
sleev: Semiparametric Likelihood Estimation
with Errors in Variables

Jiangmei Xiong Sarah C. Lotspeich Joey B. Sherrill
Gustavo Amorim Bryan E. Shepherd Ran Tao

Data with measurement error in the outcome, covariates, or both are not uncom-
mon, particularly with the increased use of routinely collected data for biomedical
research. In settings with error-prone data, two-phase studies, where researchers
validate a subsample of study data, can be used to obtain unbiased estimates. The
sieve maximum likelihood estimator (SMLE), which combines the error-prone data
on all records with the validated data on a subsample, is a highly efficient and ro-
bust estimator to analyze such two-phase data. However, given their complexity,
a computationally efficient and user-friendly tool is needed to obtain SMLEs. This
vignette introduces the sleev package for making semiparametric likelihood-based
inference using SMLEs for error-prone two-phase data in settings with binary and
continuous outcomes. Functions from this package can be used to analyze data
with error-prone responses and covariates. Various examples are presented to pro-
vide users with guidance in handling different types of variables. To demonstrate
the use of the functions in practice, they are applied to a two-phase dataset sim-
ulated to represent data obtained from the electronic health records of an HIV
clinic.

1. Introduction

Routinely collected data are being used more frequently in biomedical research. For example,
data extracted from electronic health records have been used in numerous studies as a cost-
effective resource to obtain information on a large number of people. However, these data tend
to be error-prone, often across multiple variables, and using these data without correcting for
their error-prone nature could lead to biased estimates and misleading research findings (Duan
et al. 2016). To avoid invalid study results, routinely collected data may undergo validation,
in which trained experts carefully verify and extract data elements. However, it is usually
only feasible to validate data for a subset of records or variables. After partial validation,
researchers have two types of data: (i) error-prone pre-validation data for all records (phase

1

one data) and (ii) error-free validated data on a subset of records (phase two data). For
analyses, the goal is then to combine the two types of data to obtain estimates that have low
bias and are as efficient (i.e., have the smallest variance) as possible.

Building off of the measurement error and missing data literature, there are several types of
approaches for combining such two-phase data with errors, including design-based methods
(e.g., inverse-probability weighted estimators (Horvitz and Thompson 1952) and generalized
raking estimators (Deville, Särndal, and Sautory 1993; Oh et al. 2021)) and model-based
methods (e.g., maximum likelihood estimation (Carroll et al. 2006; Tang et al. 2015) and
multiple imputation (Little and Rubin 1986; Cole, Chu, and Greenland 2006; Giganti et al.
2020)). Both design- and model-based estimators require the missing at random assumption
for unbiased estimation, i.e., conditional on observed data, those records to be validated are
assumed to be selected through random sampling. Design-based estimators also require that
the probability of being selected for validation is non-zero for all records, whereas no such
positivity assumption is required for model-based estimators. Because they make no model
assumptions on the error mechanism, design-based estimators tend to be more robust but less
efficient than model-based estimators (Bang and Robins 2005; Amorim et al. 2021).

A robust class of model-based estimators, the sieve maximum likelihood estimators (SMLEs),
have recently been developed to analyze two-phase data with errors in both the outcome and
covariates (Tao et al. 2021; Lotspeich et al. 2022). The SMLEs are semiparametric and robust
because they avoid making parametric assumptions on the nuisance models of the error terms,
and, as full-likelihood estimators, they remain highly efficient. Hence, they provide a nice
balance between robustness and efficiency. Still, in practice these estimators can be difficult
to implement, as they involve approximating nuisance conditional densities using B-splines
(Schumaker 2007) and then maximizing the semiparametric likelihood via a sophisticated EM
algorithm (Dempster, Laird, and Rubin 1977; Tao, Zeng, and Lin 2017).

In this vignette, we introduce the sleev package, which computes the SMLEs for linear and lo-
gistic regressions using partially-validated, error-prone data. The sleev package incorporates
error-prone data on all records plus validated data on a subset of records to obtain efficient and
robust estimates of regression parameters in a user-friendly manner. This vignette describes
the SMLE method (Sections 2 and 3) and demonstrates the features of the sleev package
and the application of functions in the package through a detailed illustration using simulated
HIV data (Section 4).

2. Sieve maximum likelihood estimators for linear regression

Suppose that we want to fit a standard linear regression model for a continuous outcome 𝑌
and vector of covariates 𝑋𝑋𝑋: 𝑌 = 𝛼 + 𝛽𝛽𝛽T𝑋𝑋𝑋 + 𝜖, where 𝜖 follows a normal distribution with
mean zero and variance 𝜎2. Our goal is to obtain estimates of 𝜃 =𝜃 =𝜃 = (𝛼,𝛽𝛽𝛽T, 𝜎2)T. When we have
error-prone data, 𝑌 and 𝑋𝑋𝑋 are unobserved except for a subset of subjects whose records are
validated. For the subjects whose records are not validated (the majority), only the error-prone

2

outcome 𝑌 ∗ = 𝑌 + 𝑊 and covariates 𝑋𝑋𝑋∗ = 𝑋𝑋𝑋 + 𝑈𝑈𝑈 are observed in place of 𝑌 and 𝑋𝑋𝑋, where
𝑊 and 𝑈𝑈𝑈 are the additive errors for the outcome and covariates, respectively. It is assumed
that the measurement errors 𝑊 and 𝑈𝑈𝑈 are independent of 𝜖. However, 𝑊 and 𝑈𝑈𝑈 can be
correlated. Note that 𝑋𝑋𝑋∗ can also include error-free covariates 𝑍𝑍𝑍, which can be incorporated
as 𝑋𝑋𝑋∗ = (𝑋∗

0𝑋∗
0𝑋∗
0

T,𝑍𝑍𝑍T)T, where 𝑋∗
0𝑋∗
0𝑋∗
0 denotes error-prone covariates. However, for simplicity, we do

not include the expression of error-free covariates 𝑍𝑍𝑍 throughout Sections 2 and 3. With errors
in our data, a naive regression analysis using error-prone variables 𝑌 ∗ and 𝑋𝑋𝑋∗ could render
misleading results (Fuller 2009).

