| Type: | Package | 
| Title: | Package of the German Book "Statistik mit R und RStudio" by Joerg grosse Schlarmann | 
| Description: | All datasets and functions used in the german book "Statistik mit R und RStudio" by grosse Schlarmann (2010-2024) https://www.produnis.de/R/. | 
| Version: | 1.0.7 | 
| Date: | 2024-06-24 | 
| Language: | de-de | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| Depends: | R (≥ 3.5.0) | 
| Encoding: | UTF-8 | 
| Imports: | statip, jsonlite, httr, curl | 
| LazyData: | true | 
| RoxygenNote: | 7.3.1 | 
| NeedsCompilation: | no | 
| Packaged: | 2024-06-24 12:35:49 UTC; produnis | 
| Author: | Jörg große Schlarmann [aut, cre] | 
| Maintainer: | Jörg große Schlarmann <schlarmann@produnis.de> | 
| Repository: | CRAN | 
| Date/Publication: | 2024-06-24 14:20:01 UTC | 
Datatable of the Faktorenbogen Example for factor analysis
Description
Datatable of the Faktorenbogen Example for factor analysis
Usage
data(Faktorenbogen)
Format
A data frame with 150 observations in 14 variables
Details
Variables in the dataset:
- gender. a factor with levels - female- male- other, giving the proband's gender
- age. a numeric vector of proband's age in years 
- A. Item A of the questionnaire, numeric 
- B. Item B of the questionnaire, numeric 
- C. Item C of the questionnaire, numeric 
- D. Item D of the questionnaire, numeric 
- E. Item E of the questionnaire, numeric 
- F. Item F of the questionnaire, numeric 
- G. Item G of the questionnaire, numeric 
- H. Item H of the questionnaire, numeric 
- I. Item I of the questionnaire, numeric 
- J. Item J of the questionnaire, numeric 
- K. Item K of the questionnaire, numeric 
- L. Item L of the questionnaire, numeric 
Source
compute confidence intervall for binomial proportions
Description
returns borders and length of confidence intervall for binomial proportions
Usage
KIbinomial_a(p, n, alpha)
Arguments
| p | proportion obeserved | 
| n | number of observations | 
| alpha | error niveau | 
Value
confidence intervall
Examples
KIbinomial_a(0.35, 150, 0.05)
compute confidence intervall for difference of binomial proportions
Description
returns borders and length of confidence intervall for difference of binomial proportions
Usage
KIbinomial_u(p1, n1, p2, n2, alpha)
Arguments
| p1 | proportion obeserved in group 1 | 
| n1 | number of observations in group 1 | 
| p2 | proportion obeserved in group 2 | 
| n2 | number of observations in group 2 | 
| alpha | error niveau | 
Value
confidence intervall
Examples
KIbinomial_u(0.25, 100, 0.4, 150, 0.05)
compute confidence intervall for mean of normal distributed data
Description
returns borders and length of confidence intervall for mean of normal distributed data
Usage
KInormal_a(xquer, s, n, alpha)
Arguments
| xquer | mean of obeserved data | 
| s | standard deviation of observed data | 
| n | number of observations | 
| alpha | error niveau | 
Value
confidence intervall
Examples
KInormal_a(400, 20, 100, 0.05)
compute confidence intervall for mean of normal distributed data
Description
returns a data.frame with borders and length of confidence intervall for mean of normal distributed data
Usage
KInormal_u(x1, s1, n1, x2, s2, n2, alpha)
Arguments
| x1 | mean of obeserved data in group 1 | 
| s1 | standard deviation of observed data in group 1 | 
| n1 | number of observations in group 1 | 
| x2 | mean of obeserved data in group 2 | 
| s2 | standard deviation of observed data in group 2 | 
| n2 | number of observations in group 2 | 
| alpha | error niveau | 
Value
data.frame of confidence intervall
Examples
KInormal_u(2.22, 0.255, 13, 2.7, 0.306, 10 , 0.05)
Datatable of the SuperMario Example for Friedman-ANOVA
Description
Datatable of the SuperMario Example for Friedman-ANOVA
Usage
data(MarioANOVA)
Format
A data frame with 47 observations in 8 variables
Details
Variables in the dataset:
- Name. The characters' name 
- Alter. The characters' age in years 
- Kingdom. The characters' home 
- Geschlecht. The characters' gender (männlich = male, weiblich = female) 
- BadGuy. Whether the character is a bad guy, logical 
- t1. Measure at time 1 
- t2. Measure at time 2 
- t3. Measure at time 3 
Source
Datatable of the Messwiederholung Example for ANOVA
Description
Datatable of the Messwiederholung Example for ANOVA
Usage
data(Messwiederholung)
Format
A data frame with 200 observations in 4 variables
Details
Variables in the dataset:
- Name. The first name of the probands. 
- t1. Measure at time 1 
- t2. Measure at time 2 
- t3. Measure at time 3 
Source
Dataset of the German Nachtwachen study
Description
Dataset of the German Nachtwachen study
Usage
data(Nachtwachen)
Format
A data frame with 276 observations in 37 variables.
Source
Datatable of an Ordinal Sample
Description
Datatable of an Ordinal Sample
Usage
data(OrdinalSample)
Format
A data frame with 415 observations in 4 variables.
Details
Variables in the dataset:
- Konflikt. a numeric vector giving the potential of conflicts. 
- Zufriedenh. a numeric vector giving the satisfaction of workers 
- Geschlecht. a factor of proband's sex, 1 = male, 2=female 
- Stimmung. an ordinal factor of proband's mood 
Source
Matrix of Pflegeberufe by Isfort et al. 2018
Description
Matrix of Pflegeberufe by Isfort et al. 2018
Usage
data(Pflegeberufe)
Format
A matrix with 9 cols (years) and 5 rows (nursing profession).
