
Package ‘qol’
November 20, 2025

Title Powerful 'SAS' Inspired Concepts for more Efficient Bigger
Outputs

Version 1.1.0

Description The main goal is to make descriptive evaluations easier to create bigger and more com-
plex outputs in less time with less code. Introducing format containers with multil-
abels <https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/
p06ciqes4eaqo6n0zyqtz9p21nfb.htm>, a more powerful summarise which is capable to out-
put every possible combination of the provided grouping vari-
ables in one go <https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/
p0jvbbqkt0gs2cn1lo4zndbqs1pe.htm>, tabulation functions which can create any table in dif-
ferent styles <https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/
n1ql5xnu0k3kdtn11gwa5hc7u435.htm> and other more readable functions. The code is opti-
mized to work fast even with datasets of over a million observations.

License MIT + file LICENSE

Encoding UTF-8

Language en-US

URL https://github.com/s3rdia/qol, https://s3rdia.github.io/qol/

Imports data.table (>= 1.17.8), collapse (>= 2.1.2), openxlsx2 (>=
1.19)

Depends R (>= 4.1.0)

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Config/Needs/website rmarkdown

NeedsCompilation no

Author Tim Siebenmorgen [aut, cre, cph]

Maintainer Tim Siebenmorgen <qol_package@proton.me>

Repository CRAN

Date/Publication 2025-11-20 21:20:09 UTC

1

https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/p06ciqes4eaqo6n0zyqtz9p21nfb.htm
https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/p06ciqes4eaqo6n0zyqtz9p21nfb.htm
https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/p0jvbbqkt0gs2cn1lo4zndbqs1pe.htm
https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/p0jvbbqkt0gs2cn1lo4zndbqs1pe.htm
https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/n1ql5xnu0k3kdtn11gwa5hc7u435.htm
https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/n1ql5xnu0k3kdtn11gwa5hc7u435.htm
https://github.com/s3rdia/qol
https://s3rdia.github.io/qol/

2 add_extension

Contents

add_extension . 2
any_table . 3
args_to_char . 9
build_master . 10
build_rstheme . 11
combine_into_workbook . 14
convert_numeric . 16
crosstabs . 17
drop_type_vars . 20
dummy_data . 21
excel_output_style . 22
export_with_style . 26
frequencies . 28
fuse_variables . 31
get_excel_range . 32
inverse . 33
modify_number_formats . 34
modify_output_style . 35
number_format_style . 36
recode . 39
remove_stat_extension . 40
rename_pattern . 41
replace_except . 42
setcolorder_by_pattern . 43
split_by . 44
summarise_plus . 45

Index 49

add_extension Add Extensions to Variable Names

Description

Renames variables in a data frame by adding the desired extensions to the original names. This
can be useful if you want to use pre summarised data with any_table(), which needs the value
variables to have the statistic extensions.

Usage

add_extension(data_frame, from, extensions, reuse = "none")

any_table 3

Arguments

data_frame The data frame in which variables should gain extensions to their name.

from The position of the variable inside the data frame at which to start the renaming.

extensions The extensions to add.

reuse "none" by default, meaning only the provided extensions will be set. E.g. if
there are two extensions provided, two variables will be renamed. If "last", the
last provided extension will be used for every following variable until the end
of the data frame. If "repeat", the provided extensions will be repeated from the
first one for every following variable until the end of the data frame.

Value

Returns a data frame with extended variable names.

Examples

Example data frame
my_data <- dummy_data(1000)

Add extensions to variable names
new_names1 <- my_data |> add_extension(5, c("sum", "pct"))
new_names2 <- my_data |> add_extension(5, c("sum", "pct"), reuse = "last")
new_names3 <- my_data |> add_extension(5, c("sum", "pct"), reuse = "alternate")

any_table Compute Any Possible Table

Description

any_table() produces any possible descriptive table in ’Excel’ format. Any number of variables
can be nested and crossed. The output is an individually styled ’Excel’ table, which also receives
named ranges, making it easier to read the data back in.

Usage

any_table(
data_frame,
rows,
columns = "",
values,
statistics = c("sum"),
pct_group = c(),
pct_value = list(),
formats = list(),
by = c(),
weight = NULL,

4 any_table

order_by = "stats",
titles = c(),
footnotes = c(),
var_labels = list(),
stat_labels = list(),
box = "",
workbook = NULL,
style = excel_output_style(),
output = "excel",
pre_summed = FALSE,
na.rm = FALSE,
print = TRUE,
monitor = FALSE

)

Arguments

data_frame A data frame in which are the variables to tabulate.

rows A vector that provides single variables or variable combinations that should ap-
pear in the table rows. To nest variables use the form: "var1 + var2 + var3 +
...".

columns A vector that provides single variables or variable combinations that should ap-
pear in the table rows. To nest variables use the form: "var1 + var2 + var3 +
...".

values A vector containing all variables that should be summarised.

statistics Available functions:

• "sum" -> Weighted and unweighted sum
• "sum_wgt" -> Sum of all weights
• "freq" -> Unweighted frequency
• "freq_g0" -> Unweighted frequency of all values greater than zero
• "pct_group" -> Weighted and unweighted percentages within the respective

group
• "pct_value" -> Weighted and unweighted percentages between value vari-

ables
• "pct_total" -> Weighted and unweighted percentages compared to the grand

total
• "mean" -> Weighted and unweighted mean
• "median" -> Weighted and unweighted median
• "mode" -> Weighted and unweighted mode
• "min" -> Minimum
• "max" -> Maximum
• "sd" -> Weighted and unweighted standard deviation
• "variance" -> Weighted and unweighted standard variance
• "first" -> First value
• "last" -> Last value

any_table 5

• "pn" -> Weighted and unweighted percentiles (any p1, p2, p3, ... possible)
• "missing" -> Missings generated by the value variables

pct_group If pct_group is specified in the statistics, this option is used to determine which
variable of the row and column variables should add up to 100 %. Multiple
variables can be specified in a vector to generate multiple group percentages.

pct_value If pct_value is specified in the statistics, you can pass a list here which con-
tains the information for a new variable name and between which of the value
variables percentages should be computed.

formats A list in which is specified which formats should be applied to which variables.

by Compute tables stratified by the expressions of the provided variables.

weight Put in a weight variable to compute weighted results.

order_by Determine how the columns will be ordered. "values" orders the results by the
order you provide the variables in values. "stats" orders them by the order under
statistics. "values_stats" is a combination of both. "columns" keeps the order as
given in columns and "interleaved" alternates the stats.

titles Specify one or more table titles.

footnotes Specify one or more table footnotes.

var_labels A list in which is specified which label should be printed for which variable
instead of the variable name.

stat_labels A list in which is specified which label should be printed for which statistic
instead of the statistic name.

box Provide a text for the upper left box of the table.

workbook Insert a previously created workbook to expand the sheets instead of creating a
new file.

style A list of options can be passed to control the appearance of excel outputs. Styles
can be created with excel_output_style().

output The following output formats are available: excel and excel_nostyle.

pre_summed FALSE by default. If TRUE this function works with pre summarised data. This
can be used, if not all the needed results can be calculated by any_table() and
need to be prepared in advance. Enabling you to still make use of the styled
tabulation. For this to work, the values have to carry the statistic extension (e.g.
"_sum", "_pct") in the variable name.

na.rm FALSE by default. If TRUE removes all NA values from the variables.

print TRUE by default. If TRUE prints the output, if FALSE doesn’t print anything.
Can be used if one only wants to catch the output data frame and workbook with
meta information.

monitor FALSE by default. If TRUE outputs two charts to visualize the functions time
consumption.

Details

any_table() is based on the ’SAS’ procedure Proc Tabulate, which provides efficient and readable
ways to perform complex tabulations.

6 any_table

With this function you can combine any number of variables in any possible way, all at once. You
just define which variables or variable combinations should end up in the table rows and columns
with a simple syntax. Listing variables in a vector like c("var1", "var2", "var3",...) means to put
variables below (in case of the row variables) or besides (in case of the column variables) each
other. Nesting variables is as easy as putting a plus sign between them, e.g. c("var1 + var2", "var2"
+ "var3" + "var4", etc.). And of course you can combine both versions.

