| Type: | Package | 
| Title: | The q-Gaussian Distribution | 
| Version: | 0.1.8 | 
| Author: | Emerson Luis de Santa Helena <elsh@ufs.br> Wagner Santos de Lima <wagnersantos.ufs@hotmail.com> | 
| Maintainer: | Wagner Santos de Lima <wagnersantos.ufs@hotmail.com> | 
| Description: | Density, distribution function, quantile function and random generation for the q-gaussian distribution with parameters mu and sig. | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| Imports: | Rcpp (≥ 0.12.10), stats, robustbase, zipfR | 
| LinkingTo: | Rcpp | 
| LazyData: | true | 
| RoxygenNote: | 6.0.1 | 
| NeedsCompilation: | yes | 
| Packaged: | 2018-07-12 18:31:56 UTC; elsh | 
| Repository: | CRAN | 
| Date/Publication: | 2018-07-12 18:50:06 UTC | 
Chaotic, a random number generator of q-Gaussian random variables.
Description
Given a random number generator of q-Gaussian random variables for a range of q values, -8 < q < 3, based on deterministic map dynamics. To yield a 'q' value, a characteristic entropic index of the q-gaussian distributions.
Usage
Chaotic(n,q,v0,z0)
Arguments
| n | number of observations. If length(n) > 1, the length is taken to be the number required. | 
| q | entropic index. | 
| v0 | a random seed. | 
| z0 | a random seed. | 
Value
a number q < 3, and the standard error.
Author(s)
Emerson Luis de Santa Helena , Wagner Santos de Lima
References
Umeno, K., Sato, A., IEEE Transactions on Information Theory (Volume:59,Issue:5,May 2013).Chaotic Method for Generating q-Gaussian Random Variables.
See Also
Distributions for other standard distributions, including dt and dcauchy.
Distributions
Examples
t=Chaotic(100000,0,.1,.1)
hist(t,breaks=100)
The q-gaussian Distribution
Description
Density, distribution function, quantile function and random generation for the q-gaussian distribution with parameters mu and sig.
Usage
cqgauss(p, q = 0, mu = 0, sig = 1, lower.tail = TRUE)
Arguments
| p | vector of probabilities. | 
| q | entropic index. | 
| mu | a value for q-mean. | 
| sig | a value for q-variance. | 
| lower.tail | logical; if TRUE (default), probabilities are P[X <= x] otherwise, P[X > x]. | 
Details
If q , mu and sig values are not specified, they assume the default values of 0, 0 and 1, respectively. Defining Z=(q-1)/(3-q), the q-gaussian distribution has density wrinten as
p(x) = (sig*Beta(alpha/2,1/2))^-1*(1+Z(x-mu)^2/sig^2)^-(1+1/Z)/2
where alpha = 1 - 1/Z when q < 1 and 1/Z when 1 < q < 3.
Value
dqgauss gives the density, pqgauss gives the distribution function, cqgauss gives the quantile function, and rqgauss generates random deviates.
Author(s)
Emerson Luis de Santa Helena , Wagner Santos de Lima
References
Thistleton, W.,Marsh, J. A.,Nelson, K.,Tsallis, C., (2007) IEEE Transactions on Information Theory, 53(12):4805
Tsallis, C., (2009) Introduction to Nonextensive Statistical Mechanics. Springer.
de Santa Helena, E. L., Nascimento, C. M., and Gerhardt, G. J., (2015) Alternative way to charecterize a q-gaussian distribution by a robust heavy tail measurement. Physica A, (435):44-50.
Manuscript submitted for publication (2016) qGaussian: Tools to Explore Applications of Tsallis Statistics
See Also
Distributions for other standard distributions, including dt and dcauchy.