We assume that the joint density of the complete data (𝑌 ∗,𝑋𝑋𝑋∗, 𝑊,𝑈𝑈𝑈) takes the form

𝑃(𝑌 ∗,𝑋𝑋𝑋∗, 𝑊,𝑈𝑈𝑈) = 𝑃(𝑌 ∗|𝑋𝑋𝑋∗, 𝑊,𝑈𝑈𝑈)𝑃 (𝑊,𝑈𝑈𝑈|𝑋𝑋𝑋∗)𝑃 (𝑋𝑋𝑋∗)
= 𝑃𝜃𝜃𝜃(𝑌 |𝑋𝑋𝑋)𝑃(𝑊,𝑈𝑈𝑈|𝑋𝑋𝑋∗)𝑃 (𝑋𝑋𝑋∗),

where 𝑃(⋅) and 𝑃 (⋅|⋅) denote density and conditional density functions, respectively. Specifi-
cally, 𝑃𝜃𝜃𝜃(𝑌 |𝑋𝑋𝑋) then refers to the conditional density function of the linear regression model
𝑌 = 𝛼 + 𝛽𝛽𝛽T𝑋𝑋𝑋 + 𝜖. Denote the validation indicator variable by 𝑉 , with 𝑉 = 1 indicating that
a record was validated and 𝑉 = 0 otherwise. For records that do not undergo validation, their
measurement errors (𝑊,𝑈𝑈𝑈) are missing. Therefore, the contributions of these unvalidated
subjects to the log-likelihood can be obtained by integrating out 𝑊 and 𝑈𝑈𝑈 .

Let (𝑌 ∗
𝑖 ,𝑋𝑋𝑋∗

𝑖 , 𝑊𝑖,𝑈𝑈𝑈 𝑖, 𝑉𝑖, 𝑌𝑖,𝑋𝑋𝑋𝑖) for 𝑖 = 1, … , 𝑛 denote independent and identically distributed
realizations of (𝑌 ∗,𝑋𝑋𝑋∗, 𝑊,𝑈𝑈𝑈, 𝑉 , 𝑌 ,𝑋𝑋𝑋) in a sample of 𝑛 subjects. Then, the observed-data
log-likelihood is proportional to

𝑛
∑
𝑖=1

𝑉𝑖{log 𝑃𝜃𝜃𝜃(𝑌𝑖|𝑋𝑋𝑋𝑖) + log 𝑃(𝑊𝑖,𝑈𝑈𝑈 𝑖|𝑋𝑋𝑋∗
𝑖)}

+
𝑛

∑
𝑖=1

(1 − 𝑉𝑖) log {∫ ∫ 𝑃𝜃𝜃𝜃(𝑌 ∗
𝑖 − 𝑤|𝑋𝑋𝑋∗

𝑖 − 𝑢𝑢𝑢)𝑃(𝑤,𝑢𝑢𝑢|𝑋𝑋𝑋∗
𝑖)d𝑤d𝑢𝑢𝑢} .

(1)

Note that 𝑃 (𝑋𝑋𝑋∗) is left out, because the error-prone covariates are fully observed and thus
𝑃(𝑋𝑋𝑋∗) can simply be estimated empirically.

Because the measurement error model, 𝑃(𝑊𝑖,𝑈𝑈𝑈 𝑖|𝑋𝑋𝑋∗
𝑖), is often unknown in practice, we prefer

to leave it unspecified, and use nonparametric maximum likelihood estimation (NPMLE) to
estimate it. NPMLE estimates 𝑃(𝑊,𝑈𝑈𝑈|𝑋𝑋𝑋∗ = 𝑥𝑥𝑥∗) with the 𝑚 distinct observed (𝑊,𝑈𝑈𝑈) values,
{(𝑤1,𝑢𝑢𝑢1), ..., (𝑤𝑚,𝑢𝑢𝑢𝑚)}, from the validated subset. Because NPMLE estimates 𝑃(𝑊,𝑈𝑈𝑈|𝑋𝑋𝑋∗ =
𝑥𝑥𝑥∗) with the empirical density, it will not be applicable when 𝑋𝑋𝑋∗ contains continuous elements,
where only a small number of observations on (𝑊,𝑈𝑈𝑈) will be associated with each 𝑋𝑋𝑋∗ = 𝑥𝑥𝑥∗.
In this situation, we estimate 𝑃(𝑊𝑖,𝑈𝑈𝑈 𝑖|𝑋𝑋𝑋∗

𝑖) with B-spline sieves.

Specifically, we approximate 𝑃(𝑤,𝑢𝑢𝑢|𝑋𝑋𝑋∗
𝑖) and log 𝑃(𝑊𝑖,𝑈𝑈𝑈 𝑖|𝑋𝑋𝑋∗

𝑖) by ∑𝑚
𝑘=1 𝐼(𝑤 = 𝑤𝑘,𝑢𝑢𝑢 =

𝑢𝑢𝑢𝑘) ∑𝑠𝑛
𝑗=1 𝐵𝑞

𝑗 (𝑋𝑋𝑋∗
𝑖)𝑝𝑘𝑗 and ∑𝑚

𝑘=1 𝐼(𝑊𝑖 = 𝑤𝑘,𝑈𝑈𝑈 𝑖 = 𝑢𝑢𝑢𝑘) ∑𝑠𝑛
𝑗=1 𝐵𝑞

𝑗 (𝑋𝑋𝑋∗
𝑖) log 𝑝𝑘𝑗, respectively, where

𝐵𝑞
𝑗 (𝑋𝑋𝑋∗

𝑖) is the 𝑗th B-spline basis function of order 𝑞 evaluated at 𝑋𝑋𝑋∗
𝑖 , 𝑠𝑛 is the dimension of

3

the B-spline basis, and 𝑝𝑘𝑗 is the coefficient associated with 𝐵𝑞
𝑗 (𝑋𝑋𝑋∗

𝑖) and (𝑤𝑘,𝑢𝑢𝑢𝑘). We note
that the 𝑝𝑘𝑗 coefficients need to satisfy the constraints ∑𝑚

𝑘=1 𝑝𝑘𝑗 = 1 and 𝑝𝑘𝑗 ≥ 0 since they
approximate conditional densities. The log-likelihood in expression (1) is now approximated
by