The real highlight is, that this function not only creates all the desired variable combinations and
exports them to an ’Excel’ file, it prints a fully custom styled table to a workbook. Setting up a
custom, reusable style is as easy as setting up options like: provide a color for the table header,
set the font size for the row header, should borders be drawn for the table cells yes/no, and so on.
Merging doubled header texts, happens automatically.

With this function you basically can fully concentrate on designing a table, instead of thinking hard
about how to calculate where to put a border or to even manually prepare a designed workbook.

Value

Returns a list with the data table containing the results for the table, the formatted ’Excel’ workbook
and the meta information needed for styling the final table.

See Also

Creating a custom table style: excel_output_style(), modify_output_style(), number_format_style(),
modify_number_formats().

Creating formats: discrete_format() and interval_format().

Functions that can handle formats and styles: frequencies(), crosstabs().

Additional functions that can handle styles: export_with_style()

Additional functions that can handle formats: summarise_plus(), recode(), recode_multi()

Examples

Example data frame
my_data <- dummy_data(1000)
my_data[["person"]] <- 1

Formats
age. <- discrete_format(

"Total" = 0:100,
"under 18" = 0:17,
"18 to under 25" = 18:24,
"25 to under 55" = 25:54,
"55 to under 65" = 55:64,
"65 and older" = 65:100)

sex. <- discrete_format(
"Total" = 1:2,
"Male" = 1,
"Female" = 2)

education. <- discrete_format(

any_table 7

"Total" = c("low", "middle", "high"),
"low education" = "low",
"middle education" = "middle",
"high education" = "high")

Define style
my_style <- excel_output_style(column_widths = c(2, 15, 15, 15, 9))

Define titles and footnotes. If you want to add hyperlinks you can do so by
adding "link:" followed by the hyperlink to the main text.
titles <- c("This is title number 1 link: https://cran.r-project.org/",

"This is title number 2",
"This is title number 3")

footnotes <- c("This is footnote number 1",
"This is footnote number 2",
"This is footnote number 3 link: https://cran.r-project.org/")

Output complex tables with different percentages
my_data |> any_table(rows = c("sex + age", "sex", "age"),

columns = c("year", "education + year"),
values = weight,
statistics = c("sum", "pct_group"),
pct_group = c("sex", "age", "education", "year"),
formats = list(sex = sex., age = age.,

education = education.),
style = my_style,
na.rm = TRUE)

If you want to get a clearer vision of what the result table looks like, in terms
of the row and column categories, you can write the code like this, to make out
the variable crossings and see the order.
my_data |> any_table(columns = c("year", "education + year"),

rows = c("sex + age",
"sex",
"age"),

values = weight,
statistics = c("sum", "pct_group"),
pct_group = c("sex", "age", "education", "year"),
formats = list(sex = sex., age = age.,

education = education.),
style = my_style,
na.rm = TRUE)

Percentages based on value variables instead of categories
my_data |> any_table(rows = c("age + year"),

columns = c("sex"),
values = c(probability, person),
statistics = c("pct_value", "sum", "freq"),
pct_value = list(rate = "probability / person"),
weight = weight,
formats = list(sex = sex., age = age.),
style = my_style,
na.rm = TRUE)

8 any_table

Customize the visual appearance by adding titles, footnotes and variable
and statistic labels.
Note: You don't have to describe every element. Sometimes a table can be more
readable with less text. To completely remove a variable label just put in an
empty text "" as label.
my_data |> any_table(rows = c("age + year"),

columns = c("sex"),
values = weight,
statistics = c("sum", "pct_group"),
order_by = "interleaved",
formats = list(sex = sex., age = age.),
titles = titles,
footnotes = footnotes,
var_labels = list(age = "Age categories",

sex = "", weight = ""),
stat_labels = list(pct = "%"),
style = my_style,
na.rm = TRUE)

With individual styling
my_style <- my_style |> modify_output_style(header_back_color = "0077B6",

font = "Times New Roman")

my_data |> any_table(rows = c("age + year"),
columns = c("sex"),
values = c(probability, person),
statistics = c("pct_value", "sum", "freq"),
pct_value = list(rate = "probability / person"),
weight = weight,
formats = list(sex = sex., age = age.),
style = my_style,
na.rm = TRUE)

Pass on workbook to create more sheets in the same file
my_style <- my_style |> modify_output_style(sheet_name = "age_sex")

result_list <- my_data |>
any_table(rows = c("age"),

columns = c("sex"),
values = weight,
statistics = c("sum"),
formats = list(sex = sex., age = age.),
style = my_style,
na.rm = TRUE,
print = FALSE)

my_style <- my_style |> modify_output_style(sheet_name = "edu_year")

my_data |> any_table(workbook = result_list[["workbook"]],
rows = c("education"),
columns = c("year"),
values = weight,

args_to_char 9

statistics = c("pct_group"),
formats = list(education = education.),
style = my_style,
na.rm = TRUE)

Output multiple complex tables by expressions of another variable.
If you specify the sheet name as "by" in the output style, the sheet
names are named by the variable expressions of the by-variable. Otherwise
the given sheet named gets a running number.
my_style <- my_style |> modify_output_style(sheet_name = "by")

my_data |> any_table(rows = c("sex", "age"),
columns = c("education + year"),
values = weight,
by = state,
statistics = c("sum", "pct_group"),
pct_group = c("education"),
formats = list(sex = sex., age = age., state = state.,

education = education.),
titles = titles,
footnotes = footnotes,
style = my_style,
na.rm = TRUE)

args_to_char Convert Ellipsis to Character Vector

Description

When you define a function and want the user to be able to pass variable names without the need to
have them stored in a vector c() or list() beforehand and without putting the names into quotation
marks, you can convert this variable list passed as ... into a character vector.

Note: If the user passes a list of characters it is returned as given.

Usage

args_to_char(...)

Arguments

... Used for variable names listed in ... without the need to put them in c() or list()

Value

Returns a character vector

10 build_master

Examples

Example function
print_vnames <- function(...){

var_names <- args_to_char(...)
print(var_names)

}

print_vnames(age, sex, income, weight)
print_vnames("age", "sex", "income", "weight")

You can also pass in a character vector, if you have stored variable names elsewhere
var_names <- c("age", "sex", "income", "weight")
print_vnames(var_names)

build_master Build a Master Script From Folder

Description

build_master() reads a given folder structure, which contains scripts, and builds a master script
as a markdown file.

Usage

build_master(
dir,
master_name = "Master",
with_structure = TRUE,
with_run_all = TRUE,
with_run_folder = TRUE

)

Arguments

dir The folder structure which contains the scripts to build upon.

master_name The file name which should be written.

with_structure Whether the folder structure as tree should be written to the master script.

with_run_all Whether a section, which let’s the user run all scripts, should be written to the
master script.

with_run_folder

Whether a section, which let’s the user run all scripts from a specific folder,
should be written to the master script.

build_rstheme 11

Details

The function works with folder structures that look like this:

root/

subfolder1/

script1.R

script2.R

....R

subfolder2/

script3.R

script4.R

....R

.../

....R

Value

Returns the script as character vector and saves it as markdown file.

Examples

build_master(dir = "C:/My Projects/Code", master_name = "Master Script")

build_rstheme Build a Theme From Scratch

Description

Build your own theme by just setting up the colors for the different parts of RStudio. A theme file
will be exported which can be added by going to:

Tools -> Global Options -> Appearance -> Add

12 build_rstheme

Usage

build_rstheme(
file_path,
theme_name = "qol_green",
dark_theme = TRUE,
editor_background = "#062625",
editor_headline = "#3B3B3B",
editor_font = "#C3B79D",
toolbar = "#2E2E2E",
tab = "#3B3B3B",
selected_tab = "#062625",
line_number = "#C3B79D",
print_margin = "#3B3B3B",
cursor = "#CCCCCC",
selection = "#1B436E",
smart_highlight = "#3686dc",
bracket_highlight = "#595959",
active_line = "#202324",
whitespace = "#CCCCCC",
debug_line = "#F18889",
scrollbar = "#3B3B3B",
scrollbar_hover = "#595959",
scrollbar_active = "#BFBFBF",
class_name = "#BEDD1A",
keyword = "#FFC90E",
language_constant = "#FFC90E",
function_name = "#C3B79D",
numeric = "#C93F3F",
string = "#63C2C9",
regex = "#E8E6E3",
variable = "#E8E6E3",
comment = "#32CD32",
symbol = "#C3B79D",
console_code = "#C3B79D",
markdown_code = "#083332"

