
Package ‘iglm’
November 25, 2025

Type Package

Title Regression under Network Interference

Version 1.0

Date 2025-11-09

Description An implementation of generalized linear models (GLMs) for studying relation-
ships among attributes in connected populations, where responses of connected units can be de-
pendent, as introduced by Fritz et al. (2025) <doi:10.1080/01621459.2025.2565851>. 'igml' ex-
tends GLMs for independent responses to dependent responses and can be used for study-
ing spillover in connected populations and other network-mediated phenomena.

License GPL-3

Imports Rcpp (>= 1.0.8), R6, MASS, RcppArmadillo, Matrix, parallel,
methods, coda, igraph

Suggests rmarkdown, knitr, testthat

Depends RcppProgress, R (>= 3.5.0)

LinkingTo Rcpp, RcppProgress, RcppArmadillo, Matrix

RoxygenNote 7.3.3

Encoding UTF-8

VignetteBuilder knitr

LazyData true

NeedsCompilation yes

Author Cornelius Fritz [aut, cre],
Michael Schweinberger [aut]

Maintainer Cornelius Fritz <corneliusfritz2010@gmail.com>

Repository CRAN

Date/Publication 2025-11-25 20:52:16 UTC

Contents
control.iglm . 2
count_statistics . 4

1

https://doi.org/10.1080/01621459.2025.2565851

2 control.iglm

iglm . 5
iglm.data . 7
iglm.data_generator . 9
iglm_object_generator . 17
model_terms . 22
results . 26
results_generator . 27
rice . 31
sampler.iglm . 31
sampler.net_attr . 33
sampler_iglm_generator . 34
sampler_net_attr_generator . 38
simulate_iglm . 40
state_twitter . 42

Index 44

control.iglm Set Control Parameters for iglm Estimation

Description

Create a list of control parameters for the ‘iglm‘ estimation algorithm.

Usage

control.iglm(
estimate_model = TRUE,
fix_x = FALSE,
display_progress = FALSE,
return_samples = TRUE,
offset_nonoverlap = 0,
var = FALSE,
non_stop = FALSE,
tol = 0.001,
max_it = 100,
return_x = FALSE,
return_y = FALSE,
return_z = FALSE,
accelerated = TRUE,
cluster = NULL,
exact = FALSE,
updated_uncertainty = TRUE

)

control.iglm 3

Arguments

estimate_model (logical) If ‘TRUE‘ (default), the main model parameters are estimated. If
‘FALSE‘, estimation is skipped and only the preprocessing is done.

fix_x (logical) If ‘TRUE‘, the ’x’ predictor is held fixed during estimation/simulation
(fixed design in regression). Default is ‘FALSE‘.

display_progress

(logical) If ‘TRUE‘, display progress messages or a progress bar during estima-
tion. Default is ‘FALSE‘.

return_samples (logical). If TRUE (default), return simulated network/attribute samples (i.e.,
iglm.data objects) generated during estimation (if applicable).

offset_nonoverlap

(numeric) A value added to the linear predictor for dyads not in the ’overlap’
set. Default is ‘0‘.

var (logical) If ‘TRUE‘, attempt to calculate and return the variance-covariance ma-
trix of the estimated parameters. Default is ‘FALSE‘.

non_stop (logical) If ‘TRUE‘, the estimation algorithm continues until ‘max_it‘ iterations,
ignoring the ‘tol‘ convergence criterion. Default is ‘FALSE‘.

tol (numeric) The tolerance level for convergence. The estimation stops when the
change in coefficients between iterations is less than ‘tol‘. Default is ‘0.001‘.

max_it (integer) The maximum number of iterations for the estimation algorithm. De-
fault is ‘100‘.

return_x (logical). If TRUE, return the change statistics for the x attribute Default is FALSE.
from samples. Default is ‘FALSE‘. (Note: ‘return_samples=TRUE‘ likely im-
plies this).

return_y (logical). If TRUE, return the change statistics for the y attribute Default is FALSE.

return_z (logical). If TRUE, return the change statistics for the z network. Default is
FALSE.

accelerated (logical) If ‘TRUE‘ (default), an accelerated MM algorithm is used based on
a Quasi Newton scheme described in the Supplemental Material of Fritz et al
(2025).

cluster A parallel cluster object (e.g., from the ‘parallel‘ package) to use for potentially
parallelizing parts of the estimation or simulation. Default is ‘NULL‘ (no paral-
lelization).

exact (logical) If ‘TRUE‘, potentially use an exact calculation method of the pseudo
Fisher information for assessing the uncertainty of the estimates. Default is
‘FALSE‘.

updated_uncertainty

(logical) If ‘TRUE‘ (default), potentially use an updated method for calculat-
ing uncertainty estimates (based on the mean-value theorem as opposed to the
Godambe Information).

