
Package ‘kzs’

June 17, 2025

Type Package

Title Kolmogorov-Zurbenko Spatial Smoothing and Applications

Version 1.4.1

Date 2008-10-24

Depends R (>= 2.8.0), graphics, lattice, stats

Description A spatial smoothing algorithm based on convolutions of finite rectangular ker-
nels that provides sharp resolution in the presence of high levels of noise.

License GPL (>= 2)

NeedsCompilation no

Author Derek Cyr [aut, cre],
Igor Zurbenko. [aut]

Maintainer Derek Cyr <cyr.derek@gmail.com>

Repository CRAN

Date/Publication 2025-06-17 10:53:32 UTC

Contents

kzs . 2
kzs.2d . 4
kzs.3d_data . 6
kzs.md . 7
kzs.params . 10

Index 11

1

2 kzs

kzs Kolmogorov-Zurbenko Spline

Description

This is a one-dimensional iterative smoothing algorithm based on convolutions of rectangular ker-
nels.

Usage

kzs(y, x, smooth, scale, k = 1, edges = TRUE, plot = TRUE)

Arguments

y a one-dimensional vector of real values representing the response variable to be
smoothed.

x a one-dimensional vector of real values representing the input variable.

smooth a real number defining the width of the smoothing window, i.e., the width of the
rectangular kernel.

scale for an irregularly spaced x, scale is a positive real number that will define a
uniform scale along x.

k an integer specifying the number of iterations kzs will execute; k may also be
interpreted as the order of smoothness (as a polynomial of degree k-1). By
default, k = 1.

edges a logical indicating whether or not to display the outcome data beyond the initial
range of x. By default, edges = TRUE.

plot a logical indicating whether or not to produce a plot of the kzs outcome. This is
TRUE by default.

Details

The relation between variables Y and X as a function of a current value of X = x [namely, Y(x)] is
often desired as a result of practical research. Usually we search for some simple function, Y(x),
when given a data set of pairs (Xi, Yi). When plotted, these pairs frequently resemble a noisy
plot, and thus Y(x) is desired to be a smooth outcome that captures patterns or long-term trends in
the original data, while suppressing the noise. The kzs function is based on convolutions of the
rectangular kernel, which is equilvalent to repeated applications of a moving average. According
to the Central Limit Theorem, repeated convolutions with rectangular kernels will converge to the
Gaussian kernel; the resulting kernel will have finite support equal to smooth*k, which will result
in a smooth outcome with diminished noise leakage, which is a feature that the standard Gaussian
kernel does not exhibit.

kzs 3

Value

a two-column data frame of paired values (xk, yk):

xk x values in increments of scale

yk smoothed response values resulting from k iterations of kzs

Note

Data set (Xi, Yi) must be provided, usually as some observations that occur at certain times; kzs is
designed for the general situation, including time series data. In many applications where the input
variable, x, can be time, kzs is resolving the problem of missing values in time series or irregularly
observed values in longitudinal data analysis.

kzs may take time to completely run depending on the size of the data set used and the number of
iterations specified.

For more information on the restrictions imposed on delta and d, consult kzs.params.

Author(s)

Derek Cyr <cyr.derek@gmail.com> and Igor Zurbenko <igorg.zurbenko@gmail.com>

References

Zurbenko, I.G. (1986). The Spectral Analysis of Time Series. North Holland Series in Statistics and
Probability, Elsevier Science, Amsterdam.

See Also

kzs.params, kzs.2d, kzs.md

Examples

Total time t
t <- seq(from = -round(400*pi), to = round(400*pi), by = .25)

Construct the signal over time
ts <- 0.5*sin(sqrt((2*pi*abs(t))/200))
signal <- ifelse(t < 0, -ts, ts)

Bury the signal in noise [randomly, from N(0, 1)]
et <- rnorm(length(t), mean = 0, sd = 1)
yt <- et + signal

Data frame of (t, yt)
pts <- data.frame(cbind(t, yt))

EXAMPLE 1 - Apply kzs to the signal buried in noise

4 kzs.2d

Plot of the true signal
plot(signal ~ t, xlab = "t", ylab = "Signal", main = "True Signal",
type = "l")

Plot of signal + noise
plot(yt ~ t, ylab = "yt", main = "Signal buried in noise", type = "p")

Apply 3 iterations of kzs
kzs(y = pts[,2], x = pts[,1], smooth = 80, scale = .2, k = 3, edges = TRUE,
plot = TRUE)
lines(signal ~ t, col = "red")
title(main = "kzs(smooth = 80, scale = .2, k = 3, edges = TRUE)")
legend("topright", c("True signal","kzs estimate"), cex = 0.8,
col = c("red", "black"), lty = 1:1, lwd = 2, bty = "n")