)

Arguments

file_path The path to which the theme file should be saved.

theme_name The themes name.

dark_theme Handles some elements not covered with the other parameters.
editor_background

Base background color in the editor.
editor_headline

Mostly used for the headlines of the environment panel.

editor_font Base font color of the editor.

build_rstheme 13

toolbar Base toolbar and frame color.

tab Color of inactive tabs.

selected_tab Color of active tabs.

line_number The color of the line numbers on the left.

print_margin Color of the vertical line showing the print margin.

cursor Cursor color.

selection The background color of the current selection.
smart_highlight

Background color of smart highlighted words.
bracket_highlight

Background color of highlighted bracket pairs.

active_line Color for the active line the cursor is in.

whitespace Color for whitespace characters.

debug_line Color of the current debug line.

scrollbar Color of the scrollbars.
scrollbar_hover

Highlight color when hovering over a scrollbar.
scrollbar_active

Highlight color when clicking on a scrollbar.

class_name Code color for class names (like package names).

keyword Code color for fixed keywords (like function, if, else).
language_constant

Code color for language constants (like the @ keywords).

function_name Code color for base and package functions.

numeric Code color for numeric values.

string Code color for string values.

regex Code color for regex expressions.

variable Code color for variables, parameters and arguments.

comment Code color for comments.

symbol Code Color of symbols (like <-, brackets).

console_code Color of executed Code in the Console.

markdown_code Background color of code passages in a markdown file.

Details

In the ’SAS Enterprise Guide’ the user is able to not only choose a given theme, but to also pick
the colors for the different parts of the editor by themselves. Everyone has a different taste of what
colors look pleasing to the eyes, so you should be able to choose them by yourself.

Value

Saves a complete theme file.

14 combine_into_workbook

Examples

Example function
build_rstheme("C:/My Path/", "My theme",

editor_background = "#417291",
editor_headline = "#602BCA",
editor_font = "#C75C48")

combine_into_workbook Combine Multiple Tables Into One Workbook

Description

Combines any number of tables created with any_table() into one workbook and styles them
according to their meta information.

Usage

combine_into_workbook(
...,
file = NULL,
output = "excel",
print = TRUE,
monitor = FALSE

)

Arguments

... Provide any number of result lists output by any_table().

file If NULL, opens the output as temporary file. If a filename with path is specified,
saves the output to the specified path.

output The following output formats are available: excel and excel_nostyle.

print TRUE by default. If TRUE prints the output, if FALSE doesn’t print anything.
Can be used if one only wants to catch the combined workbook.

monitor FALSE by default. If TRUE outputs two charts to visualize the functions time
consumption.

Value

A fully styled workbook containing the provided tables.

combine_into_workbook 15

Examples

Example data frame
my_data <- dummy_data(1000)
my_data[["person"]] <- 1

Formats
age. <- discrete_format(

"Total" = 0:100,
"under 18" = 0:17,
"18 to under 25" = 18:24,
"25 to under 55" = 25:54,
"55 to under 65" = 55:64,
"65 and older" = 65:100)

sex. <- discrete_format(
"Total" = 1:2,
"Male" = 1,
"Female" = 2)

education. <- discrete_format(
"Total" = c("low", "middle", "high"),
"low education" = "low",
"middle education" = "middle",
"high education" = "high")

Define style
my_style <- excel_output_style(column_widths = c(2, 15, 15, 15, 9))

Define titles and footnotes. If you want to add hyperlinks you can do so by
adding "link:" followed by the hyperlink to the main text.
titles <- c("This is title number 1 link: https://cran.r-project.org/",

"This is title number 2",
"This is title number 3")

footnotes <- c("This is footnote number 1",
"This is footnote number 2",
"This is footnote number 3 link: https://cran.r-project.org/")

Catch the output and additionally use the options:
pint = FALSE and output = "excel_nostyle".
This skips the styling and output part, so that the function runs faster.
The styling is done later on.
my_style <- my_style |> modify_output_style(sheet_name = "big table")

tab1 <- my_data |> any_table(rows = c("sex + age", "sex", "age"),
columns = c("year", "education + year"),
values = weight,
statistics = c("sum", "pct_group"),
pct_group = c("sex", "age", "education", "year"),
formats = list(sex = sex., age = age.,

education = education.),
style = my_style,
na.rm = TRUE,

16 convert_numeric

print = FALSE,
output = "excel_nostyle")

my_style <- my_style |> modify_output_style(sheet_name = "age_sex")

tab2 <- my_data |> any_table(rows = c("age"),
columns = c("sex"),
values = weight,
statistics = c("sum"),
formats = list(sex = sex., age = age.),
style = my_style,
na.rm = TRUE,
print = FALSE,
output = "excel_nostyle")

my_style <- my_style |> modify_output_style(sheet_name = "edu_year")

tab3 <- my_data |> any_table(rows = c("education"),
columns = c("year"),
values = weight,
statistics = c("pct_group"),
formats = list(education = education.),
style = my_style,
na.rm = TRUE,
print = FALSE,
output = "excel_nostyle")

Every of the above tabs is a list, which contains the data table, an unstyled
workbook and the meta information needed for the individual styling. These
tabs can be input into the following function, which reads the meta information,
styles each table individually and combines them as separate sheets into a single workbook.
combine_into_workbook(tab1, tab2, tab3)

convert_numeric Check and Convert to Numeric

Description

is_numeric() checks whether all values of the given variable, that are not NA, are numerical.

convert_numeric() converts all given variables to numeric if possible. If a variable contains none
numerical values (not including NAs), the variable will not be converted.

Usage

is_numeric(variable)

convert_numeric(data_frame, variables)

crosstabs 17

Arguments

variable A vector with values to check.

data_frame A data frame containing variables to convert.

variables Variables from the data frame which should be converted to numeric.

Value

is_numeric() returns TRUE if all none NA values are numerical, otherwise FALSE.

convert_numeric() returns the same data frame with converted variables where possible.

Examples

Check if vectors contain only numeric values
test_vector1 <- c(1, 2, 3, NA, 4, 5)
test_vector2 <- c(1, 2, "Hello", NA, 4, 5)

numeric_check1 <- is_numeric(test_vector1)
numeric_check2 <- is_numeric(test_vector2)

Convert variables in a data frame to numeric where possible
test_df <- data.frame(var_a = c(1, 2, 3, NA, 4, 5),

var_b = c(1, 2, "Hello", NA, 4, 5))

convert_df <- test_df |> convert_numeric(c("var_a", "var_b"))

crosstabs Display Cross Table of Two Variables

Description

crosstabs() produces a cross table of two variables. Statistics can be weighted sums, unweighted
frequencies or different percentages.

Usage

crosstabs(
data_frame,
rows,
columns,
statistics = c("sum"),
formats = c(),
by = c(),
weight = NULL,
titles = c(),
footnotes = c(),
style = excel_output_style(),

18 crosstabs

output = "console",
na.rm = FALSE,
print = TRUE,
monitor = FALSE

)

Arguments

data_frame A data frame in which are the variables to tabulate.
rows The variable that appears in the table rows.
columns The variable that appears in the table columns.
statistics The user requested statistics.Available functions:

• "sum" -> Weighted and unweighted sum
• "freq" -> Unweighted frequency
• "pct_row" -> Weighted and unweighted row percentages
• "pct_column" -> Weighted and unweighted column percentages
• "pct_total" -> Weighted and unweighted percentages compared to the grand

total
formats A list in which is specified which formats should be applied to which variables.
by Compute tables stratified by the expressions of the provided variables.
weight Put in a weight variable to compute weighted results.
titles Specify one or more table titles.
footnotes Specify one or more table footnotes.
style A list of options can be passed to control the appearance of excel outputs. Styles

can be created with excel_output_style().
output The following output formats are available: console (default), text, excel and

excel_nostyle.
na.rm FALSE by default. If TRUE removes all NA values from the variables.
print TRUE by default. If TRUE prints the output, if FALSE doesn’t print anything.

Can be used if one only wants to catch the output data frame.
monitor FALSE by default. If TRUE outputs two charts to visualize the functions time

consumption.

Details

crosstabs() is based on the ’SAS’ procedure Proc Freq, which provides efficient and readable
ways to perform cross tabulations.