Value

A list object of class ‘"control.iglm"‘ containing the specified control parameters.

4 count_statistics

References

Fritz, C., Schweinberger, M. , Bhadra S., and D. R. Hunter (2025). A Regression Framework for
Studying Relationships among Attributes under Network Interference. Journal of the American
Statistical Association, to appear.

count_statistics Compute Statistics

Description

Computes statistics.

Usage

count_statistics(formula)

Arguments

formula A model ‘formula‘ object. The left-hand side should be the name of a iglm.data
object available in the calling environment. Alternatively, the left-hand side can
be a iglm.data.list object to compute statistics for multiple iglm.data ob-
jects at once (is, e.g., the normal outcome of all simulations). See model_terms
for details on specifying the right-hand side terms.

Value

A named numeric vector. Each element corresponds to a term in the ‘formula‘, and its value is the
calculated observed feature for that term based on the data in the iglm.data object. The names of
the vector match the coefficient names derived from the formula terms.

Examples

Create a iglm.data object
n_actors = 10
neighborhood = matrix(1, nrow = n_actors, ncol = n_actors)
type_x <- "binomial"
type_y <- "binomial"
x_attr_data <- rbinom(n_actors, 1, 0.5)
y_attr_data <- rbinom(n_actors, 1, 0.5)
z_net_data <- matrix(0, nrow = n_actors, ncol = n_actors)
object = iglm.data(z_network = z_net_data, x_attribute = x_attr_data,
y_attribute = y_attr_data, neighborhood = neighborhood,
directed = FALSE,type_x = type_x,type_y = type_y)

count_statistics(object ~ edges(mode = "local") + attribute_y + attribute_x)

iglm 5

iglm Construct a iglm Model Specification Object

Description

The iglm package implements a comprehensive regression framework introduced in Fritz et al.
(2025) for studying relationships among attributes (X,Y) under network interference (Z). It is
based on a joint probability model for dependent outcomes (Y) and network connections (Z), con-
ditional on a fixed set of predictors (X). This approach generalizes standard Generalized Linear
Models (GLMs) to settings where the responses and connections of units are interdependent. The
framework is designed to be interpretable by representing conditional distributions as GLMs, scal-
able to large networks via pseudo-likelihood and convex optimization, and provides insight into
outcome-connection dependencies (i.e., spillover effects) that are missed by conditional models.

The joint probability density is specified as an exponential-family model of the form:

fθ(y, z, x) ∝
[N∏
i=1

ay(yi) exp(θ
T
g gi(xi, y

∗
i))

]
×

[∏
i ̸=j

az(zi,j) exp(θ
T
h hi,j(x, y

∗
i , y

∗
j , z))

]
,

which is defined by two distinct sets of user-specified features:

• gi(x, y, z): A vector of actor-level functions (or "g-terms") that describe the relationship be-
tween an individual actor i’s predictors (xi) and their own response (yi).

• hi,j(x, y, z): A vector of pair-level functions (or "h-terms") that specify how the connections
(z) and responses (yi, yj) of a pair of units {i, j} depend on each other and the wider network
structure.

This separation allows the model to simultaneously capture individual-level behavior (via gi) and
dyadic, network-based dependencies (via hi,j), including local dependence limited to overlapping
neighborhoods (see, Fritz et al., 2025). This help page documents the various statistics available
in ’iglm’, corresponding to the gi (attribute-level) and hi,j (pair-level) components of the joint
model. This is a user-facing constructor for creating a iglm_object. This R6 object encompasses
the complete model specification, linking the formula, data (iglm.data object), initial coefficients,
MCMC sampler settings, and estimation controls. It serves as the primary input for subsequent
methods like $estimate() and $simulate().

