mRMRe: Parallelized Minimum Redundancy, Maximum Relevance (mRMR)
Computes mutual information matrices from continuous, categorical
and survival variables, as well as feature selection with minimum redundancy,
maximum relevance (mRMR) and a new ensemble mRMR technique. Published in
De Jay et al. (2013) <doi:10.1093/bioinformatics/btt383>.
| Version: |
2.1.2.2 |
| Depends: |
R (≥ 3.5), survival, igraph, methods |
| Published: |
2024-11-05 |
| DOI: |
10.32614/CRAN.package.mRMRe |
| Author: |
Nicolas De Jay [aut],
Simon Papillon-Cavanagh [aut],
Catharina Olsen [aut],
Gianluca Bontempi [aut],
Bo Li [aut],
Christopher Eeles [ctb],
Benjamin Haibe-Kains [aut, cre] |
| Maintainer: |
Benjamin Haibe-Kains <benjamin.haibe.kains at utoronto.ca> |
| License: |
Artistic-2.0 |
| URL: |
https://www.pmgenomics.ca/bhklab/ |
| NeedsCompilation: |
yes |
| Citation: |
mRMRe citation info |
| CRAN checks: |
mRMRe results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=mRMRe
to link to this page.