To create a cross table you only need to provide a variable for the rows and columns. Nothing
special about this. The real power comes into play, when you output your tables as a fully styled
’Excel’ workbook. Setting up a custom, reusable style is as easy as setting up options like: provide
a color for the table header, set the font size for the row header, should borders be drawn for the
table cells yes/no, and so on.

You can not only output sums and frequencies, but also different percentages, all set up in separate,
evenly designed tables. For just a quick overview, rather than fully designed tables, you can also
just output the tables in ASCII style format.

crosstabs 19

Value

Returns a data tables containing the results for the cross table.

See Also

Creating a custom table style: excel_output_style(), modify_output_style(), number_format_style(),
modify_number_formats().

Creating formats: discrete_format() and interval_format().

Functions that can handle formats and styles: frequencies(), any_table().

Additional functions that can handle styles: export_with_style()

Additional functions that can handle formats: summarise_plus(), recode(), recode_multi()

Examples

Example data frame
my_data <- dummy_data(1000)

Define titles and footnotes. If you want to add hyperlinks you can do so by
adding "link:" followed by the hyperlink to the main text.
titles <- c("This is title number 1 link: https://cran.r-project.org/",

"This is title number 2",
"This is title number 3")

footnotes <- c("This is footnote number 1",
"This is footnote number 2",
"This is footnote number 3 link: https://cran.r-project.org/")

Output cross tables
my_data |> crosstabs(age, sex)
my_data |> crosstabs(age, sex,

weight = "weight")

Also works with characters
my_data |> crosstabs("age", "sex")
my_data |> crosstabs("age", "sex",

weight = "weight")

Applying formats and titles
age. <- discrete_format(

"Total" = 0:100,
"under 18" = 0:17,
"18 to under 25" = 18:24,
"25 to under 55" = 25:54,
"55 to under 65" = 55:64,
"65 and older" = 65:100)

sex. <- discrete_format(
"Total" = 1:2,
"Male" = 1,
"Female" = 2)

20 drop_type_vars

my_data |> crosstabs(age, sex,
formats = list(age = age., sex = sex.),
titles = titles,
footnotes = footnotes)

Split cross table by expressions of another variable
my_data |> crosstabs(age, sex, by = education)

Compute different stats
my_data |> crosstabs(age, sex,

statistics = c("sum", "freq", "pct_row", "pct_column", "pct_total"))

Get a list with two data tables for further usage
result_list <- my_data |> crosstabs(age, sex,

formats = list(age = age., sex = sex.))

Output in text file
my_data |> crosstabs(age, sex, output = "text")

Output to Excel
my_data |> crosstabs(age, sex, output = "excel")

With individual styling
my_style <- excel_output_style(header_back_color = "0077B6",

font = "Times New Roman")

my_data |> crosstabs(age, sex, output = "excel", style = my_style)

drop_type_vars Drop automatically generated Variables

Description

If summarise_plus() is used with the nested options "all" or "single", three variables are automat-
ically generated: TYPE, TYPE_NR and DEPTH. With this functions these variables are dropped.

Usage

drop_type_vars(data_frame)

Arguments

data_frame The data frame with automatically generated variables.

Value

Returns a data frame without the variables TYPE, TYPE_NR and DEPTH.

dummy_data 21

Examples

Example format
sex. <- discrete_format(

"Total" = 1:2,
"Male" = 1,
"Female" = 2)

Example data frame
my_data <- dummy_data(1000)

Call function
all_possible <- my_data |>

summarise_plus(class = c(year, sex),
values = c(income, probability),
statistics = c("sum", "mean", "freq"),
formats = list(sex = "sex."),
weight = weight,
nesting = "all",
na.rm = TRUE) |>

drop_type_vars()

dummy_data Dummy Data

Description

The dummy data frame contains a few randomly generated variables like year, sex, age, income and
weight to test out functionalities. It can be generated with the desired number of observations.

Usage

dummy_data(no_obs, monitor = FALSE)

Arguments

no_obs Number of observations.

monitor FALSE by default. If TRUE outputs two charts to visualize the functions time
consumption.

Value

Returns a dummy data table.

Examples

my_data <- dummy_data(1000)

22 excel_output_style

excel_output_style Style for ’Excel’ Table Outputs

Description

Set different options which define the visual output of ’Excel’ tables produced by frequencies(),
crosstabs() and any_table().

Usage

excel_output_style(
file = NULL,
sheet_name = "Table",
font = "Arial",
column_widths = "auto",
row_heights = "auto",
title_heights = NULL,
header_heights = NULL,
table_heights = NULL,
footnote_heights = NULL,
start_row = 2,
start_column = 2,
freeze_col_header = FALSE,
freeze_row_header = FALSE,
filters = TRUE,
grid_lines = TRUE,
header_back_color = "FFFFFF",
header_font_color = "000000",
header_font_size = 10,
header_font_bold = TRUE,
header_alignment = "center",
header_wrap = "1",
header_indent = 0,
header_borders = TRUE,
header_border_color = "000000",
cat_col_back_color = "FFFFFF",
cat_col_font_color = "000000",
cat_col_font_size = 10,
cat_col_font_bold = FALSE,
cat_col_alignment = "left",
cat_col_wrap = "1",
cat_col_indent = 1,
cat_col_borders = TRUE,
cat_col_border_color = "000000",
table_back_color = "FFFFFF",
table_font_color = "000000",
table_font_size = 10,

excel_output_style 23

table_font_bold = FALSE,
table_alignment = "right",
table_indent = 1,
table_borders = FALSE,
table_border_color = "000000",
box_back_color = "FFFFFF",
box_font_color = "000000",
box_font_size = 10,
box_font_bold = TRUE,
box_alignment = "center",
box_wrap = "1",
box_indent = 0,
box_borders = TRUE,
box_border_color = "000000",
number_formats = number_format_style(),
title_font_color = "000000",
title_font_size = 10,
title_font_bold = TRUE,
title_alignment = "left",
footnote_font_color = "000000",
footnote_font_size = 8,
footnote_font_bold = FALSE,
footnote_alignment = "left",
na_symbol = "."

)

Arguments

file If NULL, opens the output as temporary file. If a filename with path is specified,
saves the output to the specified path.

sheet_name Name of the sheet inside the workbook to which the output shall be written. If
multiple outputs are produced in one go, the sheet name additionally receives a
running number.

font Set the font to be used for the entire output.

column_widths Specify whether column widths should be set automatically and individually or
if a numeric vector is passed each column width can be specified manually. If a
table has more columns than column widths are provided, the last given column
width will be repeated until the end of the table.

row_heights Specify whether row heights should be set automatically and individually or if
a numeric vector is passed each row height can be specified manually. If a table
has more rows than row heights are provided, the last given row height will be
repeated until the end of the table.

title_heights Set individual row heights for the titles only.

header_heights Set individual row heights for the table header only.

table_heights Set individual row heights for the table body only.
footnote_heights

Set individual row heights for the footnotes only.

24 excel_output_style

start_row The row in which the table starts.

start_column The column in which the table starts.
freeze_col_header

Whether to freeze the column header so that it is always visible while scrolling
down the document.

freeze_row_header

Whether to freeze the row header so that it is always visible while scrolling
sideways in the document.

filters Whether to set filters in the column header, when exporting a data frame.

grid_lines Whether to show grid lines or not.
header_back_color

Background cell color of the table header.
header_font_color

Font color of the table header.
header_font_size

Font size of the table header.
header_font_bold

Whether to print the table header in bold letters.
header_alignment

Set the text alignment of the table header.

header_wrap Whether to wrap the texts in the table header.

header_indent Indentation level of the table header.

header_borders Whether to draw borders around the table header cells.
header_border_color

Borders colors of the table header cells.
cat_col_back_color

Background cell color of the category columns inside the table.
cat_col_font_color

Font color of the category columns inside the table.
cat_col_font_size

Font size of the category columns inside the table.
cat_col_font_bold

Whether to print the category columns inside the table in bold letters.
cat_col_alignment

Set the text alignment of the category columns inside the table.

cat_col_wrap Whether to wrap the texts in the category columns inside the table.

cat_col_indent Indentation level of the category columns inside the table.
cat_col_borders

Whether to draw borders around the category columns inside the table.
cat_col_border_color