𝑛
∑
𝑖=1

𝑉𝑖 {log 𝑃𝜃𝜃𝜃(𝑌𝑖|𝑋𝑋𝑋𝑖) +
𝑚

∑
𝑘=1

𝐼(𝑊𝑖 = 𝑤𝑘,𝑈𝑈𝑈 𝑖 = 𝑢𝑢𝑢𝑘)
𝑠𝑛

∑
𝑗=1

𝐵𝑞
𝑗 (𝑋𝑋𝑋∗

𝑖) log 𝑝𝑘𝑗}

+
𝑛

∑
𝑖=1

(1 − 𝑉𝑖) log {
𝑚

∑
𝑘=1

𝑃𝜃𝜃𝜃(𝑌 ∗
𝑖 − 𝑤𝑘|𝑋𝑋𝑋∗

𝑖 − 𝑢𝑢𝑢𝑘)
𝑠𝑛

∑
𝑗=1

𝐵𝑞
𝑗 (𝑋𝑋𝑋∗

𝑖)𝑝𝑘𝑗} .
(2)

The maximization of expression (2) is carried out through an EM algorithm to find the SMLEs
̂𝜃𝜃𝜃 and ̂𝑝𝑘𝑗. The covariance matrix of the SMLE ̂𝜃𝜃𝜃 is obtained through the method of profile

likelihood (Murphy and Van der Vaart 2000). Full details on the SMLE method for linear
regression with error-prone data, including its theoretical properties, can be found in Tao et
al. (2021).

3. Sieve maximum likelihood estimators for logistic regression

For a binary outcome 𝑌 , we fit a logistic regression model instead:

𝑃𝜃𝜃𝜃(𝑌 = 1|𝑋𝑋𝑋) = [1 + exp{−(𝛼 + 𝛽𝛽𝛽T𝑋𝑋𝑋)}]−1

with parameters 𝜃𝜃𝜃 = (𝛼,𝛽𝛽𝛽T)T. The joint density of (𝑌 ∗,𝑋𝑋𝑋∗, 𝑌 ,𝑋𝑋𝑋) is

𝑃(𝑌 ∗,𝑋𝑋𝑋∗, 𝑌 ,𝑋𝑋𝑋) = 𝑃(𝑌 ∗|𝑋𝑋𝑋∗, 𝑌 ,𝑋𝑋𝑋)𝑃(𝑌 |𝑋𝑋𝑋,𝑋𝑋𝑋∗)𝑃 (𝑋𝑋𝑋|𝑋𝑋𝑋∗)𝑃 (𝑋𝑋𝑋∗)
= 𝑃(𝑌 ∗|𝑋𝑋𝑋∗, 𝑌 ,𝑋𝑋𝑋)𝑃𝜃𝜃𝜃(𝑌 |𝑋𝑋𝑋)𝑃 (𝑋𝑋𝑋|𝑋𝑋𝑋∗)𝑃 (𝑋𝑋𝑋∗),

where 𝑃(𝑌 |𝑋𝑋𝑋,𝑋𝑋𝑋∗) = 𝑃𝜃𝜃𝜃(𝑌 |𝑋𝑋𝑋) follows from the assumption that 𝑌 and 𝑋𝑋𝑋∗ are conditionally
independent given 𝑋𝑋𝑋 (i.e., 𝑋𝑋𝑋∗ is a surrogate for 𝑋𝑋𝑋). Similar to the linear regression case, the
observed-data log-likelihood takes the form

𝑛
∑
𝑖=1

𝑉𝑖{log 𝑃𝜃𝜃𝜃(𝑌𝑖|𝑋𝑋𝑋𝑖) + log 𝑃(𝑌 ∗
𝑖 |𝑋𝑋𝑋∗

𝑖 , 𝑌𝑖,𝑋𝑋𝑋𝑖) + log 𝑃(𝑋𝑋𝑋𝑖|𝑋𝑋𝑋∗
𝑖)}

+
𝑛

∑
𝑖=1

(1 − 𝑉𝑖) log {
1

∑
𝑦=0

∫ log 𝑃𝜃𝜃𝜃(𝑦|𝑥𝑥𝑥)𝑃(𝑌 ∗
𝑖 |𝑋𝑋𝑋∗

𝑖 , 𝑦,𝑥𝑥𝑥)𝑃 (𝑥𝑥𝑥|𝑋𝑋𝑋∗
𝑖)d𝑥𝑥𝑥} .

(3)

We fit 𝑃(𝑌 ∗|𝑋𝑋𝑋∗, 𝑌 ,𝑋𝑋𝑋) with an additional logistic regression model 𝑃𝛾𝛾𝛾(𝑌 ∗|𝑋𝑋𝑋∗, 𝑌 ,𝑋𝑋𝑋) with 𝛾𝛾𝛾
denoting its parameters. We estimate 𝑃(𝑋𝑋𝑋|𝑋𝑋𝑋∗) with NPMLE when 𝑋𝑋𝑋∗ is discrete, and use

4

a B-spline approximation when 𝑋𝑋𝑋∗ contains continuous components. Specifically, we approx-
imate 𝑃 (𝑥𝑥𝑥|𝑋𝑋𝑋∗) and log 𝑃(𝑋𝑋𝑋𝑖|𝑋𝑋𝑋∗

𝑖) in expression (3) by ∑𝑚
𝑘=1 I(𝑥𝑥𝑥 = 𝑥𝑥𝑥𝑘) ∑𝑠𝑛

𝑗=1 𝐵𝑞
𝑗 (𝑋𝑋𝑋∗

𝑖)𝑝𝑘𝑗 and
∑𝑚

𝑘=1 I(𝑋𝑋𝑋𝑖 = 𝑥𝑥𝑥𝑘) ∑𝑠𝑛
𝑗=1 𝐵𝑞

𝑗 (𝑋𝑋𝑋∗
𝑖) log 𝑝𝑘𝑗, respectively. Consequently, expression (3) can be ap-

proximated by

𝑛
∑
𝑖=1

𝑉𝑖{ log 𝑃𝜃𝜃𝜃(𝑌𝑖|𝑋𝑋𝑋𝑖) + log 𝑃𝛾𝛾𝛾(𝑌 ∗
𝑖 |𝑋𝑋𝑋∗

𝑖 , 𝑌𝑖,𝑋𝑋𝑋𝑖) +
𝑚

∑
𝑘=1

I(𝑋𝑋𝑋𝑖 = 𝑥𝑥𝑥𝑘)
𝑠𝑛

∑
𝑗=1

𝐵𝑞
𝑗 (𝑋𝑋𝑋∗

𝑖) log 𝑝𝑘𝑗}

+
𝑛

∑
𝑖=1

(1 − 𝑉𝑖) log {
1

∑
𝑦=0

𝑚
∑
𝑘=1

𝑃𝜃𝜃𝜃(𝑦|𝑥𝑥𝑥𝑘)𝑃𝛾𝛾𝛾(𝑌 ∗
𝑖 |𝑋𝑋𝑋∗

𝑖 , 𝑦,𝑥𝑥𝑥𝑘)I(𝑥𝑥𝑥 = 𝑥𝑥𝑥𝑘)
𝑠𝑛

∑
𝑗=1

𝐵𝑞
𝑗 (𝑋𝑋𝑋∗

𝑖)𝑝𝑘𝑗} .
(4)

Similar to the linear regression case, we maximize expression (4) through an EM algorithm to
obtain the SMLEs ̂𝜃𝜃𝜃, ̂𝛾𝛾𝛾, and ̂𝑝𝑝𝑝𝑘𝑗. Then, we use the method of profile likelihood to estimate the
covariance of ̂𝜃𝜃𝜃. More details on the SMLEs, including the theoretical properties on the SMLEs
for logistic regression with measurement error, can be found in Lotspeich et al. (2022).

