
# field2 <- xx$Z$`B:all` %*% blup[,2]
# DT2$spat <- field1+field2
# # plots the spatial effects
# lattice::levelplot(spat~Row*Col|FIELD, data=DT2)

spl2Dmats Get Tensor Product Spline Mixed Model Incidence Matrices

Description

spl2Dmats gets Tensor-Product P-Spline Mixed Model Incidence Matrices for use with sommer
and its main function mmes. We thank Sue Welham for making the TPSbits package available to the
community. If you’re using this function for your research please cite her TPSbits package :) this is
mostly a wrapper of her tpsmmb function to enable the use in sommer.

Usage

spl2Dmats(
x.coord.name,
y.coord.name,
data,
at.name,
at.levels,
nsegments=NULL,
minbound=NULL,
maxbound=NULL,
degree = c(3, 3),
penaltyord = c(2,2),
nestorder = c(1,1),
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method = "Lee"
)

Arguments

x.coord.name A string. Gives the name of data element holding column locations.

y.coord.name A string. Gives the name of data element holding row locations.

data A dataframe. Holds the dataset to be used for fitting.

at.name name of a variable defining if the 2D spline matrices should be created at differ-
ent units (e.g., at different environments).

at.levels a vector of names indicating which levels of the at.name variable should be used
for fitting the 2D spline function.

nsegments A list of length 2. Number of segments to split column and row ranges into,
respectively (= number of internal knots + 1). If only one number is specified,
that value is used in both dimensions. If not specified, (number of unique values
- 1) is used in each dimension; for a grid layout (equal spacing) this gives a knot
at each data value.

minbound A list of length 2. The lower bound to be used for column and row dimensions
respectively; default calculated as the minimum value for each dimension.

maxbound A list of length 2. The upper bound to be used for column and row dimensions
respectively; default calculated as the maximum value for each dimension.

degree A list of length 2. The degree of polynomial spline to be used for column and
row dimensions respectively; default=3.

penaltyord A list of length 2. The order of differencing for column and row dimensions,
respectively; default=2.

nestorder A list of length 2. The order of nesting for column and row dimensions, re-
spectively; default=1 (no nesting). A value of 2 generates a spline with half the
number of segments in that dimension, etc. The number of segments in each
direction must be a multiple of the order of nesting.

method A string. Method for forming the penalty; default="Lee" ie the penalty from
Lee, Durban & Eilers (2013, CSDA 61, 22-37). The alternative method is
"Wood" ie. the method from Wood et al (2012, Stat Comp 23, 341-360). This
option is a research tool and requires further investigation.

Value

List of length 7 elements:

1. data = the input data frame augmented with structures required to fit tensor product splines in
asreml-R. This data frame can be used to fit the TPS model.
Added columns:

• TP.col, TP.row = column and row coordinates
• TP.CxR = combined index for use with smooth x smooth term
• TP.C.n for n=1:(diff.c) = X parts of column spline for use in random model (where diff.c

is the order of column differencing)
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• TP.R.n for n=1:(diff.r) = X parts of row spline for use in random model (where diff.r is
the order of row differencing)

• TP.CR.n for n=1:((diff.c*diff.r)) = interaction between the two X parts for use in fixed
model. The first variate is a constant term which should be omitted from the model when
the constant (1) is present. If all elements are included in the model then the constant
term should be omitted, eg. y ~ -1 + TP.CR.1 + TP.CR.2 + TP.CR.3 + TP.CR.4 + other
terms...

• when asreml="grp" or "sepgrp", the spline basis functions are also added into the data
frame. Column numbers for each term are given in the grp list structure.

2. fR = Xr1:Zc
3. fC = Xr2:Zc
4. fR.C = Zr:Xc1
5. R.fC = Zr:Xc2
6. fR.fC = Zc:Zr
7. all = Xr1:Zc | Xr2:Zc | Zr:Xc1 | Zr:Xc2 | Zc:Zr

Examples

data("DT_cpdata")
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
#### create the variance-covariance matrix
A <- A.mat(GT) # additive relationship matrix

M <- spl2Dmats(x.coord.name = "Col", y.coord.name = "Row", data=DT, nseg =c(14,21))
head(M$data)
# m1g <- mmes(Yield~1+TP.CR.2+TP.CR.3+TP.CR.4,
# random=~Rowf+Colf+vsm(ism(M$fC))+vsm(ism(M$fR))+
# vsm(ism(M$fC.R))+vsm(ism(M$C.fR))+vsm(ism(M$fC.fR))+
# vsm(ism(id),Gu=A),
# data=M$data, tolpar = 1e-6,
# iters=30)
#
# summary(m1g)$varcomp

stackTrait Stacking traits in a dataset

Description

stackTrait creates a dataset stacking traits in the long format to be used with the mmes solver for
multi-trait models.

Usage

stackTrait(data, traits)
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Arguments

data a data frame with traits in wide format.

traits variable names corresponding to the traits that should be in the long format.

Value

$res a data frame with traits in long format.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

data(DT_example)
DT <- DT_example
A <- A_example
head(DT)

DT2 <- stackTrait(DT, traits = c("Yield","Weight"))
head(DT2)

stan Standardize a vector of values in range 0 to 1

Description

Simple function to map a vector of values to the range of 0 and 1 values to have a better behavior
of the algorithm.