Borders colors of the category columns inside the table.
table_back_color

Background color of the inner table cells.

excel_output_style 25

table_font_color

Font color of the inner table cells.
table_font_size

Font size of the inner table cells.
table_font_bold

Whether to print the inner table cells in bold numbers
table_alignment

Set the text alignment of the inner table cells.

table_indent Indentation level of the inner table cells.

table_borders Whether to draw borders around the inner table cells.
table_border_color

Borders colors of the inner table cells.

box_back_color Background color of the left box in table header.

box_font_color Font color of the left box in table header.

box_font_size Font size of the left box in table header.

box_font_bold Whether to print the left box in table header in bold letters.

box_alignment Set the text alignment of the left box in table header.

box_wrap Whether to wrap the texts in the left box in table header.

box_indent Indentation level of the left box in table header.

box_borders Whether to draw borders around the left box in table header.
box_border_color

Borders colors of the left box in table header.

number_formats Put in a list of number formats which should be assigned to the different stats.
Number formats can be created with number_format_style().

title_font_color

Font color of the titles.
title_font_size

Font size of the tables titles.
title_font_bold

Whether to print the tables titles in bold letters.
title_alignment

Set the text alignment of the titles.
footnote_font_color

Font color of the footnotes
footnote_font_size

Font size of the tables footnotes
footnote_font_bold

Whether to print the tables footnotes in bold letters.
footnote_alignment

Set the text alignment of the footnotes.

na_symbol Define the symbol that should be used for NA values.

26 export_with_style

Details

excel_output_style() is based on the Output Delivery System (ODS) in ’SAS’, which provides
efficient and readable ways to set up different table styles.

With the output style you have full control over the table design. There is no need to think about
calculating the right place to input a background color or a border of a certain type and how to do
this in a loop for multiple cells. Just input colors, borders, font styles, etc. for the different table
parts and everything else is handled by the functions capable of using styles.

The concept basically is: design over complex calculations.

Value

Returns a list of named style options.

See Also

Creating a custom table style: modify_output_style(), number_format_style(), modify_number_formats().

Functions that can handle styles: frequencies(), crosstabs(), any_table(), export_with_style()

Examples

For default values
excel_style <- excel_output_style()

Set specific options, the rest will be set to default values
excel_style <- excel_output_style(font = "Calibri",

sheet_name = "My_Output")

For cells with no background color pass an empty string
excel_style <- excel_output_style(table_back_color = "")

export_with_style Export Data Frame With Style

Description

export_with_style() prints a data frame as an individually styled ’Excel’ table. Titles, footnotes
and labels for variable names can optionally be added.

Usage

export_with_style(
data_frame,
titles = c(),
footnotes = c(),
var_labels = list(),
workbook = NULL,

export_with_style 27

style = excel_output_style(),
output = "excel",
print = TRUE,
monitor = FALSE

)

Arguments

data_frame A data frame to print.

titles Specify one or more table titles.

footnotes Specify one or more table footnotes.

var_labels A list in which is specified which label should be printed for which variable
instead of the variable name.

workbook Insert a previously created workbook to expand the sheets instead of creating a
new file.

style A list of options can be passed to control the appearance of excel outputs. Styles
can be created with excel_output_style().

output The following output formats are available: excel and excel_nostyle.

print TRUE by default. If TRUE prints the output, if FALSE doesn’t print anything.
Can be used if one only wants to catch the output workbook.

monitor FALSE by default. If TRUE outputs two charts to visualize the functions time
consumption.

Details

export_with_style() is based on the ’SAS’ procedure Proc Print, which outputs the data frame
as is into a styled table.

Value

Returns a formatted ’Excel’ workbook.

See Also

Creating a custom table style: excel_output_style(), modify_output_style(), number_format_style(),
modify_number_formats().

Functions that can handle styles: frequencies(), crosstabs(), any_table().

Examples

Example data frame
my_data <- dummy_data(1000)

Define style
my_style <- excel_output_style(column_widths = c(2, 15, 15, 15, 9))

Define titles and footnotes. If you want to add hyperlinks you can do so by

28 frequencies

adding "link:" followed by the hyperlink to the main text.
titles <- c("This is title number 1 link: https://cran.r-project.org/",

"This is title number 2",
"This is title number 3")

footnotes <- c("This is footnote number 1",
"This is footnote number 2",
"This is footnote number 3 link: https://cran.r-project.org/")

Print styled data frame
my_data |> export_with_style(titles = titles,

footnotes = footnotes,
style = my_style)

Retrieve formatted workbook for further usage
wb <- my_data |>

export_with_style(titles = titles,
footnotes = footnotes,
style = my_style)

frequencies Display Frequency Tables of Single Variables

Description

frequencies() produces two kinds of tables for a quick overview of single variables. The first
table is for a broader overview and contains mean, sd, min, max, freq and missings. The second
table is the actual frequency table which shows the weighted sums, percentages and unweighted
frequencies per expression.

Usage

frequencies(
data_frame,
variables,
formats = c(),
by = c(),
weight = NULL,
titles = c(),
footnotes = c(),
style = excel_output_style(),
output = "console",
na.rm = FALSE,
print = TRUE,
monitor = FALSE

)

frequencies 29

Arguments

data_frame A data frame in which are the variables to tabulate.

variables A vector of single variables to create frequency tables for.

formats A list in which is specified which formats should be applied to which variables.

by Compute tables stratified by the expressions of the provided variables.

weight Put in a weight variable to compute weighted results.

titles Specify one or more table titles.

footnotes Specify one or more table footnotes.

style A list of options can be passed to control the appearance of excel outputs. Styles
can be created with excel_output_style().

output The following output formats are available: console (default), text, excel and
excel_nostyle.

na.rm FALSE by default. If TRUE removes all NA values from the variables.

print TRUE by default. If TRUE prints the output, if FALSE doesn’t print anything.
Can be used if one only wants to catch the output data frame.

monitor FALSE by default. If TRUE outputs two charts to visualize the functions time
consumption.

Details

frequencies() is based on the ’SAS’ procedure Proc Freq, which provides efficient and readable
ways to output frequency tables.

To create a frequency table you only need to provide a single variable. Nothing special about this.
The real power comes into play, when you output your tables as a fully styled ’Excel’ workbook.
Setting up a custom, reusable style is as easy as setting up options like: provide a color for the table
header, set the font size for the row header, should borders be drawn for the table cells yes/no, and
so on.

You also can provide multiple single variables to generate multiple, evenly designed tables, all at
once. For just a quick overview, rather than fully designed tables, you can also just output the tables
in ASCII style format.

Value

Returns a list of two data tables containing the results for the frequency tables.

See Also

Creating a custom table style: excel_output_style(), modify_output_style(), number_format_style(),
modify_number_formats().

Creating formats: discrete_format() and interval_format().

Functions that can handle formats and styles: crosstabs(), any_table().

Additional functions that can handle styles: export_with_style()

Additional functions that can handle formats: summarise_plus(), recode(), recode_multi()

30 frequencies

Examples

Example data frame
my_data <- dummy_data(1000)

Define titles and footnotes. If you want to add hyperlinks you can do so by
adding "link:" followed by the hyperlink to the main text.
titles <- c("This is title number 1 link: https://cran.r-project.org/",

"This is title number 2",
"This is title number 3")

footnotes <- c("This is footnote number 1",
"This is footnote number 2",
"This is footnote number 3 link: https://cran.r-project.org/")

Output frequencies tables
my_data |> frequencies(sex)
my_data |> frequencies(c(age, education),

weight = weight)

Also works with characters
my_data |> frequencies("sex")
my_data |> frequencies(c("age", "education"),

weight = "weight")

Applying formats and titles
sex. <- discrete_format(

"Total" = 1:2,
"Male" = 1,
"Female" = 2)

my_data |> frequencies(sex, formats(sex = sex.),
titles = titles,
footnotes = footnotes)

Split frequencies by expressions of another variable
my_data |> frequencies(sex, by = education)

Get a list with two data tables for further usage
result_list <- my_data |> frequencies(sex, formats(sex = sex.))