Usage

iglm(
formula = NULL,
coef = NULL,
coef_popularity = NULL,
sampler = NULL,
control = NULL,
file = NULL

)

6 iglm

Arguments

formula A model ‘formula‘ object. The left-hand side should be the name of a ‘iglm.data‘
object available in the calling environment. See model_terms for details on
specifying the right-hand side terms.

coef Optional numeric vector of initial coefficients for the structural (non-popularity)
terms in ‘formula‘. If ‘NULL‘, coefficients are initialized to zero. Length must
match the number of terms.

coef_popularity

Optional numeric vector specifying the initial popularity coefficients. Required
if ‘formula‘ includes popularity terms, otherwise should be ‘NULL‘. Length
must match ‘n_actor‘ (for undirected) or ‘2 * n_actor‘ (for directed).

sampler An object of class sampler_iglm, controlling the MCMC sampling scheme. If
‘NULL‘, default sampler settings will be used.

control An object of class control.iglm, specifying parameters for the estimation al-
gorithm. If ‘NULL‘, default control settings will be used.

file Optional character string specifying a file path to load a previously saved iglm_object
from disk (in RDS format). If provided, other arguments are ignored and the ob-
ject is loaded from the file.

Value

An object of class iglm_object.

References

Fritz, C., Schweinberger, M., Bhadra, S., and D.R. Hunter (2025). A Regression Framework for
Studying Relationships among Attributes under Network Interference. Journal of the American
Statistical Association, to appear.

Schweinberger, M. and M.S. Handcock (2015). Local Dependence in Random Graph Models:
Characterization, Properties, and Statistical Inference. Journal of the Royal Statistical Society,
Series B (Statistical Methodology), 7, 647-676.

Schweinberger, M. and J.R. Stewart (2020). Concentration and Consistency Results for Canonical
and Curved Exponential-Family Models of Random Graphs. The Annals of Statistics, 48, 374-396.

Stewart, J.R. and M. Schweinberger (2025). Pseudo-Likelihood-Based M-Estimation of Random
Graphs with Dependent Edges and Parameter Vectors of Increasing Dimension. The Annals of
Statistics, to appear.

Examples

Example usage:
library(iglm)
Create a iglm.data data object (example)
n_actors <- 50
neighborhood <- matrix(1, nrow = n_actors, ncol = n_actors)
xyz_obj <- iglm.data(neighborhood = neighborhood, directed = FALSE,

type_x = "binomial", type_y = "binomial")
Define ground truth coefficients

iglm.data 7

gt_coef <- c("edges_local" = 3, "attribute_y" = -1, "attribute_x" = -1)
gt_coef_pop <- rnorm(n = n_actors, -2, 1)
Define MCMC sampler
sampler_new <- sampler.iglm(n_burn_in = 100, n_simulation = 10,

sampler.x = sampler.net_attr(n_proposals = n_actors * 10, seed = 13),
sampler.y = sampler.net_attr(n_proposals = n_actors * 10, seed = 32),

sampler.z = sampler.net_attr(n_proposals = sum(neighborhood > 0
) * 10, seed = 134),
init_empty = FALSE)

Create iglm model specification
model_tmp_new <- iglm(formula = xyz_obj ~ edges(mode = "local") +

attribute_y + attribute_x + popularity,
coef = gt_coef,
coef_popularity = gt_coef_pop,
sampler = sampler_new,
control = control.iglm(accelerated = FALSE,
max_it = 200, display_progress = FALSE, var = TRUE))

Simulate from the model
model_tmp_new$simulate()
model_tmp_new$set_target(model_tmp_new$get_samples()[[1]])

Estimate model parameters
model_tmp_new$estimate()

Model Assessment
model_tmp_new$model_assessment(formula = ~ degree_distribution)
model_tmp_new$results$plot(model_assessment = TRUE)

iglm.data Constructor for the iglm.data R6 object

Description

Creates a ‘iglm.data‘ object, which stores network and attribute data. This function acts as a user-
friendly interface to the ‘iglm.data‘ R6 class generator. It handles data input, infers parameters like
the number of actors (‘n_actor‘) and network directedness (‘directed‘) if not explicitly provided,
processes network data into a consistent edgelist format, calculates the overlap relation based on an
optional neighborhood definition, and performs extensive validation of all inputs.