Usage

stan(x, lb=0, ub=1)

Arguments

x A vector of numeric values.

lb Lower bound value to map the x values.

ub Upper bound value to map the x values.
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Details

Simple function to map a vector of values to the range of 0 and 1 values to have a better behavior
of the algorithm.

Value

$res new values in range 0 to 1

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

x <- rnorm(20, 10, 3);x
stan(x)

summary.mmer summary form a GLMM fitted with mmer

Description

summary method for class "mmer".

Usage

## S3 method for class 'mmer'
summary(object, ...)

Arguments

object an object of class "mmer"
... Further arguments to be passed

Value

vector of summary

Author(s)

Giovanny Covarrubias-Pazaran

See Also

summary, mmer
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summary.mmes summary form a GLMM fitted with mmes

Description

summary method for class "mmes".

Usage

## S3 method for class 'mmes'
summary(object, ...)

Arguments

object an object of class "mmes"

... Further arguments to be passed

Value

vector of summary

Author(s)

Giovanny Covarrubias-Pazaran

See Also

summary, mmes

tps Get Tensor Product Spline Mixed Model Incidence Matrices

Description

tps is a wrapper of tpsmmb function from the TPSbits package to avoid version dependencies but
if you’re using this function for your research please cite the TPSbits package. This function is
internally used by the spl2Dmatrices function to get Tensor-Product P-Spline Mixed Model Bits
(design matrices) for use with sommer.
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Usage

tps(
columncoordinates,
rowcoordinates,
nsegments=NULL,
minbound=NULL,
maxbound=NULL,
degree = c(3, 3),
penaltyord = c(2, 2),
nestorder = c(1, 1),
asreml = "grp",
eigenvalues = "include",
method = "Lee",
stub = NULL

)

Arguments

columncoordinates

A string. Gives the name of data element holding column locations.

rowcoordinates A string. Gives the name of data element holding row locations.

nsegments A list of length 2. Number of segments to split column and row ranges into,
respectively (= number of internal knots + 1). If only one number is specified,
that value is used in both dimensions. If not specified, (number of unique values
- 1) is used in each dimension; for a grid layout (equal spacing) this gives a knot
at each data value.

minbound A list of length 2. The lower bound to be used for column and row dimensions
respectively; default calculated as the minimum value for each dimension.

maxbound A list of length 2. The upper bound to be used for column and row dimensions
respectively; default calculated as the maximum value for each dimension.

degree A list of length 2. The degree of polynomial spline to be used for column and
row dimensions respectively; default=3.

penaltyord A list of length 2. The order of differencing for column and row dimensions,
respectively; default=2.

nestorder A list of length 2. The order of nesting for column and row dimensions, re-
spectively; default=1 (no nesting). A value of 2 generates a spline with half the
number of segments in that dimension, etc. The number of segments in each
direction must be a multiple of the order of nesting.

asreml A string. Indicates the types of structures to be generated for use in asreml
models; default "mbf". The appropriate eigenvalue scaling is included within
the Z matrices unless setting scaling="none" is used, and then the scaling
factors are supplied separately in the returned object.

• asreml="mbf" indicates the function should put the spline design matrices
into structures for use with "mbf";
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• asreml="grp" indicates the function should add the composite spline de-
sign matrices (eg. for second-order differencing, matrices Xr1:Zc, Xr2:Zc,
Zr:Xc1, Zr:Xc2 and Zc:Zr) into the data frame and provide a group list
structure for each term;

• asreml="sepgrp" indicates the function should generate the individual X
and Z spline design matrices separately (ie. Xc, Xr, Zc and Zr), plus the
smooth x smooth interaction term as a whole (ie. Zc:Zr), and provide a
group list structure for each term.

• asreml="own" indicates the function should generate the composite matrix
( Xr:Zc | Zr:Xc | Zc:Zr ) as a single set of columns.

eigenvalues A string. Indicates whether eigenvalues should be included within the Z design
matrices eigenvalues="include", or whether this scaling should be omitted
(eigenvalues="omit"); default eigenvalues="include". If the eigenvalue
scaling is omitted from the Z design matrices, then it should instead be included
in the model as a variance structure to obtain the correct TPspline model.

method A string. Method for forming the penalty; default="Lee" ie the penalty from
Lee, Durban & Eilers (2013, CSDA 61, 22-37). The alternative method is
"Wood" ie. the method from Wood et al (2012, Stat Comp 23, 341-360). This
option is a research tool and requires further investigation.

stub A string. Stub to be attached to names in the mbf list to avoid over-writing
structures and general confusion.

Value

List of length 7, 8 or 9 (according to the asreml and eigenvalues parameter settings).

1. data = the input data frame augmented with structures required to fit tensor product splines in
asreml-R. This data frame can be used to fit the TPS model.
Added columns:

• TP.col, TP.row = column and row coordinates
• TP.CxR = combined index for use with smooth x smooth term
• TP.C.n for n=1:(diff.c) = X parts of column spline for use in random model (where diff.c

is the order of column differencing)
• TP.R.n for n=1:(diff.r) = X parts of row spline for use in random model (where diff.r is

the order of row differencing)
• TP.CR.n for n=1:((diff.c*diff.r)) = interaction between the two X parts for use in fixed

model. The first variate is a constant term which should be omitted from the model when
the constant (1) is present. If all elements are included in the model then the constant
term should be omitted, eg. y ~ -1 + TP.CR.1 + TP.CR.2 + TP.CR.3 + TP.CR.4 + other
terms...