4. Case study with mock data

4.1 Overview and installation of the sleev R package

The sleev package provides a user-friendly way to obtain the SMLEs for linear and logistic
regression and their standard errors. The package can be installed through CRAN.

install.packages("sleev")
library("sleev")

The sleev package includes two main functions: linear2ph() and logistic2ph(), to fit
linear and logistic regressions, respectively, under two-phase sampling with an error-prone
outcome and covariates. The input arguments are similar for the two functions and listed in
Table 1. In addition to the arguments for error-prone and error-free outcome and covariates,
the user needs to specify the B-spline matrix 𝐵𝑞

𝑗 (𝑋𝑋𝑋∗∗∗
𝑖) to be used in the estimation of the error

densities.

Table 1: Main arguments for the linear2ph() and logistic2ph() functions

Argument Description
y_unval Column name of unvalidated outcome in the input dataset.
y Column name of validated outcome in the input dataset. NAs in the

input will be counted as individuals not selected in phase two.

5

Argument Description
x_unval Column names of unvalidated covariates in the input dataset.
x Column names of validated covariates in the input dataset. NAs in

the input will be counted as individuals not selected in phase two.
z Column names of error-free covariates in the input dataset.
data Dataset
hn_scale Scale of the perturbation constant in the variance estimation via the

method of profile likelihood. The default is 1.
se Standard errors of the parameter estimators will be estimated when

set to TRUE. The default is TRUE.
tol Convergence criterion. The default is 0.0001.
max_iter Maximum number of iterations in the EM algorithm. The default is

1000.
verbose Print analysis details when set to TRUE. The default is FALSE.

We now illustrate how to obtain SMLEs using the sleev package. First, we briefly describe
the data that will be used, and then we show how to fit a linear regression model in the
presence of errors in both the outcome and covariates using the linear2ph() function. We
will explain how to choose the dimension of the B-spline basis, 𝑠𝑛. We will also demonstrate
two ways to handle the situation when there is more than one continuous covariate in the
model, where the dimension of the B-spline basis increases exponentially with the number of
continuous covariates. Finally, we will briefly demonstrate the use of logistic2ph() to fit a
logistic regression model, which is largely analogous to the use of linear2ph().

4.2 Overview of data

We illustrate the usage of the functions in the sleev package with a dataset constructed to
mimic data from the Vanderbilt Comprehensive Care Clinic (VCCC) patient records from
Giganti et al. (2020). People living with HIV who were admitted to the clinic between 1998
and 2011 are collected by VCCC. The VCCC cohort records are fully validated, meaning
all observations have gold standard measures, making it an ideal dataset for illustrating the
SMLEs. The VCCC dataset contains complete data for all 2087 patients; we use this number
as the sample size for our simulated dataset.

The simulated VCCC data were created by sampling from distributions that are similar to the
original dataset. For our illustrations, we assume that 835 (40%) patient records were validated.
We selected the 835 patients through simple random sampling and hid the validated values for
the remaining 1252 patients by setting them as missing. Table 2 describes the variables to be
used in subsequent analyses.

6

Table 2: Data dictionary for the mock.vccc dataset

Name Status Type Description
ID error-free Patient ID
VL_unval error-prone continuous
VL_val validated continuous

Viral load (VL) at antiretroviral therapy (ART)
initiation

ADE_unval error-prone binary
ADE_val validated binary

Had an AIDS-defining event (ADE) within one
year of ART initiation: 1 - yes, 0 - no

CD4_unval error-prone continuous
CD4_val validated continuous CD4 count at ART initiation

Prior_ART error-free binary Experienced ART before enrollment: 1 - yes, 0 -
no

Sex error-free binary Sex at birth of patient: 1 - male, 0 - female
Age error-free continuous Age of patient

The dataset is included in the sleev package, and it can be loaded by

data("mock.vccc")

Table 3 displays the first six rows of the VCCC dataset. Notice that patients 1, 3, and 5 have NA
listed for the VL_val, ADE_val, and CD4_val variables, which means that these patients were
not selected for data validation. In contrast, patients 2, 4, and 6 had their data validated, so
these variables were not missing. For example, from the data validation, patient 2 had a viral
load (VL) of 907 copies/mL3 and no AIDS-defining events within one year of antiretroviral
therapy (ART) initiation confirmed. However, the patient’s validated CD4 at ART initiation
was found to be 114 cells/mm3, not 36.

Because of skewness, we often transform both CD4 and VL. In our analysis, CD4 was divided
by 10 and square-root transformed and VL was log10-transformed.

mock.vccc$CD4_val_sq10 <- sqrt(mock.vccc$CD4_val / 10)
mock.vccc$CD4_unval_sq10 <- sqrt(mock.vccc$CD4_unval / 10)
mock.vccc$VL_val_l10 <- log10(mock.vccc$VL_val)
mock.vccc$VL_unval_l10 <- log10(mock.vccc$VL_unval)

7

Table 3: First six patients in the mock.vccc dataset

ID VL_unval VL_val ADE_unval ADE_val CD4_unval CD4_val Prior_ART Sex Age

1 1358 NA 0 NA 465 NA 0 1 33
2 907 907 0 0 36 114 1 1 25
3 2284 NA 0 NA 263 NA 1 1 35
4 25473 25473 0 0 244 235 0 0 65
5 19 NA 0 NA 263 NA 1 1 37
6 36662 36662 0 0 30 30 1 0 47

4.3 Linear regression with mock data

We first illustrate the use of the linear2ph() function by fitting a linear regression model with
CD4 count at ART (𝑌) regressed on VL at ART initiation (𝑋), adjusting for sex at birth (𝑍).
Both CD4 and VL are error-prone, partially-validated variables, whereas sex is error-free.