Distributions
Examples
 qv <- c(2.8,2.5,2,1.01,0,-5); nn <- 700
 xrg <- sqrt((3-qv[6])/(1-qv[6]))
 xr <- seq(-xrg,xrg,by=2*xrg/nn)
 y0 <- dqgauss(xr,qv[6])
 plot(xr,y0,ty='l',xlim=range(-4.5,4.5),ylab='p(x)',xlab='x')
 for (i in 1:5){
 if (qv[i]< 1) xrg <- sqrt((3-qv[i])/(1-qv[i]))
 else xrg <- 4.5
 vby <- 2*xrg/nn
 xr <- seq(-xrg,xrg,by=2*xrg/nn)
 y0 <- dqgauss(xr,qv[i])
 points (xr,y0,ty='l',col=(i+1))
}
 legend(2, 0.4, legend =c(expression(paste(q==-5)),expression(paste(q==0)),
 expression(paste(q==1.01)),expression(paste(q==2)),expression(paste(q==2.5)),
 expression(paste(q==2.8))),col = c(1,6,5,4,3,2), lty = c(1,1,1,1,1,1))
                          ######
 qv <- 0
 rr <- rqgauss(2^16,qv)
 nn <- 70
 xrg <- sqrt((3-qv)/(1-qv))
 vby <- 2*xrg/(nn)
 xr <- seq(-xrg,xrg,by=vby)
 hist (rr,breaks=xr,freq=FALSE,xlab="x",main='')
 y <- dqgauss(xr)
 lines(xr,y/sum(y*vby),cex=.5,col=2,lty=4)
The q-gaussian Distribution
Description
Density, distribution function, quantile function and random generation for the q-gaussian distribution with parameters mu and sig.
Usage
dqgauss(x, q = 0, mu = 0, sig = 1)
Arguments
| x | vector of quantiles. | 
| q | entropic index. | 
| mu | a value for q-mean. | 
| sig | a value for q-variance. | 
Details
If q , mu and sig values are not specified, they assume the default values of 0, 0 and 1, respectively. Defining Z=(q-1)/(3-q), the q-gaussian distribution has density wrinten as
p(x) = (sig*Beta(alpha/2,1/2))^-1*(1+Z(x-mu)^2/sig^2)^-(1+1/Z)/2
where alpha = 1 - 1/Z when q < 1 and 1/Z when 1 < q < 3.
Value
dqgauss gives the density, pqgauss gives the distribution function, cqgauss gives the quantile function, and rqgauss generates random deviates.
Author(s)
Emerson Luis de Santa Helena , Wagner Santos de Lima
References
Thistleton, W.,Marsh, J. A.,Nelson, K.,Tsallis, C., (2007) IEEE Transactions on Information Theory, 53(12):4805
Tsallis, C., (2009) Introduction to Nonextensive Statistical Mechanics. Springer.
de Santa Helena, E. L., Nascimento, C. M., and Gerhardt, G. J., (2015) Alternative way to charecterize a q-gaussian distribution by a robust heavy tail measurement. Physica A, (435):44-50.
Manuscript submitted for publication (2016) qGaussian: Tools to Explore Applications of Tsallis Statistics
See Also
Distributions for other standard distributions, including dt and dcauchy.
Distributions
Examples
 qv <- c(2.8,2.5,2,1.01,0,-5); nn <- 700
 xrg <- sqrt((3-qv[6])/(1-qv[6]))
 xr <- seq(-xrg,xrg,by=2*xrg/nn)
 y0 <- dqgauss(xr,qv[6])
 plot(xr,y0,ty='l',xlim=range(-4.5,4.5),ylab='p(x)',xlab='x')
 for (i in 1:5){
 if (qv[i]< 1) xrg <- sqrt((3-qv[i])/(1-qv[i]))
 else xrg <- 4.5
 vby <- 2*xrg/nn
 xr <- seq(-xrg,xrg,by=2*xrg/nn)
 y0 <- dqgauss(xr,qv[i])
 points (xr,y0,ty='l',col=(i+1))
}
 legend(2, 0.4, legend =c(expression(paste(q==-5)),expression(paste(q==0)),
 expression(paste(q==1.01)),expression(paste(q==2)),expression(paste(q==2.5)),
 expression(paste(q==2.8))),col = c(1,6,5,4,3,2), lty = c(1,1,1,1,1,1))
                          ######
 qv <- 0
 rr <- rqgauss(2^16,qv)
 nn <- 70
 xrg <- sqrt((3-qv)/(1-qv))
 vby <- 2*xrg/(nn)
 xr <- seq(-xrg,xrg,by=vby)
 hist (rr,breaks=xr,freq=FALSE,xlab="x",main='')
 y <- dqgauss(xr)
 lines(xr,y/sum(y*vby),cex=.5,col=2,lty=4)
The q-gaussian Distribution
Description
Density, distribution function, quantile function and random generation for the q-gaussian distribution with parameters mu and sig.