• when asreml="grp" or "sepgrp", the spline basis functions are also added into the data
frame. Column numbers for each term are given in the grp list structure.

2. mbflist = list that can be used in call to asreml (so long as Z matrix data frames extracted
with right names, eg BcZ<stub>.df)

3. BcZ.df = mbf data frame mapping onto smooth part of column spline, last column (labelled
TP.col) gives column index
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4. BrZ.df = mbf data frame mapping onto smooth part of row spline, last column (labelled
TP.row) gives row index

5. BcrZ.df = mbf data frame mapping onto smooth x smooth term, last column (labelled TP.CxR)
maps onto col x row combined index

6. dim = list structure, holding dimension values relating to the model:

(a) "diff.c" = order of differencing used in column dimension
(b) "nbc" = number of random basis functions in column dimension
(c) "nbcn" = number of nested random basis functions in column dimension used in smooth

x smooth term
(d) "diff.r" = order of differencing used in column dimension
(e) "nbr" = number of random basis functions in column dimension
(f) "nbrn" = number of nested random basis functions in column dimension used in smooth

x smooth term

7. trace = list of trace values for ZGZ’ for the random TPspline terms, where Z is the design
matrix and G is the known diagonal variance matrix derived from eigenvalues. This can be
used to rescale the spline design matrix (or equivalently variance components).

8. grp = list structure, only added for settings asreml="grp", asreml="sepgrp" or asreml="own".
For asreml="grp", provides column indexes for each of the 5 random components of the 2D
splines. For asreml="sepgrp", provides column indexes for each of the X and Z compo-
nent matrices for the 1D splines, plus the composite smooth x smooth interaction term. For
asreml="own", provides column indexes for the composite random model. Dimensions of the
components can be derived from the values in the dim item. The Z terms are scaled by the
associated eigenvalues when eigenvalues="include", but not when eigenvalues="omit".

9. eigen = list structure, only added for option setting eigenvalues="omit". Holds the diagonal
elements of the inverse variance matrix for the terms Xc:Zr (called diagr), Zc:Xr (called
diagc) and Zc:Zr (called diagcr).

tpsmmbwrapper Get Tensor Product Spline Mixed Model Incidence Matrices

Description

tpsmmbwrapper is a wrapper of tpsmmb function from the TPSbits package to avoid version de-
pendencies but if you’re using this function for your research please cite the TPSbits package. This
function is internally used by the spl2Dmatrices function to get Tensor-Product P-Spline Mixed
Model Bits (design matrices) for use with sommer.

Usage

tpsmmbwrapper(
columncoordinates,
rowcoordinates,
data,
nsegments=NULL,
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minbound=NULL,
maxbound=NULL,
degree = c(3, 3),
penaltyord = c(2, 2),
nestorder = c(1, 1),
asreml = "mbf",
eigenvalues = "include",
method = "Lee",
stub = NULL

)

Arguments

columncoordinates

A string. Gives the name of data element holding column locations.

rowcoordinates A string. Gives the name of data element holding row locations.

data A dataframe. Holds the dataset to be used for fitting.

nsegments A list of length 2. Number of segments to split column and row ranges into,
respectively (= number of internal knots + 1). If only one number is specified,
that value is used in both dimensions. If not specified, (number of unique values
- 1) is used in each dimension; for a grid layout (equal spacing) this gives a knot
at each data value.

minbound A list of length 2. The lower bound to be used for column and row dimensions
respectively; default calculated as the minimum value for each dimension.

maxbound A list of length 2. The upper bound to be used for column and row dimensions
respectively; default calculated as the maximum value for each dimension.

degree A list of length 2. The degree of polynomial spline to be used for column and
row dimensions respectively; default=3.

penaltyord A list of length 2. The order of differencing for column and row dimensions,
respectively; default=2.

nestorder A list of length 2. The order of nesting for column and row dimensions, re-
spectively; default=1 (no nesting). A value of 2 generates a spline with half the
number of segments in that dimension, etc. The number of segments in each
direction must be a multiple of the order of nesting.

asreml A string. Indicates the types of structures to be generated for use in asreml
models; default "mbf". The appropriate eigenvalue scaling is included within
the Z matrices unless setting scaling="none" is used, and then the scaling
factors are supplied separately in the returned object.

• asreml="mbf" indicates the function should put the spline design matrices
into structures for use with "mbf";

• asreml="grp" indicates the function should add the composite spline de-
sign matrices (eg. for second-order differencing, matrices Xr1:Zc, Xr2:Zc,
Zr:Xc1, Zr:Xc2 and Zc:Zr) into the data frame and provide a group list
structure for each term;
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• asreml="sepgrp" indicates the function should generate the individual X
and Z spline design matrices separately (ie. Xc, Xr, Zc and Zr), plus the
smooth x smooth interaction term as a whole (ie. Zc:Zr), and provide a
group list structure for each term.