Usage

iglm.data(
x_attribute = NULL,
y_attribute = NULL,
z_network = NULL,
neighborhood = NULL,
directed = TRUE,
n_actor = NA,

8 iglm.data

type_x = "binomial",
type_y = "binomial",
scale_x = 1,
scale_y = 1,
return_neighborhood = TRUE,
file = NULL

)

Arguments

x_attribute A numeric vector for the first unit-level attribute.

y_attribute A numeric vector for the second unit-level attribute.

z_network A matrix representing the network. Can be a 2-column edgelist or a square
adjacency matrix.

neighborhood An optional matrix for the neighborhood representing local dependence. Can
be a 2-column edgelist or a square adjacency matrix. A tie in ‘neighborhood‘
between actor i and j indicates that j is in the neighborhood of i, implying de-
pendence between the respective actors.

directed A logical value indicating if ‘z_network‘ is directed. If ‘NA‘ (default), directed-
ness is inferred from the symmetry of ‘z_network‘.

n_actor An integer for the number of actors in the system. If ‘NA‘ (default), ‘n_actor‘ is
inferred from the attributes or network matrices.

type_x Character string for the type of ‘x_attribute‘. Must be one of ‘"binomial"‘,
‘"poisson"‘, or ‘"normal"‘. Default is ‘"binomial"‘.

type_y Character string for the type of ‘y_attribute‘. Must be one of ‘"binomial"‘,
‘"poisson"‘, or ‘"normal"‘. Default is ‘"binomial"‘.

scale_x A positive numeric value for scaling (e.g., variance for "normal" type). Default
is 1.

scale_y A positive numeric value for scaling (e.g., variance for "normal" type). Default
is 1.

return_neighborhood

Logical. If ‘TRUE‘ (default) and ‘neighborhood‘ is ‘NULL‘, a full neighbor-
hood (all dyads) is generated implying global dependence. If ‘FALSE‘, no
neighborhood is set.

file (character) Optional file path to load a saved ‘iglm.data‘ object state.

Value

An object of class ‘iglm.data‘ (and ‘R6‘).

Examples

data(state_twitter)
state_twitter$iglm.data$degree_distribution(prob = FALSE, plot = TRUE)
state_twitter$iglm.data$geodesic_distances_distribution(prob = FALSE, plot = TRUE)
state_twitter$iglm.data$density_x()

iglm.data_generator 9

state_twitter$iglm.data$density_y()

Generate a small iglm data object either via adjacency matrix or edgelist
tmp_adjacency <- iglm.data(z_network = matrix(c(0,1,1,0,

1,0,0,1,
1,0,0,1,
0,1,1,0), nrow=4, byrow=TRUE),

directed = FALSE,
n_actor = 4,
type_x = "binomial",
type_y = "binomial")

tmp_edgelist <- iglm.data(z_network = tmp_adjacency$z_network,
directed = FALSE,

n_actor = 4,
type_x = "binomial",
type_y = "binomial")

tmp_edgelist$density_z()
tmp_adjacency$density_z()

iglm.data_generator A R6 class to represent networks with unit-level attributes

Description

The ‘iglm.data‘ class is a container for storing, validating, and analyzing unit-level attributes (x_attribute,
y_attribute) and connections (z_network).

Active bindings

x_attribute (‘numeric‘) Read-only. The vector for the first unit-level attribute.

y_attribute (‘numeric‘) Read-only. The vector for the second unit-level attribute.

z_network (‘matrix‘) Read-only. The primary network structure as a 2-column integer edgelist.

neighborhood (‘matrix‘ or ‘NULL‘) Read-only. The secondary/neighborhood structure as a 2-
column integer edgelist. ‘NULL‘ if not provided.

overlap (‘matrix‘) Read-only. The calculated overlap relation (dyads with shared neighbors in
‘neighborhood‘) as a 2-column integer edgelist.

directed (‘logical‘) Read-only. Indicates if the ‘z_network‘ is treated as directed.

n_actor (‘integer‘) Read-only. The total number of actors (nodes) in the network.

type_x (‘character‘) Read-only. The specified distribution type for the ‘x_attribute‘.

type_y (‘character‘) Read-only. The specified distribution type for the ‘y_attribute‘.

scale_x (‘numeric‘) Read-only. The scale parameter associated with the ‘x_attribute‘.

scale_y (‘numeric‘) Read-only. The scale parameter associated with the ‘y_attribute‘.