4.3.1 Setting up the B-spline basis for modeling the error mechanisms

To obtain the SMLEs, we first need to set up the B-spline basis for the covariates VL_unval_l10
(the transformed error-prone VL variable from phase one) and Sex. The spline2ph() function
in sleev packages can set up the B-spline basis, and combine it with the data input for the
final analysis. The default column names of the B-spline basis are set as bs[num], where [num]
is the index of the B-spline basis column.

Here, we use a cubic B-spline basis with the degree = 3 argument in our call to the
spline2ph() function. The size of the basis 𝑠𝑛 is set to be 20, specified through the
size = 20 argument. The B-spline basis is set up separately for the two Sex groups by
specifying argument group = "Sex". The size of the B-spline basis assigned to each group is
proportional to the sample size of that group. Stratifying the error distribution by sex allows
the errors in VL_unval_l10 to be heterogeneous between males and females. The described
B-spline basis is constructed as follows.

sn <- 20
data.linear <- spline2ph(x = "VL_unval_l10", data = mock.vccc, size = sn,

degree = 3, group = "Sex")

Alternatively, if the investigator has prior knowledge that the errors in VL_unval_l10 are likely
to be homogeneous, one may fit a simpler model by not stratifying the B-spline basis by Sex.
In this case we would not specify the group argument in this function.

8

4.3.2 Model fitting and result interpretation

Having constructed the B-spline basis, the SMLEs can be obtained by running the
linear2ph() function on data.linear.

start.time <- Sys.time()
res_linear <- linear2ph(y_unval = "CD4_unval_sq10", y = "CD4_val_sq10",

x_unval = "VL_unval_l10", x = "VL_val_l10",
z = "Sex", data = data.linear, hn_scale = 1,
se = TRUE, tol = 1e-04, max_iter = 1000,
verbose = FALSE)

paste0("Run time: ", round(difftime(Sys.time(), start.time,
units = "secs"), 3), " sec")

[1] "Run time: 4.001 sec"

The linear2ph() function returns an object of class linear2ph, denoted by res_linear in
the code above. An object of class linear2ph is a list containing five slots: coefficients,
covariance, sigma, converge, and converge_cov. We should first check if the EM algorithms
for estimating the regression coefficients and their covariance matrix converged by checking if
res_linear$converge and res_linear$converge_conv, respectively, are TRUE.

c(res_linear$converge, res_linear$converge_cov)

[1] TRUE TRUE

The coef() function takes an object of class linear2ph and gives the regression coefficient
estimates.

(res_linear_coef <- coef(res_linear))

Intercept VL_val_l10 Sex
4.821 -0.141 0.273

Similar to interpreting the output from a standard linear model (i.e., fitted with lm()), the
output here indicates that, after adjusting for Sex, for every one-unit increase in the trans-
formed viral load at ART initiation, there is expected to be a 0.141 decrease in the transformed
CD4 count at ART initiation. The transformed CD4 count can be transformed back to the
original scale for interpretation. For example, a female patient with a VL of 1000 copies/mL3

is expected to have a CD4 count of approximately 193 cells/mm3. The expected CD4 count

9

of this female patient is lower than a female patient with a viral load of 100 copies/mL3,
whose expected CD4 count is approximately 206 cells/mm3. It is expected that the average
transformed CD4 count for males is 0.273 higher than that for females, adjusting for VL.

The summary() function takes an object of class linear2ph and further returns the standard
errors, 𝑧-statistics and 𝑝-values, alongside the point estimates of the regression coefficients.
Based on the 𝑝-values, both VL and sex are associated with CD4 count at the 0.05 significance
level.

summary(res_linear)

Call:
linear2ph(y_unval = "CD4_unval_sq10", y = "CD4_val_sq10", x_unval = "VL_unval_l10",

x = "VL_val_l10", z = "Sex", data = data.linear, hn_scale = 1,
se = TRUE, tol = 1e-04, max_iter = 1000, verbose = FALSE)

Coefficients:
Estimate SE Statistic p-value

Intercept 4.821 0.1587 30.39 0.000000
VL_val_l10 -0.141 0.0398 -3.55 0.000389
Sex 0.273 0.1089 2.51 0.012229

The summary() function also gives the covariance matrix, which can be used to calculate
confidence intervals for the outcome variable for a subset of patients. For example, suppose we
want to know the 95% confidence interval of the expected CD4 count for male patients with
VL of 1200 copies/mL3. The upper and lower bounds are

(upper, lower) = (mean − 1.96 ∗ √𝑣𝑎𝑟(mean), mean + 1.96 ∗ √𝑣𝑎𝑟(mean))

First, we need to calculate the estimated mean transformed CD4 count for this patient group
by mean = 𝛽0 + 𝛽1 ∗ VL + 𝛽2 ∗ Sex

x.vec <- matrix(data = c(1, log10(1200), 1), ncol = 1) # set up data matrix
est.mean <- res_linear_coef %*% x.vec # calculate estimated mean
est.mean

[,1]
[1,] 4.66

10

Then, we use the estimated covariance matrix to compute the variance of the linear combina-
tion est.mean. The formula for the linear combination is

𝑣𝑎𝑟(mean) = 𝑣𝑎𝑟(𝛽0 + 𝛽1 ∗ VL + 𝛽2 ∗ Sex) = [1 VL Sex] [3 × 3 covariance matrix] ⎡⎢
⎣

1
VL
Sex

⎤⎥
⎦

res_linear_cov <- summary(res_linear)$covariance
est.cov <- t(x.vec) %*% res_linear_cov %*% x.vec # covariance of est.mean

The 95% confidence interval of CD4 count (cells/10mm3)1/2 for this group is therefore

est.mean + c(-1.96, 1.96) * sqrt(est.cov)

[1] 4.55 4.76

4.4 Choosing the B-spline basis through cross-validation

When constructing the B-spline basis to estimate error models, one needs to specify the order
of the B-spline functions 𝑞 and the size of the B-spline basis 𝑠𝑛. It is customary to use cubic
splines (𝑞 = 3) in practice. Quadratic and linear splines are also permissible, especially when
the correlation between the covariates and their measurement errors is expected to be modest.
The optimal size of the B-spline basis can be selected through 𝑘-fold cross-validation with the
cv_linear2ph() function, which works as follows:

1. The data are split into 𝑘 folds.
2. The number of iterations is the same as the number of folds, 𝑘. In each of 𝑘 iterations,

one fold is held out, and the SMLEs are estimated using the remaining 𝑘−1 folds. Then,
the log-likelihood function in the hold-out fold is predicted using the fitted SMLEs.