• asreml="own" indicates the function should generate the composite matrix
( Xr:Zc | Zr:Xc | Zc:Zr ) as a single set of columns.

eigenvalues A string. Indicates whether eigenvalues should be included within the Z design
matrices eigenvalues="include", or whether this scaling should be omitted
(eigenvalues="omit"); default eigenvalues="include". If the eigenvalue
scaling is omitted from the Z design matrices, then it should instead be included
in the model as a variance structure to obtain the correct TPspline model.

method A string. Method for forming the penalty; default="Lee" ie the penalty from
Lee, Durban & Eilers (2013, CSDA 61, 22-37). The alternative method is
"Wood" ie. the method from Wood et al (2012, Stat Comp 23, 341-360). This
option is a research tool and requires further investigation.

stub A string. Stub to be attached to names in the mbf list to avoid over-writing
structures and general confusion.

Value

List of length 7, 8 or 9 (according to the asreml and eigenvalues parameter settings).

1. data = the input data frame augmented with structures required to fit tensor product splines in
asreml-R. This data frame can be used to fit the TPS model.
Added columns:

• TP.col, TP.row = column and row coordinates
• TP.CxR = combined index for use with smooth x smooth term
• TP.C.n for n=1:(diff.c) = X parts of column spline for use in random model (where diff.c

is the order of column differencing)
• TP.R.n for n=1:(diff.r) = X parts of row spline for use in random model (where diff.r is

the order of row differencing)
• TP.CR.n for n=1:((diff.c*diff.r)) = interaction between the two X parts for use in fixed

model. The first variate is a constant term which should be omitted from the model when
the constant (1) is present. If all elements are included in the model then the constant
term should be omitted, eg. y ~ -1 + TP.CR.1 + TP.CR.2 + TP.CR.3 + TP.CR.4 + other
terms...

• when asreml="grp" or "sepgrp", the spline basis functions are also added into the data
frame. Column numbers for each term are given in the grp list structure.

2. mbflist = list that can be used in call to asreml (so long as Z matrix data frames extracted
with right names, eg BcZ<stub>.df)

3. BcZ.df = mbf data frame mapping onto smooth part of column spline, last column (labelled
TP.col) gives column index

4. BrZ.df = mbf data frame mapping onto smooth part of row spline, last column (labelled
TP.row) gives row index

5. BcrZ.df = mbf data frame mapping onto smooth x smooth term, last column (labelled TP.CxR)
maps onto col x row combined index
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6. dim = list structure, holding dimension values relating to the model:

(a) "diff.c" = order of differencing used in column dimension
(b) "nbc" = number of random basis functions in column dimension
(c) "nbcn" = number of nested random basis functions in column dimension used in smooth

x smooth term
(d) "diff.r" = order of differencing used in column dimension
(e) "nbr" = number of random basis functions in column dimension
(f) "nbrn" = number of nested random basis functions in column dimension used in smooth

x smooth term

7. trace = list of trace values for ZGZ’ for the random TPspline terms, where Z is the design
matrix and G is the known diagonal variance matrix derived from eigenvalues. This can be
used to rescale the spline design matrix (or equivalently variance components).

8. grp = list structure, only added for settings asreml="grp", asreml="sepgrp" or asreml="own".
For asreml="grp", provides column indexes for each of the 5 random components of the 2D
splines. For asreml="sepgrp", provides column indexes for each of the X and Z compo-
nent matrices for the 1D splines, plus the composite smooth x smooth interaction term. For
asreml="own", provides column indexes for the composite random model. Dimensions of the
components can be derived from the values in the dim item. The Z terms are scaled by the
associated eigenvalues when eigenvalues="include", but not when eigenvalues="omit".

9. eigen = list structure, only added for option setting eigenvalues="omit". Holds the diagonal
elements of the inverse variance matrix for the terms Xc:Zr (called diagr), Zc:Xr (called
diagc) and Zc:Zr (called diagcr).

transp Creating color with transparency

Description

This function takes a color and returns the same with a certain alpha grade transparency.

Usage

transp(col, alpha=0.5)

Arguments

col Color to be used for transparency

alpha Grade of transparency desired

Details

No major details.
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Value

If arguments are correctly specified the function returns:

$res A new color with certain grade of transparency

References

Robert J. Henry. 2013. Molecular Markers in Plants. Wiley-Blackwell. ISBN 978-0-470-95951-0.

Ben Hui Liu. 1998. Statistical Genomics. CRC Press LLC. ISBN 0-8493-3166-8.

Examples

transp("red", alpha=0.5)

unsm unstructured indication matrix

Description

unsm creates a square matrix with ones in the diagonals and 2’s in the off-diagonals to quickly
specify an unstructured constraint in the Gtc argument of the vsm function.

Usage

unsm(x, reps=NULL)

Arguments

x integer specifying the number of traits to be fitted for a given random effect.

reps integer specifying the number of times the matrix should be repeated in a list
format to provide easily the constraints in complex models that use the ds(), us()
or cs() structures.

Value

$res a matrix or a list of matrices with the constraints to be provided in the Gtc argument of the
vsm function.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744
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Examples

unsm(3)
unsm(3,2)

usm unstructured covariance structure

Description

usm creates an unstructured covariance structure for specific levels of the random effect to be used
with the mmes solver.