EXAMPLE 2 - Irregularly observed data over time

Cancel a random 20 percent of (t, yt) leaving irregularly observed time points
obs <- seq(1:length(t))
t20 <- sample(obs, size = length(obs)/5)
pts20 <- pts[-t20,]

Plot of (t,yt) with 20 percent of the data removed
plot(pts20$yt ~ pts20$t, main = "Signal buried in noise\n20 percent of
(t, yt) deleted", xlab = "t", ylab = "yt", type = "p")

Apply 3 iterations of kzs
kzs(y = pts20[,2], x = pts20[,1], smooth = 80, scale = .2, k = 3, edges = TRUE,
plot = TRUE)
lines(signal ~ t, col = "red")
title(main = "kzs(smooth = 80, scale = .2, k = 3, edges = TRUE)")
legend("topright", c("True signal","kzs estimate"), cex = 0.8,
col = c("red", "black"), lty = 1:1, lwd = 2, bty = "n")

kzs.2d Spatial Kolmogorov-Zurbenko Spline

Description

The kzs.2d function is a spatial extension of the kzs function for two input variables.

Usage

kzs.2d(y, x, smooth, scale, k = 1, edges = TRUE, plot = TRUE)

Arguments

y a one-dimensional vector of real values representing the response variable to be
smoothed.

kzs.2d 5

x a two-dimensional matrix of real values containing the input variables X = (X1,
X2). Each column represents an input variable.

smooth a vector of size two that defines the width of the smoothing window along each
input variable.

scale a vector of size two in which each element will define a uniformly spaced scale
along its respective input variable.

k an integer specifying the number of iterations kzs.2d will execute. By default,
k = 1.

edges a logical indicating whether or not to display the outcome data beyond the rect-
angular range of the two input variables. By default, edges = TRUE.

plot a logical indicating whether or not to produce a 3-dimensional plot of the kzs.2d
outcome. By default, this argument is set to TRUE.

Details

The details for this function are nearly identical to that of kzs, except now extended to three di-
mensional space. The only difference is that the kzs.2d function averages all y that are contained
within a rectangular window made up of sides smooth[1] and smooth[2].

Value

a three column data frame of the form (x1, x2, yk):

x1 the x1 coordinates of a two-dimensional grid.

x2 the x2 coordinates of a two-dimensional grid.

yk the smoothed response values resulting from k iterations of kzs.2d.

Note

Data set (Y, X1, X2) must be provided, usually as 3-dimensional observations that occur in time or
space; kzs.2d is designed for the general situation, including time series data. In many applica-
tions where an input variable can be time, kzs.2d can resolve the problem of missing values in time
series or or irregularly observed values in Geographical Information Systems (GIS) data analysis.
The name of this function, kzs.2d, simply means that there are two input variables required for use.

The graphical output of kzs.2d is a result of the wireframe() function within the lattice package.

Author(s)

Derek Cyr <cyr.derek@gmail.com> and Igor Zurbenko <igorg.zurbenko@gmail.com>

See Also

kzs; For more on the parameter restrictions, see kzs.params

6 kzs.3d_data

Examples

EXAMPLE - Estimating the Sinc function in the interval (-3pi, 3pi)
Load the LATTICE package

Gridded data for X = (x1, x2) input variables
x1 <- seq(-3*pi, 3*pi, length = 60)
x2 <- x1
df <- expand.grid(x1 = x1, x2 = x2)

Apply the Sinc function to the (x1, x2) coordinates
df$z <- sin(sqrt(df$x1^2 + df$x2^2)) / sqrt(df$x1^2 + df$x2^2)
df$z[is.na(df$z)] <- 1

Any point outside the circle of radius 3pi is set to 0. This provides
a better picture of the outcome solely for the purposes of this example.
dst <- sqrt((df$x1 - 0)^2 + (df$x2 - 0)^2)
df$dist <- dst
df$z[df$dist > 3*pi] <- 0

Add noise to distort the signal
ez <- rnorm(length(df$z), mean = 0, sd = 1) * 1/4
df$zn <- ez + df$z

(1) 3D plot of the signal to be estimated by kzs.2d()
wireframe(z ~ x1 * x2, df, main = "Signal to be estimated", drape = TRUE,
colorkey = TRUE, scales = list(arrows = FALSE))

(2) 3D plot of the signal buried in noise
wireframe(zn ~ x1 * x2, df, main = "Signal buried in noise", drape = TRUE,
colorkey = TRUE, scales = list(arrows = FALSE))