Author(s)
Isfort et al. 2018 (Pflegethermometer)
Source
Compare Linear Models
Description
This function fits and compares several models (linear, quadratic, cubic, exponential, logarithmic, sigmoidal, power, logistic) to a given set of dependent and independent variables. It returns either a summary of the models with their R-squared values or predicted values based on the models.
Usage
compare.lm(dep, ind, predict = FALSE, steps = 0.01)
Arguments
| dep | A numeric vector representing the dependent variable. | 
| ind | A numeric vector representing the independent variable. | 
| predict | Logical. If TRUE, the function returns predicted values for each model. Defaults to FALSE. | 
| steps | Numeric. The step size for generating x-values for predictions. Only used if predict is TRUE. Defaults to 0.01. | 
Value
A data frame. If predict is FALSE, returns a data frame with the R-squared values for each model. If predict is TRUE, returns a data frame with the original data and predicted values for each model.
Examples
x <- c(6, 9, 12, 14, 30, 35, 40, 47, 51, 55, 60)
y <- c(14, 28, 50, 70, 89, 94, 90, 75, 59, 44, 27)
compare.lm(y, x)
compare.lm(y, x, predict=TRUE)
Datatable of the epa Example
Description
Datatable of the epa Example
Usage
data(epa)
Format
A data frame with 620 observations in 6 variables
Details
Variables in the dataset:
- sex. a factor with levels - m- w- d, giving the proband's sex
- age. a numeric vector 
- cms. a numeric vector 
- risk. a dichotome vector, 0 = not at risk, 1 = at risk 
- expert. a dichotome vector of expert's decision, 0 = not at risk, 1 = at risk 
- decu. a dichotome vector, 0 = no decubitus, 1 = decubitus 
Source
create a frequency table
Description
returns a frequency table with absolute and relative frequencies and cumulated frequencies
Usage
freqTable(werte)
Arguments
| werte | factor with obeserved data | 
Value
dataframe table
Examples
x <- ceiling(stats::rnorm(20))
freqTable(x)
create a tibble with kenngroessen
Description
returns a tibble with all kenngroessen
Usage
kenngroessen(werte)
Arguments
| werte | numeric vector | 
Value
tibble with all kenngroessen
Examples
x <- ceiling(stats::rnorm(20))
kenngroessen(x)
get longitude and altitude from an address using OpenStreetMap's API at http://nominatim.openstreetmap.org
Description
get longitude and altitude from an address using OpenStreetMap's API at http://nominatim.openstreetmap.org
Usage
lon.lat.osm(address = NULL)
Arguments
| address | a character of an address | 
Value
a data.frame containig "address", "lon", "lat"
Examples
lon.lat.osm("Eiffeltower")
Dataset of a work sampling study
Description
Dataset of a work sampling study
Usage
data(mma)
Format
A data frame with 9768 observations in 6 variables.
Details
Variables in the dataset:
- day. a vector, giving the number of the observation day 
- time. a factor giving the time of observation 
- ward. a factor giving the ward under observation 
- qual. a factor giving the qualification of the nurse 
- category. a factor of qualification categories 
- action. a factor giving the observed action 
Source
Dataset of the German Nachtwachen study with labelled variables
Description
Dataset of the German Nachtwachen study, labelled version
Usage
data(nw)
Format
A data frame with 276 observations in 37 variables.
Source
Pairwise Chi-Square Tests
Description
This function performs pairwise Chi-Square tests for two factors.
Usage
pairwise.chisq.test(A, B, p.adjust.method = "bonferroni")
Arguments
| A | A factor with two or moew levels. The first variable. | 
| B | A factor with two or more levels. The second variable. | 
| p.adjust.method | A string specifying the method for adjusting p-values. Default is "bonferroni". | 
Details
This function creates all possible pairs of levels of factor B and performs a Chi-Square test for each pair of B on variable A. The p-values are adjusted according to the specified method.
#' This function is created for educational purposes only. For exact p-values, consider using reporttools::pairwise.fisher.test().
Value
A data frame with the results of the pairwise Chi-Square tests. Includes the groups, Chi-Square statistic, degrees of freedom, p-values, adjusted p-values, and significance stars.
Examples
set.seed(123)
A <- factor(sample(c("Male", "Female"), 100, replace = TRUE))
B <- factor(sample(c("Location1", "Location2", "Location3"), 100, replace = TRUE))
pairwise.chisq.test(A, B, "holm")
Dataset of the PF8 example.
Description
This is the dataset of the PF8 example.
Usage
data(pf8)
Format
A data frame with 731 observations in 16 variables.
Source
compute sensitivity and specifity
Description
returns sensitivity specifity, negativ-predictive-value, postitiv-predictive-value
Usage
sens.spec(rp, rn, fp, fn)
Arguments
| rp | number of true-positive (richtig-positiv) | 
| rn | number of true-negative (richtig-negativ) | 
| fp | number of false-positive (falsch-positiv) | 
| fn | number of false-negative (falsch-negativ) | 
Value
a data.frame with sens, spec, ppw, npw
Examples
sens.spec(40, 17, 85, 4)
z-Transformation by given numbers, with z = (x - mu) / sd
Description
z-Transformation by given numbers, with z = (x - mu) / sd
Usage
ztrans(x, mu = 0, sd = 1)
Arguments
| x | a value to transform | 
| mu | the given mu | 
| sd | the given standard deviation | 
Value
the z-transformed value
Examples
ztrans(120,mu=118,sd=20)