Usage

usm(x, thetaC, theta)

Arguments

x vector of observations for the random effect.

thetaC an optional symmetric matrix for constraints in the variance-covariance com-
ponents. The symmetric matrix should have as many rows and columns as the
number of levels in the factor ’x’. The values in the matrix define how the
variance-covariance components should be estimated:
0: component will not be estimated
1: component will be estimated and constrained to be positive
2: component will be estimated and unconstrained
3: component will be fixed to the value provided in the theta argument

theta an optional symmetric matrix for initial values of the variance-covariance com-
ponents. When providing customized values, these values should be scaled with
respect to the original variance. For example, to provide an initial value of 1 to
a given variance component, theta would be built as:
theta = matrix( 1 / var(response) )
The symmetric matrix should have as many rows and columns as the number of
levels in the factor ’x’. The values in the matrix define the initial values of the
variance-covariance components that will be subject to the constraints provided
in thetaC. If not provided, initial values will be calculated as:
diag(ncol(mm))*.05 + matrix(.1,ncol(mm),ncol(mm))
where mm is the incidence matrix for the factor ’x’.

Value

$res a list with the provided vector and the variance covariance structure expected for the levels of
the random effect.
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Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Examples

x <- as.factor(c(1:5,1:5,1:5));x
usm(x)
## how to use the theta and thetaC arguments:
# data(DT_example)
# DT <- DT_example
# theta <- matrix(9:1,3,3);
# theta[lower.tri(theta)] <- t(theta)[lower.tri(theta)]
# theta # initial VCs
# thetaC <- fixm(3); thetaC # fixed VCs
# ans1 <- mmes(Yield~Env,
# random= ~ vsm( usm(Env,theta = theta,thetaC = thetaC),ism(Name) ),
# rcov= ~ units, nIters = 1,
# data=DT)
# summary(ans1)$varcomp

vpredict vpredict form of a LMM fitted with mmes

Description

vpredict method for class "mmes".

Post-analysis procedure to calculate linear combinations of variance components. Its intended use
is when the variance components are either simple variances or are variances and covariances in
an unstructured matrix. The functions covered are linear combinations of the variance components
(for example, phenotypic variance), a ratio of two components (for example, heritabilities) and the
correlation based on three components (for example, genetic correlation).

The calculations are based on the estimated variance parameters and their variance matrix as rep-
resented by the inverse of the Fisher or Average information matrix. Note that this matrix has zero
values for fixed variance parameters including those near the parameter space boundary.

The transform is specified with a formula. On the left side of the formula is a name for the transfor-
mation. On the right side of the formula is a transformation specified with shortcut names like ‘V1‘,
‘V2‘, etc. The easiest way to identify these shortcut names is to use ‘summary(object)$varcomp‘.
The rows of this object can referred to with shortcuts ‘V1‘, ‘V2‘, etc. See the example below.



vpredict 129

Usage

vpredict(object, transform)
## S3 method for class 'mmes'
vpredict(object, transform)

Arguments

object a model fitted with the mmes function.

transform a formula to calculate the function.

Details

The delta method (e.g., Lynch and Walsh 1998, Appendix 1; Ver Hoef 2012) uses a Taylor series
expansion to approximate the moments of a function of parameters. Here, a second-order Taylor
series expansion is implemented to approximate the standard error for a function of (co)variance
parameters. Partial first derivatives of the function are calculated by algorithmic differentiation
with deriv.

Though vpredict can calculate standard errors for non-linear functions of (co)variance parameters
from a fitted mmes model, it is limited to non-linear functions constructed by mathematical opera-
tions such as the arithmetic operators +, -, *, / and ^, and single-variable functions such as exp and
log. See deriv for more information.

Value

dd the parameter and its standard error.

Author(s)

Giovanny Covarrubias

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Lynch, M. and B. Walsh 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates,
Inc., Sunderland, MA, USA.

Ver Hoef, J.M. 2012. Who invented the delta method? The American Statistician 66:124-127. DOI:
10.1080/00031305.2012.687494

See Also

vpredict, mmes
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Examples

####=========================================####
####=========================================####
#### EXAMPLE 1
#### simple example with univariate models
####=========================================####
####=========================================####
# data(DT_cpdata)
# DT <- DT_cpdata
# GT <- GT_cpdata
# MP <- MP_cpdata
# #### create the variance-covariance matrix
# A <- A.mat(GT)
# #### look at the data and fit the model
# head(DT)
# mix1 <- mmes(Yield~1,
# random=~vsm(ism(id),Gu=A),
# data=DT)
# summary(mix1)$varcomp
# #### run the vpredict function
# vpredict(mix1, h2 ~ V1 / ( V1 + V2 ) )

vs variance structure specification

Description

vs DEPRECATED NOW. was the main function to build the variance-covariance structure for the
random effects to be fitted in the mmer solver.

Usage

vs(..., Gu=NULL, Gti=NULL, Gtc=NULL, reorderGu=TRUE, buildGu=TRUE)

Arguments

... variance structure to be specified following the logic desired in the internal kro-
necker product. For example, if user wants to define a diagonal variance struc-
ture for the random effect ’genotypes’(g) with respect to a random effect ’envi-
ronments’(e), this is:
var(g) = G.e @ I.g

being G.e a matrix containing the variance covariance components for g (geno-
types) in each level of e (environments), I.g is the covariance among levels of
g (genotypes; i.e. relationship matrix), and @ is the kronecker product. This
would be specified in the mmer solver as:
random=~vs(dsr(e),g)
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One strength of sommer is the ability to specify very complex structures with as
many kronecker products as desired. For example:
var(g) = G.e @ G.f @ G.h @ I.g

is equivalent to
random=~vs(e,f,h,g)

where different covariance structures can be applied to the levels of e,f,h or
a combination of these). For more examples please see the vignettes ’som-
mer.start’ available in the package.