(3) Execute kzs.2d()
kzs.2d() may take time to run; k = 1 iteration is used here, but k = 2
will provide a smoother outcome.
sw <- c(1, 1)
sc <- c(0.2, 0.2)
kzs.2d(y = df[,5], x = df[,1:2], smooth = sw, scale = sc, k = 1, edges = TRUE,
plot = TRUE)

kzs.3d_data 4-dimensional KZS Output

Description

This data set contains the output from a KZS operation consisting of 3 input variables, X = (X1,
X2, X3), and the single outcome variable Y, which is buried in noise. See the ‘Details’ for more
information.

kzs.md 7

Usage

data(kzs.3d_data)

Format

A data frame with 9025 observations on 52 variables. The first two variables are the coordinates
of a two-dimensional grid (X1, X2). The remaining 50 variables are KZS output. See more details
below.

Details

This data set is based on the example documented in kzs.2d. A 2D grid of points, (X1, X2), is
constructed over the range [-1.5pi, 1.5pi] and acts as two input variables. The third input variable is
time, and has values, 1, 2, ..., 50. For each of the 50 time points, there is a corresponding amplitude,
that ranges from 0 to 1. For each unique amplitude, the outcome variable, Y, is calculated by apply-
ing the Sinc function to the (x1, x2) grid over each of the 50 time points. This process results in 50
columns of data, 1 for each time point and amplitude. As stated in the kzs.md documentation, KZS
is a linear operation, and thus is commutative (that is, we can change the order of the operations,
without changing the end result). For example, kzs.3d = kzs.1d + kzs.2d = kzs.2d + kzs.1d.
This property of KZS was used to receive the 4-dimensional result. Using the data described above,
kzs.2d was first applied to each of the 50 columns of input using k = 2 iterations, smooth = (1.5,
1.5) and scale = (0.1, 0.1), which were chosen arbitrarily. Using the resulting data from the kzs.2d
operation, kzs.1d was applied across time. The result of this operation is 4-dimensional data, which
can be visualized as a 2-dimensional map with color (blue for low amplitudes near 0 and red for
high amplitudes close to 1). Incorporating time, this result can be visualized as a “movie” of the 50
2-dimensional images, where the amplitude (color) is changing from 0 to 1 (blue to red).

This data set has been included in this package due to the significant amount of computer time it
took to run. Including this process as an example would not be efficient. Using this data set, the
example in the kzs.md documentation is constructed.

kzs.md Spatial Kolmogorov-Zurbenko Spline

Description

The kzs.md function is an extension of the kzs function to d input variables.

Usage

kzs.md(y, x, smooth, scale, k = 1, edges = TRUE)

8 kzs.md

Arguments

y a one-dimensional vector of real values representing the response variable to be
smoothed.

x a d-dimensional matrix of real values containing the input variables X = (X1,
X2, ..., Xd); i.e., each column of the matrix is an input variable.

smooth a real-valued vector of size d in which each element defines the range of smooth-
ing for each corresponding variable in x.

scale a real-valued vector of size d in which each element defines a uniform scale
along its corresponding input variable.

k an integer specifying the number of iterations kzs.md will execute. By default,
k = 1.

edges a logical indicating whether or not to display the outcome data beyond the ranges
of the d input variables in x. By default, edges = TRUE.

Details

The details for this function are nearly identical to that of kzs, except now extended to d-dimensional
space.

Value

a (d+1)-column data frame of the form (x1, x2, ...,xd, yk). See kzs.2d for the general inter-
pretations of these results.

Note

In many applications where input variables can be space, kzs.md can resolve the problem of missing
values in time series or or irregularly observed valuesin Geographical Information Systems (GIS)
data analysis. For these applications, scale is especially advantageous because it can create a uni-
form space over a geographic region to which the algorithm will be applied. Additionally, kzs.md
can be recommended as a diagnostic tool before applying multiple linear regression analysis due to
its capability of displaying nonlinearities of the outcome over the input variables.

There is no graphical output for this function; for two input variables, kzs.2d will produce a 3-
dimensional plot. For three input variables, a 4-dimensional movie can be constructed over time.

In general, kzs, kzs.2d and kzs.md are all linear operations, and linear operations are commutative.
Thus, for example, the outcome of a kzs.2d operation is equivalent to kzs.1d + kzs.1d; likewise,
the outcome of a kzs.3d operation is equivalent to a kzs.2d + kzs.1d, etc...