Output in text file
my_data |> frequencies(sex, output = "text")

Output to Excel
my_data |> frequencies(sex, output = "excel")

With individual styling
my_style <- excel_output_style(header_back_color = "0077B6",

font = "Times New Roman")

my_data |> frequencies(sex, output = "excel", style = my_style)

fuse_variables 31

fuse_variables Fuse Multiple Variables

Description

When you have a situation where you have multiple variables with different NA values that happen
to be in different places (where one variable has a value the other is NA and vice versa) you can
fuse these together to a single variable.

Usage

fuse_variables(
data_frame,
new_variable_name,
variables_to_fuse,
drop_original_vars = TRUE

)

Arguments

data_frame A data frame with variables to fuse.
new_variable_name

The name of the new fused variable.
variables_to_fuse

A vector with the variables that should be fused together.
drop_original_vars

Whether to drop or keep the original values. TRUE by default.

Value

Returns a data frame without the variables TYPE, TYPE_NR and DEPTH.

Examples

Example format
sex. <- discrete_format(

"Total" = 1:2,
"Male" = 1,
"Female" = 2)

Example data frame
my_data <- dummy_data(1000)

Call function
all_possible <- my_data |>

summarise_plus(class = c(year, sex),
values = c(income, probability),
statistics = c("sum", "mean", "freq"),

32 get_excel_range

formats = list(sex = "sex."),
weight = weight,
nesting = "all",
na.rm = TRUE)

all_possible <- all_possible[DEPTH <= 1] |>
fuse_variables("fusion", c("year", "sex"))

NOTE: You can generally use this function to fuse variables. What is done in
multiple steps above can be achieved by just using nested = "single" in
summarise_plus.
single <- my_data |>

summarise_plus(class = c(year, sex),
values = c(income, probability),
statistics = c("sum", "mean", "freq"),
formats = list(sex = "sex."),
weight = weight,
nesting = "single",
na.rm = TRUE)

get_excel_range Converts Numbers into ’Excel’ Ranges

Description

Converts a column number into the according letter to form a cell reference like it is used in ’Excel’
(e.g "A1"). Also can compute a range from cell to cell (e.g. "A1:BY22").

Usage

get_excel_range(
row = NULL,
column = NULL,
from_row = NULL,
from_column = NULL,
to_row = NULL,
to_column = NULL

)

Arguments

row Single row number.

column Single column number.

from_row Range start row.

from_column Range start column.

to_row Range end row.

to_column Range end column.

inverse 33

Value

Returns a character with an ’Excel’ range.

Examples

single_cell <- get_excel_range(row = 1, column = 6)
range <- get_excel_range(from_row = 1, from_column = 6,

to_row = 5, to_column = 35)

inverse Get Variable Names which are not Part of the Given Vector

Description

If you have stored variable names inside a character vector, this function gives you the inverse
variable name vector.

Usage

inverse(data_frame, var_names)

Arguments

data_frame The data frame from which to take the variable names.

var_names A character vector of variable names.

Value

Returns the inverse vector of variable names compared to the given vector.

Examples

Example data frame
my_data <- dummy_data(1000)

Get variable names
var_names <- c("year", "age", "sex")
other_names <- my_data |> inverse(var_names)

Can also be used to just get all variable names
all_names <- my_data |> inverse(NULL)
all_names <- my_data |> inverse(character(0))

34 modify_number_formats

modify_number_formats Modify Number Formats Used by any_table()

Description

Modify previously created number formats with number_format_style().

Usage

modify_number_formats(formats_to_modify, ...)

Arguments

formats_to_modify

Pre created number formats where only certain elements should be modified
while the rest is kept as is.

... Pass in names and corresponding new values for existing number formats.

Details

modify_number_formats() is based on ’SAS’ number formats and the Output Delivery System
(ODS), which provides efficient and readable ways to set up different table styles.

With the number format style you have full control over formatting numbers according to the differ-
ent statistics. There is no need to think about calculating the right place to input the number formats
and how to do this in a loop for multiple cells. Just input the different number formats and decimals
for the different statistics and everything else is handled by the functions capable of using number
styles.

The concept basically is: design over complex calculations.

Value

Returns a modified list of number format options.

See Also

Creating a custom table style: excel_output_style(), modify_output_style(), number_format_style().

Functions that can handle styles: frequencies(), crosstabs(), any_table(), export_with_style().

Examples

For default values
format_list <- number_format_style(pct_excel = "0.00000000",

pct_decimals = 8)

Set specific options, the rest will be kept as is
format_list <- format_list |> modify_number_formats(sum_excel = "#,###,##0.000")

modify_output_style 35

IMPORTANT: Don't forget to add individual formats to an excel style, otherwise
they won't come into affect.
excel_style <- excel_output_style(number_formats = format_list)

modify_output_style Modify Style for ’Excel’ Table Outputs

Description

Modify a previously created style with excel_output_style().

Usage

modify_output_style(style_to_modify, ...)

Arguments

style_to_modify

A pre created style where only certain elements should be modified while the
rest is kept as is.

... Pass in names and corresponding new values for existing style elements.

Details

modify_output_style() is based on the Output Delivery System (ODS) in ’SAS’, which provides
efficient and readable ways to set up different table styles.

With the output style you have full control over the table design. There is no need to think about
calculating the right place to input a background color or a border of a certain type and how to do
this in a loop for multiple cells. Just input colors, borders, font styles, etc. for the different table
parts and everything else is handled by the functions capable of using styles.

The concept basically is: design over complex calculations.

Value

Returns a modified list of named style options.

See Also

Creating a custom table style: excel_output_style(), number_format_style(), modify_number_formats().

Functions that can handle styles: frequencies(), crosstabs(), any_table(), export_with_style()

36 number_format_style

Examples

For default values
excel_style <- excel_output_style()

Set specific options, the rest will be kept as is
excel_style <- excel_style |> modify_output_style(sheet_name = "Sheet",

title_font_bold = FALSE)

For cells with no background color pass an empty string
excel_style <- excel_style |> modify_output_style(table_back_color = "")

number_format_style Number Formats Used by any_table()

Description

Set individual number formats for the different statistics in tables produced with any_table().

Usage

number_format_style(
pct_excel = "0.0",
freq_excel = "#,###,##0",
freq.g0_excel = "#,###,##0",
sum_excel = "#,###,##0",
sum.wgt_excel = "#,###,##0",
mean_excel = "#,###,##0",
median_excel = "#,###,##0",
mode_excel = "#,###,##0",
min_excel = "#,###,##0",
max_excel = "#,###,##0",
sd_excel = "#,###,##0.000",
variance_excel = "#,###,##0.000",
first_excel = "#,###,##0",
last_excel = "#,###,##0",
p_excel = "#,###,##0",
missing_excel = "#,###,##0",
pct_decimals = 1,
freq_decimals = 0,
freq.g0_decimals = 0,
sum_decimals = 3,
sum.wgt_decimals = 3,
mean_decimals = 2,
median_decimals = 2,
mode_decimals = 2,
min_decimals = 2,

number_format_style 37

max_decimals = 2,
sd_decimals = 3,
variance_decimals = 3,
first_decimals = 0,
last_decimals = 0,
p_decimals = 2,
missing_decimals = 0

)

Arguments

pct_excel Number format for percentage applied in Excel workbook.

freq_excel Number format for frequency applied in Excel workbook.

freq.g0_excel Number format for frequency greater zero applied in Excel workbook.

sum_excel Number format for sum applied in Excel workbook.

sum.wgt_excel Number format for sum of weights applied in Excel workbook.

mean_excel Number format for mean applied in Excel workbook.

median_excel Number format for median applied in Excel workbook.

mode_excel Number format for mode applied in Excel workbook.

min_excel Number format for min applied in Excel workbook.

max_excel Number format for max applied in Excel workbook.

sd_excel Number format for sd applied in Excel workbook.

variance_excel Number format for variance applied in Excel workbook.

first_excel Number format for first applied in Excel workbook.

last_excel Number format for last applied in Excel workbook.

p_excel Number format for percentile applied in Excel workbook.

missing_excel Number format for missing applied in Excel workbook.

pct_decimals Number of decimals for percentage.

freq_decimals Number of decimals for frequency.
freq.g0_decimals

Number of decimals for frequency greater zero.

sum_decimals Number of decimals for sum.
sum.wgt_decimals

Number of decimals for sum of weights.

mean_decimals Number of decimals for mean.
median_decimals

Number of decimals for median.

mode_decimals Number of decimals for mode.

min_decimals Number of decimals for min.

max_decimals Number of decimals for max.

sd_decimals Number of decimals for sd.