Gu matrix with the known variance-covariance values for the levels of the u.th ran-
dom effect (i.e. relationship matrix among individuals or any other known co-
variance matrix). If NULL, then an identity matrix is assumed. The Gu matrix
can have more levels than the ones present in the random effect linked to it but
not the other way around. Otherwise, an error message of missing level in Gu
will be returned.

Gti matrix with dimensions t x t (t equal to number of traits) with initial values of
the variance-covariance components for the random effect specified in the ....
argument. If NULL the program will provide the initial values. The values need
to be scaled, see Details section.

Gtc matrix with dimensions t x t (t equal to number of traits) of constraints for the
variance-covariance components for the random effect specified in the ... argu-
ment according to the following rules:
0: not to be estimated

1: estimated and constrained to be positive (i.e. variance component)

2: estimated and unconstrained (can be negative or positive, i.e. covariance
component)

3: not to be estimated but fixed (value has to be provided in the Gti argument)

In the multi-response scenario if the user doesn’t specify this argument the de-
fault is to build an unstructured matrix (using the unsm() function). This argu-
ment needs to be used wisely since some covariance among responses may not
make sense. Useful functions to specify constraints are; diag(), unsm(), fixm().

reorderGu a TRUE/FALSE statement if the Gu matrix should be reordered based on the
names of the design matrix of the random effect or passed with the custom or-
der of the user. This may be important when fitting covariance components in a
customized fashion. Only for advanced users.

buildGu a TRUE/FALSE statement to indicate if the Gu matrix should be built in R when
the value for the argument Gu=NULL. Repeat, only when when the value for the
argument Gu is equal to NULL. In some cases when the incidence matrix is wide
(e.g. rrBLUP models) the covariance structure is a huge p x p matrix that can be
avoided when performing matrix operations. By setting this argument to FALSE
it allows to skip forming this covariance matrix.

Details

When providing initial values in the Gti argument the user has to provide scaled variance compo-
nent values. The user can provide values from a previous model by accessing the sigma_scaled
output from an mmer model or if an specific value is desired the user can obtain the scaled value as:



132 vsm

m = x/var(y)

where x is the desired initial value and y is the response variable. You can find an example in the
DT_cpdata dataset.

Value

$res a list with all neccesary elements (incidence matrices, known var-cov structures, unknown
covariance structures to be estimated and constraints) to be used in the mmer solver.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Covarrubias-Pazaran G (2018) Software update: Moving the R package sommer to multivariate
mixed models for genome-assisted prediction. doi: https://doi.org/10.1101/354639

See Also

The core function of the package: mmer

Examples

data(DT_example)
DT <- DT_example
A <- A_example

## ============================ ##
## example to without structure
## ============================ ##

mix <- mmer(Yield~Env,
random= ~ vs(Name),
rcov=~ vs(units),
data=DT)

vsm variance structure specification

Description

vsm is the main function to build the variance-covariance structure for the random effects to be fitted
in the mmes solver.
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Usage

vsm(..., Gu=NULL, buildGu=TRUE, meN=1, meTheta=NULL, meThetaC=NULL,
sp=FALSE, isFixed=FALSE, verbose=TRUE)

Arguments

... variance structure to be specified following the logic desired in the internal kro-
necker product. For example, if user wants to define a diagonal variance struc-
ture for the random effect ’genotypes’(g) with respect to a random effect ’envi-
ronments’(e), this is:
var(g) = G.e @ I.g

being G.e a matrix containing the variance covariance components for g (geno-
types) in each level of e (environments), I.g is the covariance among levels of
g (genotypes; i.e. relationship matrix), and @ is the kronecker product. This
would be specified in the mmes solver as:
random=~vsm(dsm(e),g)

One strength of sommer is the ability to specify very complex structures with as
many kronecker products as desired. For example:
var(g) = G.e @ G.f @ G.h @ I.g

is equivalent to
random=~vsm(e,f,h,g)

where different covariance structures can be applied to the levels of e,f,h (i.e.
dsm, usm, csm, atm, ism or a combination of these). For more examples please
see the vignettes ’sommer.start’ available in the package.

Gu matrix with either the inverse (in case of mmes=TRUE) or raw variance-covariance
(mmes=FALSE) values for the levels of the u.th random effect (e.g., the inverse
of a relationship matrix among individuals or any other known inverse covari-
ance matrix). If using an inverse remember to provide it in the right format and
with attribute of being an inverse:
Ai <- solve(A + diag(1e-4,ncol(A),ncol(A)))

Ai <- as(as(as( Ai, "dMatrix"), "generalMatrix"), "CsparseMatrix")

attr(Ai, 'inverse')=TRUE

Where A is your original relationship matrix. If NULL, then an identity matrix
is assumed. The Gu matrix can have more levels than the ones present in the
random effect linked to it but not the other way around. Otherwise, an error
message of missing level in Gu will be returned.

buildGu a TRUE/FALSE statement to indicate if the Gu matrix should be built in R when
the value for the argument Gu=NULL. Repeat, only when when the value for the
argument Gu is equal to NULL. In some cases when the incidence matrix is wide
(e.g. rrBLUP models) the covariance structure is a huge p x p matrix that can be
avoided when performing matrix operations. By setting this argument to FALSE
it allows to skip forming this covariance matrix.