3. The average predicted log-likelihood across the 𝑘 iterations is calculated as a summary
of performance.

The size of the B-spline basis that yields the largest average predicted log-likelihood will be
chosen for subsequent analysis. The following code shows an example of using cv_linear2ph()
to select the desirable size of the B-spline basis in the mock.vccc dataset. The number of folds
is set to be 𝑘 = 5.

set for reproducibility of fold assignment
set.seed(1)
different B-spline sizes
sns <- c(15, 20, 25, 30, 35, 40)
vector to hold mean log-likelihood and run time for each sn

11

pred_loglike.1 <- run.time.secs <- rep(NA, length(sns))
get number of rows of the dataset
n <- nrow(mock.vccc)
specify number of folds in the cross validation
k <- 5
calculate proportion of female patients in the dataset
sex_ratio <- sum(mock.vccc$Sex == 0) / n
for (i in 1:length(sns)) {
constructing B-spline basis using the same process as in Section 4.3.1
sn <- sns[i]
data.sieve <- spline2ph(x = "VL_unval_l10", data = mock.vccc, size = sn,

degree = 3, group = "Sex")

cross validation, produce mean log-likelihood
start.time <- Sys.time()
res.1 <- cv_linear2ph(y = "CD4_val_sq10", y_unval = "CD4_unval_sq10",

x ="VL_val_l10", x_unval = "VL_unval_l10", z = "Sex",
data = data.sieve, nfolds = k, max_iter = 2000,
tol = 1e-04, verbose = FALSE)

save run time
run.time.secs[i] <- difftime(Sys.time(), start.time, units = "secs")
save mean log-likelihood result
pred_loglike.1[i] <- res.1$avg_pred_loglik

}

The average predicted log-likelihoods and run time for the different 𝑠𝑛 considered are:

out <- data.frame(sns, pred_loglike.1, run.time.secs)
options(digits = 6)
shortest <- which.min(out$run.time.secs)
kable(out) %>%
row_spec(shortest, background = "yellow")

sns pred_loglike.1 run.time.secs
15 -919.862 21.7611
20 -919.355 26.9597
25 -920.191 18.4206
30 -919.915 26.8769
35 -920.914 53.4668

12

40 -920.684 28.9104

It can be seen that the model with 𝑠𝑛 = 20 in the B-spline basis yields the highest average
predicted log-likelihood, and is therefore chosen. We note that the average predicted log-
likelihoods are fairly similar, indicating that the size of the B-spline basis does not impact
the results very much in this dataset. This observation agrees with the results of Tao et al.
(2021).

To confirm that there is negligible difference between the models fitted with different B-spline
sizes in mock.vccc, we can compare the SMLEs with 𝑠𝑛 = 20 and 𝑠𝑛 = 35.

same process as in Section 4.3, fit with sn = 35
sn.35 <- 35
data.sieve <- spline2ph(x = "VL_unval_l10", data = mock.vccc, size = sn.35,

degree = 3, group = "Sex")

start.time <- Sys.time()
fit.sn.35 <- linear2ph(y = "CD4_val_sq10", y_unval = "CD4_unval_sq10",

x = "VL_val_l10", x_unval = "VL_unval_l10", z = "Sex",
data = data.sieve, hn_scale = 1, se = TRUE,
tol = 1e-04, max_iter = 1000, verbose = FALSE)

paste0("Run time: ", round(difftime(Sys.time(), start.time,
units = "secs"), 3), " sec")

[1] "Run time: 16.55 sec"

compare the coefficients to those from Section 4.3.2
summary(res_linear)$coefficients

Estimate SE Statistic p-value
Intercept 4.820917 0.1586520 30.38673 0.000000000
VL_val_l10 -0.141317 0.0398341 -3.54764 0.000388705
Sex 0.272798 0.1088818 2.50545 0.012229410

summary(fit.sn.35)$coefficients

Estimate SE Statistic p-value
Intercept 4.815033 0.159237 30.23811 0.000000000
VL_val_l10 -0.141407 0.040427 -3.49784 0.000469034
Sex 0.279226 0.109430 2.55163 0.010721977

13

The comparison shows that that the estimates, standard errors, 𝑧-statistics, and 𝑝-values of
the parameters from the model with different B-spline sizes are very similar.

4.5 Example with two continuous covariates

In this section, we illustrate the use of the linear2ph() function with two continuous covariates
using i) a bivariate B-spline basis and ii) a B-spline basis based on the first principle component
(PC) of the covariates. Both approaches are reasonable, and they produce similar results in
this example. The latter method is recommended for computational efficiency when there are
more than two continuous covariates in the model. Suppose that we are fitting a model with
CD4 count as the outcome and VL, age, and sex as covariates. This model is very similar to
the model in Section 4.3, but with the addition of another error-free covariate age. Now, we
have one binary and two continuous variables to be incorporated into the B-spline basis.

4.5.1 Bivariate B-spline

When there are two continuous covariates in the model, the B-spline basis is constructed from
the tensor product of the one-dimensional B-spline bases for each variable. In this example, the
two variables are VL and age, stratified by sex. Due to the curse of dimensionality, the choice
of number of knots has more restrictions than when there is only one continuous covariate.
For instance, in this example the smallest size for the one-dimensional cubic B-spline basis
is 4. If we set one-dimensional 𝑠𝑛 for each sex and each variable to be 4, the aggregate size
of the multi-dimensional B-spline basis will be 42 + 42 = 32, which is considered big with
regards to the sample size we have available. Again, the spline2ph() function can be used,
the only change is that the we supply both covariates c("VL_unval_l10", "Age") to the x
argument.

sn_total <- 4 ^ 2 + 4 ^ 2
data.bivariate <- spline2ph(x = c("VL_unval_l10", "Age"), size = 8,

degree = 3, data = mock.vccc, group = "Sex",
split_group = FALSE)

The bivariate B-spline matrix is combined with the dataset and the corresponding column
names are added as input arguments. Note that for the linear2ph() function, argument
hn_scale is set to be 1/4 here, whereas it was set to 1 previously. This parameter controls the
step size for the variance estimation using the method of profile likelihood (Murphy and Van
der Vaart 2000). It tunes the numerical calculation of the profile log-likelihood and we can
trouble-shoot the issue of occasional NA values in the covariance matrix by tuning hn_scale. In
this case, there are NAs in the result when hn_scale is 1. We re-run the analysis with hn_scale
set to 1/2, 1/4, 1/8, and the variance estimates are very similar among these hn_scale values
(data not shown). Therefore, we choose 1/4 to be the hn_scale value.