Usage
pqgauss(x, q = 0, mu = 0, sig = 1, lower.tail = TRUE)
Arguments
| x | vector of quantiles. | 
| q | entropic index. | 
| mu | a value for q-mean. | 
| sig | a value for q-variance. | 
| lower.tail | logical; if TRUE (default), probabilities are P[X <= x] otherwise, P[X > x]. | 
Details
If q , mu and sig values are not specified, they assume the default values of 0, 0 and 1, respectively. Defining Z=(q-1)/(3-q), the q-gaussian distribution has density wrinten as
p(x) = (sig*Beta(alpha/2,1/2))^-1*(1+Z(x-mu)^2/sig^2)^-(1+1/Z)/2
where alpha = 1 - 1/Z when q < 1 and 1/Z when 1 < q < 3.
Value
dqgauss gives the density, pqgauss gives the distribution function, cqgauss gives the quantile function, and rqgauss generates random deviates.
Author(s)
Emerson Luis de Santa Helena , Wagner Santos de Lima
References
Thistleton, W.,Marsh, J. A.,Nelson, K.,Tsallis, C., (2007) IEEE Transactions on Information Theory, 53(12):4805
Tsallis, C., (2009) Introduction to Nonextensive Statistical Mechanics. Springer.
de Santa Helena, E. L., Nascimento, C. M., and Gerhardt, G. J., (2015) Alternative way to charecterize a q-gaussian distribution by a robust heavy tail measurement. Physica A, (435):44-50.
Manuscript submitted for publication (2016) qGaussian: Tools to Explore Applications of Tsallis Statistics
See Also
Distributions for other standard distributions, including dt and dcauchy.
Distributions
Examples
 qv <- c(2.8,2.5,2,1.01,0,-5); nn <- 700
 xrg <- sqrt((3-qv[6])/(1-qv[6]))
 xr <- seq(-xrg,xrg,by=2*xrg/nn)
 y0 <- dqgauss(xr,qv[6])
 plot(xr,y0,ty='l',xlim=range(-4.5,4.5),ylab='p(x)',xlab='x')
 for (i in 1:5){
 if (qv[i]< 1) xrg <- sqrt((3-qv[i])/(1-qv[i]))
 else xrg <- 4.5
 vby <- 2*xrg/nn
 xr <- seq(-xrg,xrg,by=2*xrg/nn)
 y0 <- dqgauss(xr,qv[i])
 points (xr,y0,ty='l',col=(i+1))
}
 legend(2, 0.4, legend =c(expression(paste(q==-5)),expression(paste(q==0)),
 expression(paste(q==1.01)),expression(paste(q==2)),expression(paste(q==2.5)),
 expression(paste(q==2.8))),col = c(1,6,5,4,3,2), lty = c(1,1,1,1,1,1))
                          ######
 qv <- 0
 rr <- rqgauss(2^16,qv)
 nn <- 70
 xrg <- sqrt((3-qv)/(1-qv))
 vby <- 2*xrg/(nn)
 xr <- seq(-xrg,xrg,by=vby)
 hist (rr,breaks=xr,freq=FALSE,xlab="x",main='')
 y <- dqgauss(xr)
 lines(xr,y/sum(y*vby),cex=.5,col=2,lty=4)
qbymc, a q value estimator founded upon medcouple.
Description
Given a random data set, the 'qbymc' uses the medcouple, a robust measure of tail weights, to yield a 'q' value, a characteristic entropic index of the q-gaussian distributions.
Usage
qbymc(x)
Arguments
| x | numeric vector | 
Value
a number q < 3, and the standard error.