meN number of main effects in the variance structure. Is always counted from last to
first.

meTheta variance covariance matrix between the main effects desired. Just to be modified
if the number of main effects is greater of 1 (e.g., indirect genetic effects).
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meThetaC constraints for the variance covariance matrix between the main effects desired.
Just to be modified if the number of main effects is greater of 1 (e.g., indirect
genetic effects).

sp a TRUE/FALSE statement to indicate if the VC from this structure should be
multiplied by the scale parameter added in the mmes function through the addScaleParam
argument in the mmes function .

isFixed a TRUE/FALSE statement to indicate if the vsm function is being used in the
fixed part of the model. When TRUE, the function only returns the model matrix
to avoid any error messages associated to returning all elements for a random ef-
fect. FALSE is the default since it is assumed to be used for a variance structure
in a random effect.

verbose a TRUE/FALSE statement to indicate if messages should be printed when spe-
cial situations accur. For example, adding unphenotyped individuals to the inci-
dence matrices when present in the relationship matrices.

Details

...

Value

$res a list with all neccesary elements (incidence matrices, known var-cov structures, unknown
covariance structures to be estimated and constraints) to be used in the mmes solver.

Author(s)

Giovanny Covarrubias-Pazaran

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Covarrubias-Pazaran G (2018) Software update: Moving the R package sommer to multivariate
mixed models for genome-assisted prediction. doi: https://doi.org/10.1101/354639

See Also

The core function of the package: mmes

Examples

data(DT_example)
DT <- DT_example
DT=DT[with(DT, order(Env)), ]
A <- A_example

# if using mmes=TRUE remember to provide relationship as inverse in the Gu argument
# Ai <- solve(A + diag(1e-4,ncol(A),ncol(A)))
# Ai <- as(as(as( Ai, "dMatrix"), "generalMatrix"), "CsparseMatrix")
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x <- as.character(unique(DT$Name))
DT <- droplevels(DT[which(!is.na(match(DT$Name, x[1:5]))),])
## ============================ ##
## example without structure
## ============================ ##
ism(DT$Name)
mix <- mmes(Yield~Env,

random= ~ vsm(ism(Name)),
rcov=~ units,
nIters=10,
data=DT)

## ============================ ##
## example to without structure but
## using covariance among levels in the
## random effect Name
## ============================ ##
mix <- mmes(Yield~Env,

random= ~ vsm(ism(Name), Gu=A),
rcov=~ units,
nIters=10,
data=DT)

summary(mix)$varcomp
## ============================ ##
## example to use dsm() structure (DIAGONAL)
## ============================ ##
dsm(DT$Year)
mix <- mmes(Yield~Env,

random= ~ vsm(dsm(Year),ism(Name)),
rcov=~ vsm(dsm(Year),ism(units)),
nIters=10,
data=DT)

summary(mix)$varcomp
## ============================ ##
## example to use atm() structure (level-specific)
## ============================ ##
# unique(DT$Year)
# mix <- mmes(Yield~Env,
# random= ~ vsm(atm(Year,c("2011","2012")),ism(Name)),
# rcov=~ vsm(dsm(Year),ism(units)),
# data=DT)
## ============================ ##
## example to use usm() structure (UNSTRUCTURED)
## ============================ ##
usm(DT$Year)
mix <- mmes(Yield~Env,

random= ~ vsm(usm(Year),ism(Name)),
rcov=~ vsm(dsm(Year),ism(units)),
nIters = 10,
data=DT)

## ============================ ##
## example using structure in fixed effect
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## (notice the isFixed argument)
## ============================ ##
mix <- mmes(Yield~ vsm(atm(Env,"CA.2011"), ism(Name), isFixed = TRUE),

rcov=~ units,
nIters=10,
data=DT)

vsr variance structure specification

Description

vsr DEPRECATED NOW. was the main function to build the variance-covariance structure for the
random effects to be fitted in the mmer solver.

Usage

vsr(..., Gu=NULL, Gti=NULL, Gtc=NULL, reorderGu=TRUE, buildGu=TRUE)

Arguments

... variance structure to be specified following the logic desired in the internal kro-
necker product. For example, if user wants to define a diagonal variance struc-
ture for the random effect ’genotypes’(g) with respect to a random effect ’envi-
ronments’(e), this is:
var(g) = G.e @ I.g

being G.e a matrix containing the variance covariance components for g (geno-
types) in each level of e (environments), I.g is the covariance among levels of
g (genotypes; i.e. relationship matrix), and @ is the kronecker product. This
would be specified in the mmer solver as:
random=~vsr(dsr(e),g)

One strength of sommer is the ability to specify very complex structures with as
many kronecker products as desired. For example:
var(g) = G.e @ G.f @ G.h @ I.g

is equivalent to
random=~vsr(e,f,h,g)

where different covariance structures can be applied to the levels of e,f,h. For
more examples please see the vignettes ’sommer.start’ available in the package.

Gu matrix with the known variance-covariance values for the levels of the u.th ran-
dom effect (i.e. relationship matrix among individuals or any other known co-
variance matrix). If NULL, then an identity matrix is assumed. The Gu matrix
can have more levels than the ones present in the random effect linked to it but
not the other way around. Otherwise, an error message of missing level in Gu
will be returned.
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Gti matrix with dimensions t x t (t equal to number of traits) with initial values of
the variance-covariance components for the random effect specified in the ....
argument. If NULL the program will provide the initial values. The values need
to be scaled, see Details section.