38 number_format_style

variance_decimals

Number of decimals for variance.

first_decimals Number of decimals for first.

last_decimals Number of decimals for last.

p_decimals Number of decimals for percentile.

missing_decimals

Number of decimals for missing.

Details

number_format_style() is based on ’SAS’ number formats and the Output Delivery System
(ODS), which provides efficient and readable ways to set up different table styles.

With the number format style you have full control over formatting numbers according to the differ-
ent statistics. There is no need to think about calculating the right place to input the number formats
and how to do this in a loop for multiple cells. Just input the different number formats and decimals
for the different statistics and everything else is handled by the functions capable of using number
styles.

The concept basically is: design over complex calculations.

Value

Returns a list of named number format options.

See Also

Creating a custom table style: excel_output_style(), modify_output_style(), modify_number_formats().

Functions that can handle styles: frequencies(), crosstabs(), any_table(), export_with_style()

Examples

For default values
format_list <- number_format_style()

Set specific options, the rest will be set to default values
format_list <- number_format_style(pct_excel = "0.00000000",

pct_decimals = 8)

IMPORTANT: Don't forget to add individual formats to an excel style, otherwise
they won't come into affect.
excel_style <- excel_output_style(number_formats = format_list)

recode 39

recode Recode New Variables With Formats

Description

Instead of writing multiple if-clauses to recode values into a new variable, you can use formats to
recode a variable into a new one.

Usage

recode(data_frame, new_var, ...)

recode_multi(data_frame, ...)

Arguments

data_frame A data frame which contains the the original variables to recode.

new_var The name of the newly created and recoded variable.

... recode() Pass in the original variable name that should be recoded along with
the corresponding format container in the form: variable = format.
In recode_multi() multiple variables can be recoded in one go and multilabels
can be applied. This overwrites the original variables and duplicates rows if
multilabels are applied. In occasions were you want to use format containers
to afterwards perform operations with other packages, you can make use of this
principle with this function.

Details

recode() is based on the ’SAS’ function put(), which provides an efficient and readable way, to
generate new variables with the help of formats.

When creating a format you can basically write code like you think: This new category consists of
these original values. And after that you just apply these new categories to the original values to
create a new variable. No need for multiple if_else statements.

Value

Returns a data frame with the newly recoded variable.

See Also

Creating formats: discrete_format() and interval_format().

Functions that also make use of formats: frequencies(), crosstabs(), any_table().

40 remove_stat_extension

Examples

Example formats
age. <- discrete_format(

"under 18" = 0:17,
"18 to under 25" = 18:24,
"25 to under 55" = 25:54,
"55 to under 65" = 55:64,
"65 and older" = 65:100)

Example data frame
my_data <- dummy_data(1000)

Call function
my_data <- my_data |> recode("age_group1", age = age.)

Formats can also be passed as characters
my_data <- my_data |> recode("age_group2", age = "age.")

Multilabel recode
sex. <- discrete_format(

"Total" = 1:2,
"Male" = 1,
"Female" = 2)

income. <- interval_format(
"Total" = 0:99999,
"below 500" = 0:499,
"500 to under 1000" = 500:999,
"1000 to under 2000" = 1000:1999,
"2000 and more" = 2000:99999)

multi_data <- my_data |> recode_multi(sex = sex., income = income.)

remove_stat_extension Replace Statistic From Variable Names

Description

Remove the statistic name from variable names, so that they get back their old names without
extension.

Usage

remove_stat_extension(data_frame, statistics)

Arguments

data_frame The data frame in which there are variables to be renamed.
statistics Statistic extensions that should be removed from the variable names.

rename_pattern 41

Value

Returns a data frame with renamed variables.

Examples

Example data frame
my_data <- dummy_data(1000)

Summarise data
all_nested <- my_data |>

summarise_plus(class = c(year, sex),
values = c(weight, income),
statistics = c("sum", "pct_group", "pct_total", "sum_wgt", "freq"),
weight = weight,
nesting = "deepest",
na.rm = TRUE)

Remove statistic extension
new_names <- all_nested |> remove_stat_extension("sum")

rename_pattern Replace Patterns Inside Variable Names

Description

Replace a certain pattern inside a variable name with a new one. This can be used if there are
multiple different variable names which have a pattern in common (e.g. all end in "_sum" but start
different), so that there don’t have to be multiple rename variable calls.

Usage

rename_pattern(data_frame, old_pattern, new_pattern)

Arguments

data_frame The data frame in which there are variables to be renamed.

old_pattern The pattern which should be replaced in the variable names.

new_pattern The pattern which should be set in place for the old one.

Value

Returns a data frame with renamed variables.

42 replace_except

Examples

Example data frame
my_data <- dummy_data(1000)

Summarise data
all_nested <- my_data |>

summarise_plus(class = c(year, sex),
values = c(weight, income),
statistics = c("sum", "pct_group", "pct_total", "sum_wgt", "freq"),
weight = weight,
nesting = "deepest",
na.rm = TRUE)

Rename variables by repacing patterns
new_names <- all_nested |>

rename_pattern("pct", "percent") |>
rename_pattern("_sum", "")

replace_except Replace Patterns While Protecting Exceptions

Description

Replaces a provided pattern with another, while protecting exceptions. Exceptions can contain the
given pattern, but won’t be changed during replacement.

Usage

replace_except(vector, pattern, replacement, exceptions = NULL)

Arguments

vector A vector containing the texts, where a pattern should be replaced.

pattern The pattern that should be replaced.

replacement The new pattern, which replaces the old one.

exceptions A character vector containing exceptions, which should not be altered.

Value

Returns a vector with replaced pattern.

setcolorder_by_pattern 43

Examples

Vector, where underscores hsould be replaced
underscores <- c("my_variable", "var_with_underscores", "var_sum", "var_pct_total")

Extensions, where underscores shouldn't be replaced
extensions <- c("_sum", "_pct_group", "_pct_total", "_pct_value", "_pct", "_freq_g0",

"_freq", "_mean", "_median", "_mode", "_min", "_max", "_first",
"_last", "_p1", "_p2", "_p3", "_p4", "_p5", "_p6", "_p7", "_p8", "_p9",
"sum_wgt", "_sd", "_variance", "_missing")

Replace
new_vector <- underscores |> replace_except("_", ".", extensions)

setcolorder_by_pattern

Order Columns by Variable Name Patterns

Description

Order variables in a data frame based on a pattern rather than whole variable names. E.g. grab every
variable that contains "sum" in it’s name and order them together so that they appear next to each
other.

Usage

setcolorder_by_pattern(data_frame, pattern)

Arguments

data_frame The data frame to be ordered.

pattern The pattern which is used for ordering the data frame columns.

Value

Returns a reordered data frame with the ordered variables at the end.

Examples

Example data frame
my_data <- dummy_data(1000)

Summarise data
all_nested <- my_data |>

summarise_plus(class = c(year, sex),
values = c(weight, income),
statistics = c("sum", "pct_group", "pct_total", "sum_wgt", "freq"),
weight = weight,

44 split_by

nesting = "deepest",
na.rm = TRUE)

Set a different column order
new_order <- all_nested |> setcolorder_by_pattern(c("pct", "freq", "sum"))

split_by Split Data Frame by Variable Expressions or Condition

Description

Split up a data frame based on variable expressions or on conditions to receive multiple smaller data
frames.

Usage

split_by_var(data_frame, variable)

split_by_condition(data_frame, ..., inverse = FALSE)

Arguments

data_frame A data frame which should be split up into multiple data frames.

variable In split_by_var() pass in a variable name which expressions are used for
splitting up the data frame.

... In split_by_condition() pass in one or multiple conditions on which the pro-
vided data frame should be splitted.

inverse In split_by_condition() if only one condition is provided, the data frame can
be split into two parts. The second returned data frame will be the inverse group
of the first.

Details

split_by() is based on the explicit Output from ’SAS’. With the Output function one can - among
other things - explicitly tell ’SAS’ which observation to output into which data set. Which enables
the user to output one observation into one or multiple data sets.

Instead of subsetting the same data frame multiple times manually, you can subset it multiple times
at once with this function.