Author(s)
Emerson Luis de Santa Helena , Wagner Santos de Lima
References
de Santa Helena, E. L., Nascimento, C. M., and Gerhardt, G. J., (2015) Alternative way to charecterize a q-gaussian distribution by a robust heavy tail measurement. Physica A, (435):44-50.
See Also
Robustbase for medcouple.
mc
Examples
set.seed(0002)
rr <- rqgauss(1000,1.333)
qbymc(rr)
The q-gaussian Distribution
Description
Density, distribution function, quantile function and random generation for the q-gaussian distribution with parameters mu and sig.
Usage
rqgauss(n, q = 0, mu = 0, sig = 1, meth = "Box-Muller")
Arguments
| n | number of observations. If length(n) > 1, the length is taken to be the number required. | 
| q | entropic index. | 
| mu | a value for q-mean. | 
| sig | a value for q-variance. | 
| meth | method used at random generator | 
Details
If q , mu and sig values are not specified, they assume the default values of 0, 0 and 1, respectively. Defining Z=(q-1)/(3-q), the q-gaussian distribution has density wrinten as
p(x) = (sig*Beta(alpha/2,1/2))^-1*(1+Z(x-mu)^2/sig^2)^-(1+1/Z)/2
where alpha = 1 - 1/Z when q < 1 and 1/Z when 1 < q < 3.
For different methods use: meth = "Chaotic" , meth = "Quantile" and meth = "Box-Muller"
Value
dqgauss gives the density, pqgauss gives the distribution function, cqgauss gives the quantile function, and rqgauss generates random deviates.
Author(s)
Emerson Luis de Santa Helena , Wagner Santos de Lima
References
Umeno, K., Sato, A., IEEE Transactions on Information Theory (Volume:59,Issue:5,May 2013).Chaotic Method for Generating q-Gaussian Random Variables.
Thistleton, W.,Marsh, J. A.,Nelson, K.,Tsallis, C., (2007) IEEE Transactions on Information Theory, 53(12):4805
Tsallis, C., (2009) Introduction to Nonextensive Statistical Mechanics. Springer.
de Santa Helena, E. L., Nascimento, C. M., and Gerhardt, G. J., (2015) Alternative way to characterize a q-gaussian distribution by a robust heavy tail measurement. Physica A, (435):44-50.
de Lima, Wagner S., de Santa Helena, E. L., qGaussian: Tools to Explore Applications of Tsallis Statistics. arXiv:1703.06172
See Also
Distributions for other standard distributions, including dt and dcauchy.
Distributions
Examples
 qv <- c(2.8,2.5,2,1.01,0,-5); nn <- 700
 xrg <- sqrt((3-qv[6])/(1-qv[6]))
 xr <- seq(-xrg,xrg,by=2*xrg/nn)
 y0 <- dqgauss(xr,qv[6])
 plot(xr,y0,ty='l',xlim=range(-4.5,4.5),ylab='p(x)',xlab='x')
 for (i in 1:5){
 if (qv[i]< 1) xrg <- sqrt((3-qv[i])/(1-qv[i]))
 else xrg <- 4.5
 vby <- 2*xrg/nn
 xr <- seq(-xrg,xrg,by=2*xrg/nn)
 y0 <- dqgauss(xr,qv[i])
 points (xr,y0,ty='l',col=(i+1))
}
 legend(2, 0.4, legend =c(expression(paste(q==-5)),expression(paste(q==0)),
 expression(paste(q==1.01)),expression(paste(q==2)),expression(paste(q==2.5)),
 expression(paste(q==2.8))),col = c(1,6,5,4,3,2), lty = c(1,1,1,1,1,1))
                          ######
 qv <- 0
 rr <- rqgauss(2^16,qv)
 nn <- 70
 xrg <- sqrt((3-qv)/(1-qv))
 vby <- 2*xrg/(nn)
 xr <- seq(-xrg,xrg,by=vby)
 hist (rr,breaks=xr,freq=FALSE,xlab="x",main='')
 y <- dqgauss(xr)
 lines(xr,y/sum(y*vby),cex=.5,col=2,lty=4)