14

start.time <- Sys.time()
res_linear_bivariate <- linear2ph(y = "CD4_val_sq10",

y_unval = "CD4_unval_sq10",
x = "VL_val_l10", x_unval = "VL_unval_l10",
z = c("Age", "Sex"),
data = data.bivariate, hn_scale = 1/4,
se = TRUE, tol = 1e-04, max_iter = 1000,
verbose = FALSE)

paste0("Run time: ", round(difftime(Sys.time(), start.time,
units = "secs"), 3), " sec")

[1] "Run time: 20.62 sec"

summary(res_linear_bivariate)$coefficients

Estimate SE Statistic p-value
Intercept 5.02567 0.25515 19.70 0.000000
VL_val_l10 -0.13057 0.03938 -3.32 0.000913
Age -0.00575 0.00475 -1.21 0.225746
Sex 0.28170 0.10901 2.58 0.009764

4.5.2 Principal component analysis

When there are several continuous covariates in the model, it may be challenging to construct
a multidimensional B-spline basis using the tensor product method from section 4.5.1. The
challenge is due to the curse of dimensionality and is especially true when there is a relatively
small validation sample. One way around this is to use principal component analysis (PCA)
to first reduce the dimension of the continuous covariates and then construct the B-spline
basis based on the first principle component (PC) rather than the original covariates. Here,
we illustrate the use of this approach by using the first PC to reduce the dimension of the
continuous covariates from two to one. However, this approach is versatile (and probably more
useful) when there are more than two continuous covariates. We use the prcomp() function
in base R to perform PCA for the two continuous covariates. The two input variables are the
error-prone unvalidated VL and error-free age.

VLAge_pca_all <- prcomp(x = mock.vccc[,c("VL_unval_l10", "Age")],
center = TRUE, scale. = TRUE)

mock.vccc$VLAge_pca <- VLAge_pca_all$x[,1]

15

The steps below are identical to what we did in Section 4.3, except that we construct the
B-spline basis on the first PC of VL and age rather than on the original covariates.

sn <- 20
data_pca <- spline2ph(x = "VLAge_pca", size = sn, degree = 3,

data = mock.vccc, group = "Sex",
split_group = TRUE)

start.time <- Sys.time()
res_linear_pca <- linear2ph(y = "CD4_val_sq10", y_unval = "CD4_unval_sq10",

x = "VL_val_l10", x_unval = "VL_unval_l10",
z = c("Age", "Sex"), data = data_pca,
hn_scale = 1/4, se = TRUE,
tol = 1e-04, max_iter = 1000, verbose = FALSE)

paste0("Run time: ", round(difftime(Sys.time(), start.time,
units = "secs"), 3), " sec")

[1] "Run time: 4.817 sec"

summary(res_linear_pca)$coefficients

Estimate SE Statistic p-value
Intercept 5.05416 0.2573 19.64 0.000000
VL_val_l10 -0.13668 0.0393 -3.48 0.000498
Age -0.00584 0.0047 -1.24 0.213566
Sex 0.27907 0.1092 2.56 0.010601

Note that these results are very close to those generated when using the bivariate B-spline
basis in section 4.5.1.

4.6 Fitting a logistic regression model with logistic2ph()

We now illustrate fitting a logistic regression model using logistic2ph(). Suppose we are
interested in fitting a logistic regression model of having an AIDS-defining event (ADE) within
one year of ART initiation on CD4 count at ART initiation (CD4), adjusting for whether the
patient is ART naive at enrollment. Among the three variables, both ADE and CD4 are
error-prone and partially validated, and ART is error-free.

We set up the B-spline basis for estimating the error mechanisms in a similar way as in
Section 4.3.1. That is, we set up different B-spline bases within each stratum of ART status
at enrollment. This allows the errors in CD4 count to be heterogeneous between patients who

16

are and are not ART naive at enrollment. Again, we assemble the variables and B-splines into
one data frame prior to fitting the SMLE.

same process as in Section 4.3.1
sn <- 20
data.logistic <- spline2ph(x = "CD4_unval_sq10", size = 20, degree = 3,

data = mock.vccc, group = "Prior_ART",
split_group = TRUE)

Now, we obtain the SMLEs for the logistic regression model of interest by running the
logistic2ph() function on our augmented dataset:

start.time <- Sys.time()
res_logistic <- logistic2ph(y = "ADE_val", y_unval = "ADE_unval",

x = "CD4_val_sq10", x_unval = "CD4_unval_sq10",
z = "Prior_ART", data = data.logistic,
hn_scale = 1/2, se = TRUE, tol = 1e-04,
max_iter = 1000, verbose = FALSE)

paste0("Run time: ", round(difftime(Sys.time(), start.time,
units = "secs"), 3), " sec")

[1] "Run time: 395.513 sec"

The arguments here are analogous to those of res_linear. Argument hn_scale is set to be
1/2, and it is set using the same method as in Section 4.5.2.

Like linear2ph(), the logistic2ph() function returns the results in a list of class
logistic2ph, which we have stored in the object res_logistic. The summary() function
takes an object of class logistic2ph and gives the coefficient estimates and corresponding
standard errors, 𝑧-statistics, and 𝑝-values.

(res_logistic_coef <- summary(res_logistic)$coefficients)

Estimate SE Statistic p-value
Intercept -0.846 0.3044 -2.78 0.00545
CD4_val_sq10 -0.542 0.0629 -8.61 0.00000
Prior_ART -0.214 0.2706 -0.79 0.42961

The coefficient estimate associated with CD4 indicates that the odds of having an ADE within
one year of ART initiation decreases with increasing CD4. Specifically, adjusting for whether a
patient is ART naive at enrollment, a person with a CD4 count of 360 cells/mm3 is estimated to

17

have exp(−0.542) = 0.582 times the odds of having an ADE within one year of ART initiation
compared to a person with a CD4 count of 250 cells/mm3. A 95% confidence interval for this
odds ratio, computed in the usual manner, is

exp(res_logistic_coef[2, 1] + c(-1.96, 1.96) * res_logistic_coef[2, 2])

[1] 0.514 0.658

After adjusting for CD4 count, the estimated odds ratio for having an ADE within one year
for ART naive patients versus patients not ART naive is exp(−0.214) = 0.807, and the 95%
confidence interval is

exp(res_logistic_coef[3,1] + c(-1.96, 1.96) * res_logistic_coef[3,2])

[1] 0.475 1.372

Based on these results, the association between having ADE within one year of ART initiation
and CD4 is significant at the 0.05 level. However, the association between having ADE within
one year of ART initiation and whether the patient is ART naive at enrollment is not.