Value

split_by_var(): Returns a list of data frames split by variable expressions. The lists names are
the variable expressions.

split_by_condition(): Returns a list of data frames split conditionally. The lists names are the
conditions.

summarise_plus 45

Examples

Example data frame
my_data <- dummy_data(1000)

Split by variable expressions
split_var_df <- my_data |> split_by_var(sex)

Split by conditions
split_cond_df <- my_data |> split_by_condition(sex == 1 & age < 18,

sex == 2 & age >= 18)

Split by condition with inverse group
split_inv_df <- my_data |> split_by_condition(sex == 1, inverse = TRUE)

summarise_plus Fast and Powerful yet Simple to Use Summarise

Description

summarise_plus() creates a new aggregated data table with the desired grouping. It can output
only the deepest nested combination of the grouping variables (default) or you can also output
every possible combination of the grouping variables at once, with just one small change. Besides
the normal summary functions like sum, mean or median, you can also calculate their respective
weighted version by just setting a weight variable.

Usage

summarise_plus(
data_frame,
class = NULL,
values,
statistics = c("sum", "freq"),
formats = c(),
types = c(),
weight = NULL,
nesting = "deepest",
merge_back = FALSE,
na.rm = FALSE,
monitor = FALSE,
notes = TRUE

)

Arguments

data_frame A data frame to summarise.

class A vector containing all grouping variables.

46 summarise_plus

values A vector containing all variables that should be summarised.

statistics Available functions:

• "sum" -> Weighted and unweighted sum
• "sum_wgt" -> Sum of all weights
• "freq" -> Unweighted frequency
• "freq_g0" -> Unweighted frequency of all values greater than zero
• "pct_group" -> Weighted and unweighted percentages within the respective

group
• "pct_total" -> Weighted and unweighted percentages compared to the grand

total
• "mean" -> Weighted and unweighted mean
• "median" -> Weighted and unweighted median
• "mode" -> Weighted and unweighted mode
• "min" -> Minimum
• "max" -> Maximum
• "sd" -> Weighted and unweighted standard deviation
• "variance" -> Weighted and unweighted standard variance
• "first" -> First value
• "last" -> Last value
• "pn" -> Weighted and unweighted percentiles (any p1, p2, p3, ... possible)
• "missing" -> Missings generated by the value variables

formats A list in which is specified which formats should be applied to which class
variables.

types A character vector specifying the different combinations of group variables which
should be computed when using nesting = "all". If left empty all possible com-
binations will be computed.

weight Put in a weight variable to compute weighted results.

nesting The predefined value is "deepest" meaning that only the fully nested version of
all class variables will be computed. If set to "all", all possible combinations will
be computed in one data table. The option "single" only outputs the ungrouped
summary of all class variables in one data table.

merge_back Newly summarised variables can be merged back to the original data frame if
TRUE. Only works if nested = "deepest and no formats are defined.

na.rm FALSE by default. If TRUE removes all NA values from the class variables.

monitor FALSE by default. If TRUE outputs two charts to visualize the functions time
consumption.

notes TRUE by default. Prints notifications about NA values produced by class vari-
ables during summarise.

Details

summarise_plus() is based on the ’SAS’ procedure Proc Summary, which provides efficient and
readable ways to perform complex aggregations.

summarise_plus 47

Normally you would compute new categorical variables beforehand - probably even in different
forms, if you wanted to have different categorizations - and bloat up the data set. After all this
recoding footwork you could finally use multiple summaries to compute all the stats you need to
then put them back together. With this function this is no more necessary.

In summarise_plus() you put in the original data frame and let the recoding happen via format
containers. This is very efficient, since new variables and categories are only created just before the
summarise happens.

Additionally you can specify whether you only want to produce the all nested version of all group
variables or whether you want to produce every possible combination in one go. All with a single
option.

The function is optimized to always take the fastest route, depending on the options specified.

Value

Returns a summarised data table.

See Also

Creating formats: discrete_format() and interval_format().

Functions that also make use of formats: frequencies(), crosstabs(), any_table(), recode(),
recode_multi().

Examples

Example formats
age. <- discrete_format(

"Total" = 0:100,
"under 18" = 0:17,
"18 to under 25" = 18:24,
"25 to under 55" = 25:54,
"55 to under 65" = 55:64,
"65 and older" = 65:100)

sex. <- discrete_format(
"Total" = 1:2,
"Male" = 1,
"Female" = 2)

income. <- interval_format(
"Total" = 0:99999,
"below 500" = 0:499,
"500 to under 1000" = 500:999,
"1000 to under 2000" = 1000:1999,
"2000 and more" = 2000:99999)

Example data frame
my_data <- dummy_data(1000)

Call function
all_nested <- my_data |>

48 summarise_plus

summarise_plus(class = c(year, sex, age),
values = income,
statistics = c("sum", "pct_group", "pct_total", "sum_wgt", "freq"),
formats = list(sex = sex., age = age.),
weight = weight,
nesting = "deepest",
na.rm = TRUE)

all_possible <- my_data |>
summarise_plus(class = c(year, sex, age, income),

values = c(probability),
statistics = c("sum", "p1", "p99", "min", "max", "freq", "freq_g0"),
formats = list(sex = sex.,

age = age.,
income = income.),

weight = weight,
nesting = "all",
na.rm = TRUE)

Formats can also be passed as characters
single <- my_data |>

summarise_plus(class = c(year, age, sex),
values = weight,
statistics = c("sum", "mean"),
formats = list(sex = "sex.", age = "age."),
nesting = "single")

merge_back <- my_data |>
summarise_plus(class = c(year, age, sex),

values = weight,
statistics = c("sum", "mean"),
nesting = "deepest",
merge_back = TRUE)

certain_types <- my_data |>
summarise_plus(class = c(year, sex, age),

values = c(probability),
statistics = c("sum", "mean", "freq"),
formats = list(sex = sex.,

age = age.),
types = c("year", "year + age", "age + sex"),
weight = weight,
nesting = "all",
na.rm = TRUE)

Index

add_extension, 2
any_table, 3
any_table(), 2, 3, 5, 14, 19, 22, 26, 27, 29,

34–36, 38, 39, 47
args_to_char, 9

build_master, 10
build_master(), 10
build_rstheme, 11

combine_into_workbook, 14
convert_numeric, 16
convert_numeric(), 16, 17
crosstabs, 17
crosstabs(), 6, 17, 18, 22, 26, 27, 29, 34, 35,

38, 39, 47

discrete_format(), 6, 19, 29, 39, 47
drop_type_vars, 20
dummy_data, 21

excel_output_style, 22
excel_output_style(), 5, 6, 18, 19, 26, 27,

29, 34, 35, 38
export_with_style, 26
export_with_style(), 6, 19, 26, 27, 29, 34,

35, 38

frequencies, 28
frequencies(), 6, 19, 22, 26–29, 34, 35, 38,

39, 47
fuse_variables, 31

get_excel_range, 32

interval_format(), 6, 19, 29, 39, 47
inverse, 33
is_numeric (convert_numeric), 16
is_numeric(), 16, 17

modify_number_formats, 34

modify_number_formats(), 6, 19, 26, 27, 29,
34, 35, 38

modify_output_style, 35
modify_output_style(), 6, 19, 26, 27, 29,

34, 35, 38

number_format_style, 36
number_format_style(), 6, 19, 25–27, 29,

34, 35, 38

recode, 39
recode(), 6, 19, 29, 39, 47
recode_multi (recode), 39
recode_multi(), 6, 19, 29, 39, 47
remove_stat_extension, 40
rename_pattern, 41
replace_except, 42

setcolorder_by_pattern, 43
split_by, 44
split_by(), 44
split_by_condition (split_by), 44
split_by_condition(), 44
split_by_var (split_by), 44
split_by_var(), 44
summarise_plus, 45
summarise_plus(), 6, 19, 20, 29, 45–47

49

	add_extension
	any_table
	args_to_char
	build_master
	build_rstheme
	combine_into_workbook
	convert_numeric
	crosstabs
	drop_type_vars
	dummy_data
	excel_output_style
	export_with_style
	frequencies
	fuse_variables
	get_excel_range
	inverse
	modify_number_formats
	modify_output_style
	number_format_style
	recode
	remove_stat_extension
	rename_pattern
	replace_except
	setcolorder_by_pattern
	split_by
	summarise_plus
	Index