Gtc matrix with dimensions t x t (t equal to number of traits) of constraints for the
variance-covariance components for the random effect specified in the ... argu-
ment according to the following rules:
0: not to be estimated

1: estimated and constrained to be positive (i.e. variance component)

2: estimated and unconstrained (can be negative or positive, i.e. covariance
component)

3: not to be estimated but fixed (value has to be provided in the Gti argument)

In the multi-response scenario if the user doesn’t specify this argument the de-
fault is to build an unstructured matrix (using the unsm() function). This argu-
ment needs to be used wisely since some covariance among responses may not
make sense. Useful functions to specify constraints are; diag(), unsm(), fixm().

reorderGu a TRUE/FALSE statement if the Gu matrix should be reordered based on the
names of the design matrix of the random effect or passed with the custom or-
der of the user. This may be important when fitting covariance components in a
customized fashion. Only for advanced users.

buildGu a TRUE/FALSE statement to indicate if the Gu matrix should be built in R when
the value for the argument Gu=NULL. Repeat, only when when the value for the
argument Gu is equal to NULL. In some cases when the incidence matrix is wide
(e.g. rrBLUP models) the covariance structure is a huge p x p matrix that can be
avoided when performing matrix operations. By setting this argument to FALSE
it allows to skip forming this covariance matrix.

Details

When providing initial values in the Gti argument the user has to provide scaled variance compo-
nent values. The user can provide values from a previous model by accessing the sigma_scaled
output from an mmer model or if an specific value is desired the user can obtain the scaled value as:

m = x/var(y)

where x is the desired initial value and y is the response variable. You can find an example in the
DT_cpdata dataset.

Value

$res a list with all neccesary elements (incidence matrices, known var-cov structures, unknown
covariance structures to be estimated and constraints) to be used in the mmer solver.

Author(s)

Giovanny Covarrubias-Pazaran
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References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package
sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744
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Examples

data(DT_example)
DT <- DT_example
A <- A_example

## ============================ ##
## example to without structure
## ============================ ##

mix <- mmer(Yield~Env,
random= ~ vsr(Name),
rcov=~ vsr(units),
data=DT)

wald.test Wald Test for Model Coefficients

Description

Computes a Wald χ2 test for 1 or more coefficients, given their variance-covariance matrix.

Usage

wald.test(Sigma, b, Terms = NULL, L = NULL, H0 = NULL,
df = NULL, verbose = FALSE)

## S3 method for class 'wald.test'
print(x, digits = 2, ...)

Arguments

Sigma A var-cov matrix, usually extracted from one of the fitting functions (e.g., lm,
glm, ...).

b A vector of coefficients with var-cov matrix Sigma. These coefficients are usu-
ally extracted from one of the fitting functions available in R (e.g., lm, glm,...).

Terms An optional integer vector specifying which coefficients should be jointly tested,
using a Wald χ2 or F test. Its elements correspond to the columns or rows of
the var-cov matrix given in Sigma. Default is NULL.
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L An optional matrix conformable to b, such as its product with b i.e., L %*% b
gives the linear combinations of the coefficients to be tested. Default is NULL.

H0 A numeric vector giving the null hypothesis for the test. It must be as long as
Terms or must have the same number of columns as L. Default to 0 for all the
coefficients to be tested.

df A numeric vector giving the degrees of freedom to be used in an F test, i.e.
the degrees of freedom of the residuals of the model from which b and Sigma
were fitted. Default to NULL, for no F test. See the section Details for more
information.

verbose A logical scalar controlling the amount of output information. The default is
FALSE, providing minimum output.

x Object of class “wald.test”

digits Number of decimal places for displaying test results. Default to 2.

... Additional arguments to print.

Details

The key assumption is that the coefficients asymptotically follow a (multivariate) normal distribu-
tion with mean = model coefficients and variance = their var-cov matrix.
One (and only one) of Terms or L must be given. When L is given, it must have the same number
of columns as the length of b, and the same number of rows as the number of linear combinations
of coefficients. When df is given, the χ2 Wald statistic is divided by m = the number of linear com-
binations of coefficients to be tested (i.e., length(Terms) or nrow(L)). Under the null hypothesis
H0, this new statistic follows an F (m, df) distribution.

Value

An object of class wald.test, printed with print.wald.test.

References

Diggle, P.J., Liang, K.-Y., Zeger, S.L., 1994. Analysis of longitudinal data. Oxford, Clarendon
Press, 253 p.
Draper, N.R., Smith, H., 1998. Applied Regression Analysis. New York, John Wiley & Sons, Inc.,
706 p.

Examples

data(DT_yatesoats)
DT <- DT_yatesoats

m3 <- mmes(fixed=Y ~ V + N + V:N-1,
random = ~ B + B:MP,
rcov=~units,
data = DT)

wald.test(b = m3$b, Sigma = m3$Ci[1:nrow(m3$b),1:nrow(m3$b)], Terms = 2)
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LL <- matrix(0,nrow=1, ncol=12)
LL[1,2] <- 1
LL[1,3] <- -1
LL

wald.test(b = m3$b, Sigma = m3$Ci[1:nrow(m3$b),1:nrow(m3$b)], L=LL)
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