
The multiDEGGs package test for differential gene-gene correlations
across different groups of samples in multi omic data.
Specific gene-gene interactions can be explored and gene-gene pair
regression plots can be interactively shown.
Install from CRAN:
install.packages("multiDEGGs")
Install from Github:
devtools::install_github("elisabettasciacca/multiDEGGs")
Load package and sample data
library(multiDEGGs)
data("synthetic_metadata")
data("synthetic_rnaseqData")
data("synthetic_proteomicData")
data("synthetic_OlinkData") Generate differential networks:
assayData_list <- list("RNAseq" = synthetic_rnaseqData,
"Proteomics" = synthetic_proteomicData,
"Olink" = synthetic_OlinkData)
deggs_object <- get_diffNetworks(assayData = assayData_list,
metadata = synthetic_metadata,
category_variable = "response",
regression_method = "lm",
padj_method = "bonferroni",
verbose = FALSE,
show_progressBar = FALSE,
cores = 2)Visualise interactively (will open a shiny interface)
View_diffNetworks(deggs_object)Get a table listing all the significant interactions found in each category
get_multiOmics_diffNetworks(deggs_object, sig_threshold = 0.05)Plot differential regression fits for a single interaction
plot_regressions(deggs_object, assayDataName = "RNAseq", gene_A = "MTOR", gene_B = "AKT2", legend_position = "bottomright")
citation("multiDEGGs")