5. Summary and discussion

The sleev R package is a useful tool for analyzing two-phase validation studies with an error-
prone outcome and covariates. It empowers users to perform linear regression for continuous
outcomes and logistic regression for binary ones. The errors among variables can be correlated
with each other and with additional error-free covariates. Conventional measurement error
scenarios with errors in the outcome or covariates only are also accommodated. The resulting
SMLEs are statistically efficient and numerically stable while making minimal assumptions on
the error distributions.

In this vignette, we demonstrate the usage of functions in the sleev package under different
scenarios. We showcase the selection process of the size of a B-spline basis, which is not
frequently seen in papers that involve the use of SMLEs. We also show the impact of the
curse of dimensionality on the construction of the B-spline basis, and recommend PCA as a
dimension reduction technique that can circumvent this challenge. We hope that users find
the demonstrations in this vignette useful for their applications.

In the future, we plan to extend the SMLE to address errors in outcomes and covariates for
models with count and time-to-event outcomes. Additional functions will be added to the
sleev package as methods are developed for these settings.

18

Acknowledgement

This research was supported by the National Institute of Health grants R01HL094786,
R01AI131771, and P30AI110527 and the 2022 Biostatistics Faculty Development Award from
the Department of Biostatistics at Vanderbilt University Medical Center.

References

Amorim, G., R. Tao, S. Lotspeich, P. A. Shaw, T. Lumley, and B. E. Shepherd. 2021. “Two-
Phase Sampling Designs for Data Validation in Settings with Covariate Measurement Error
and Continuous Outcome.” Journal of the Royal Statistical Society. Series A, (Statistics
in Society), 1368–89. https://doi.org/10.1111/rssa.12689.

Bang, H., and J. M. Robins. 2005. “Doubly Robust Estimation in Missing Data and Causal
Inference Models.” Biometrics 61 (4): 962–73. https://doi.org/10.1111/j.1541-0420.2005.
00377.x.

Carroll, R. J., D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu. 2006. Measurement Error
in Nonlinear Models: A Modern Perspective. Chapman; Hall/CRC.

Cole, S. R., H. Chu, and S. Greenland. 2006. “Multiple-Imputation for Measurement-Error
Correction.” International Journal of Epidemiology 35 (4): 1074–81. https://doi.org/10.
1093/ije/dyl097.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. “Maximum Likelihood from Incom-
plete Data via the EM Algorithm.” Journal of the Royal Statistical Society: Series B
(Methodological) 39 (1): 1–22.

Deville, J. C., C. E. Särndal, and O. Sautory. 1993. “Generalized Raking Procedures in
Survey Sampling.” Journal of the American Statistical Association 88 (423): 1013–20.
https://doi.org/10.2307/2290793.

Duan, R., M. Cao, Y. Wu, J. Huang, J. C. Denny, H. Xu, and Y. Chen. 2016. “An Empirical
Study for Impacts of Measurement Errors on EHR Based Association Studies.” In AMIA
Annual Symposium Proceedings, 2016:1764. American Medical Informatics Association.
https://pubmed.ncbi.nlm.nih.gov/28269935/.

Fuller, Wayne A. 2009. Measurement Error Models. John Wiley & Sons. https://doi.org/10.
1002/9780470316665.

Giganti, M. J., P. A. Shaw, G. Chen, S. S. Bebawy, M. M. Turner, T. R. Sterling, and B.
E. Shepherd. 2020. “Accounting for Dependent Errors in Predictors and Time-to-Event
Outcomes Using Electronic Health Records, Validation Samples, and Multiple Imputation.”
The Annals of Applied Statistics 14 (2): 1045. https://doi.org/10.1214/20-aoas1343.

Horvitz, D. G., and D. J. Thompson. 1952. “A Generalization of Sampling Without Replace-
ment from a Finite Universe.” Journal of the American Statistical Association 47 (260):
663–85. https://doi.org/10.2307/2280784.

Little, R. J. A., and D. B. Rubin. 1986. Statistical Analysis with Missing Data. John Wiley
& Sons.

19

Lotspeich, S. C., B. E. Shepherd, G. Amorim, P. A. Shaw, and R. Tao. 2022. “Efficient
Odds Ratio Estimation Under Two-Phase Sampling Using Error-Prone Data from a Multi-
National HIV Research Cohort.” Biometrics 78 (4): 1674–85. https://doi.org/10.1111/
biom.13512.

Murphy, S., and A. Van der Vaart. 2000. “On Profile Likelihood.” Journal of the American
Statistical Association 95 (450): 449–65. https://doi.org/10.2307/2669386.

Oh, E. J., B. E. Shepherd, T. Lumley, and P. A. Shaw. 2021. “Raking and Regression
Calibration: Methods to Address Bias from Correlated Covariate and Time-to-Event Error.”
Statistics in Medicine 40 (3): 631–49. https://doi.org/10.1002/sim.8793.

Schumaker, L. 2007. Spline Functions: Basic Theory. 3rd ed. Cambridge Mathematical
Library. Cambridge University Press. https://doi.org/10.1017/CBO9780511618994.

Tang, L., R. H. Lyles, C. C. King, D. D. Celentano, and Y. Lo. 2015. “Binary Regression
with Differentially Misclassified Response and Exposure Variables.” Statistics in Medicine
34 (9): 1605–20. https://doi.org/10.1002/sim.6440.

Tao, R., S. C. Lotspeich, G. Amorim, P. A. Shaw, and B. E. Shepherd. 2021. “Efficient
Semiparametric Inference for Two‐phase Studies with Outcome and Covariate Measurement
Errors.” Statistics in Medicine 40 (3): 725–38. https://doi.org/10.1002/sim.8799.

Tao, R., D. Zeng, and D. Lin. 2017. “Efficient Semiparametric Inference Under Two-Phase
Sampling, with Applications to Genetic Association Studies.” Journal of the American Sta-
tistical Association 112 (520): 1468–76. https://doi.org/10.1080/01621459.2017.1295864.

20