Author(s)

Derek Cyr <cyr.derek@gmail.com> and Igor Zurbenko <igorg.zurbenko@gmail.com>

See Also

kzs; For more on the parameter restrictions, see kzs.params

kzs.md 9

Examples

This example is an extension of the example documented in kzs.2d. We make
use of the Sinc function to filter a signal buried in noise over 3-dimensional
input variables. See the "Details" section of the "kzs.3d_data" data frame
documentation for specific details.
require(lattice)

Gridded data for X = (X1, X2) input variables
x1 <- seq(-1.5*pi, 1.5*pi, length = 50)
x2 <- x1
df <- expand.grid(x1 = x1, x2 = x2)

Time dimension
time <- 1:50

Change the amplitude of the original function to change from 0 to 1 along time
amplitude <- sort(round(seq(0.02, 1, 0.02), digits = 2))

Store the time and amplitude together in a data frame
t_amp <- data.frame(cbind(time, amplitude))

Create the data set of Sinc function outcomes for each amplitude
sinc <- array(0, dim = c(nrow(df), length(amplitude)))
for (i in 1:length(amplitude)) {
sinc[,i] <- round(amplitude[i]*sin(sqrt(df$x1^2 + df$x2^2)) /

sqrt(df$x1^2 + df$x2^2))
sinc[,i][is.na(sinc[,i])] <- amplitude[i]
}

Add noise to distort the signal
for (j in 1:ncol(sinc)) {
ez <- rnorm(nrow(sinc), mean = 0, sd = 1)
sinc[,j] <- sinc[,j] + ez
}

Change to a data frame and add the gridded input data
kzs.2d_data <- as.data.frame(cbind(df, sinc))

Movie of the signal buried in noise
grayscale = colorRampPalette(c("white", "gray", "black"))
for (u in 1:50) {
plot(levelplot(kzs.2d_data[,u+2] ~ x1*x2, kzs.2d_data,
col.regions = grayscale, colorkey = FALSE))
}

Movie of KZS 4-dimensional KZS outcome
data(kzs.3d_data)
bluered = colorRampPalette(c("blue", "cyan2", "green",

"yellow", "red", "firebrick"), space = "rgb")
for (j in 1:50) {
plot(levelplot(kzs.3d_data[,j+2] ~ x1*x2, kzs.3d_data,

at = do.breaks(c(-0.3, 1.0), 100), col.regions = bluered))

10 kzs.params

}

kzs.params Restrictions for KZS Parameters

Description

For a d-dimensional vector of input variables, this function will calculate the values by which the
parameters smooth and scale are bounded by.

Usage

kzs.params(x, dimension)

Arguments

x a matrix or data frame containing the input variable(s) that is to be used in kzs,
kzs.2d, or kzs.md.

dimension an integer specifying the dimensionality of x; i.e, the number of columns in x.

Details

The compilation of functions within the kzs package requires the specification of two parameters:
the first is smooth, the range of smoothing along each variable in x; the second is scale, a scale
reading of each corresponding input variable in x. Each parameter is subject to two restrictions;
smooth[i] and scale[i] must be positive real numbers; scale[i] must be less than or equal
to the difference of sorted, consecutive x[,i] values and smooth[i] must be much less than the
difference of the maximum and minimum values for its corresponding input variable, x[,i]. For
each input variable in x, there must be a corresponding smooth and scale. This function was
developed to be used prior to any of the functions within kzs in order to increase the efficiency of
use.

Author(s)

Derek Cyr <cyr.derek@gmail.com> and Igor Zurbenko <igorg.zurbenko@gmail.com>

Examples

Generate 3 random sequences of numbers that would act as the input data set
x1 <- rnorm(100, 3, 6)
x2 <- rnorm(100, 4, 5)
x3 <- runif(100, 0, 1)

A matrix or a data frame will work
mat <- matrix(c(x1, x2, x3), nrow = 100, ncol = 3)

Dimensionality is 3 since there are 3 input variables
kzs.params(x = mat, dimension = 3)

Index

∗ datasets
kzs.3d_data, 6

∗ nonparametric
kzs, 2
kzs.2d, 4
kzs.md, 7
kzs.params, 10

∗ smooth
kzs, 2
kzs.2d, 4
kzs.md, 7
kzs.params, 10

∗ ts
kzs, 2
kzs.2d, 4
kzs.md, 7

kzs, 2, 5, 8
kzs.2d, 3, 4, 8
kzs.3d_data, 6
kzs.md, 3, 7
kzs.params, 3, 5, 8, 10

11

	kzs
	kzs.2d
	kzs.3d_data
	kzs.md
	kzs.params
	Index