10 iglm.data_generator

Methods

Public methods:

• iglm.data_generator$new()

• iglm.data_generator$set_z_network()

• iglm.data_generator$set_type_x()

• iglm.data_generator$set_type_y()

• iglm.data_generator$set_scale_x()

• iglm.data_generator$set_scale_y()

• iglm.data_generator$set_x_attribute()

• iglm.data_generator$set_y_attribute()

• iglm.data_generator$gather()

• iglm.data_generator$save()

• iglm.data_generator$density_z()

• iglm.data_generator$density_x()

• iglm.data_generator$density_y()

• iglm.data_generator$edgewise_shared_partner()

• iglm.data_generator$set_neighborhood_overlap()

• iglm.data_generator$dyadwise_shared_partner()

• iglm.data_generator$geodesic_distances_distribution()

• iglm.data_generator$geodesic_distances()

• iglm.data_generator$edgewise_shared_partner_distribution()

• iglm.data_generator$dyadwise_shared_partner_distribution()

• iglm.data_generator$degree_distribution()

• iglm.data_generator$degree()

• iglm.data_generator$spillover_degree_distribution()

• iglm.data_generator$plot()

• iglm.data_generator$print()

• iglm.data_generator$clone()

Method new(): Create a new ‘iglm.data‘ object, that includes data on two attributes and one
network.

Usage:
iglm.data_generator$new(
x_attribute = NULL,
y_attribute = NULL,
z_network = NULL,
neighborhood = NULL,
directed = NA,
n_actor = NA,
type_x = "binomial",
type_y = "binomial",
scale_x = 1,
scale_y = 1,

iglm.data_generator 11

return_neighborhood = TRUE,
file = NULL

)

Arguments:
x_attribute A numeric vector for the first unit-level attribute.
y_attribute A numeric vector for the second unit-level attribute.
z_network A matrix representing the network. Can be a 2-column edgelist or a square adja-

cency matrix.
neighborhood An optional matrix for the neighborhood representing local dependence. Can

be a 2-column edgelist or a square adjacency matrix. A tie in ‘neighborhood‘ between
actor i and j indicates that j is in the neighborhood of i, implying dependence between the
respective actors.

directed A logical value indicating if ‘z_network‘ is directed. If ‘NA‘ (default), directedness
is inferred from the symmetry of ‘z_network‘.

n_actor An integer for the number of actors in the system. If ‘NA‘ (default), ‘n_actor‘ is
inferred from the attributes or network matrices.

type_x Character string for the type of ‘x_attribute‘. Must be one of ‘"binomial"‘, ‘"poisson"‘,
or ‘"normal"‘. Default is ‘"binomial"‘.

type_y Character string for the type of ‘y_attribute‘. Must be one of ‘"binomial"‘, ‘"poisson"‘,
or ‘"normal"‘. Default is ‘"binomial"‘.

scale_x A positive numeric value for scaling (e.g., variance for "normal" type). Default is 1.
scale_y A positive numeric value for scaling (e.g., variance for "normal" type). Default is 1.
return_neighborhood Logical. If ‘TRUE‘ (default) and ‘neighborhood‘ is ‘NULL‘, a full

neighborhood (all dyads) is generated implying global dependence. If ‘FALSE‘, no neigh-
borhood is set.

file (character) Optional file path to load a saved ‘iglm.data‘ object state.

Returns: A new ‘iglm.data‘ object.

Method set_z_network(): Sets the ‘z_network‘ of the ‘iglm.data‘ object.

Usage:
iglm.data_generator$set_z_network(z_network)

Arguments:
z_network A matrix representing the network. Can be a 2-column edgelist or a square adja-

cency matrix. @return The ‘iglm.data‘ object itself (‘self‘), invisibly.

Method set_type_x(): Sets the ‘type_x‘ of the ‘iglm.data‘ object.

Usage:
iglm.data_generator$set_type_x(type_x)

Arguments:
type_x A character string for the type of ‘x_attribute‘. Must be one of ‘"binomial"‘, ‘"pois-

son"‘, or ‘"normal"‘. @return The ‘iglm.data‘ object itself (‘self‘), invisibly.

Method set_type_y(): Sets the ‘type_y‘ of the ‘iglm.data‘ object.

Usage:

12 iglm.data_generator

iglm.data_generator$set_type_y(type_y)

Arguments:
type_y A character string for the type of ‘y_attribute‘. Must be one of ‘"binomial"‘, ‘"pois-

son"‘, or ‘"normal"‘.

Returns: The ‘iglm.data‘ object itself (‘self‘), invisibly.

Method set_scale_x(): Sets the ‘scale_x‘ of the ‘iglm.data‘ object.

Usage:
iglm.data_generator$set_scale_x(scale_x)

Arguments:
scale_x A positive numeric value for scaling (e.g., variance for "normal" type).

Returns: The ‘iglm.data‘ object itself (‘self‘), invisibly.

Method set_scale_y(): Sets the ‘scale_y‘ of the ‘iglm.data‘ object.

Usage:
iglm.data_generator$set_scale_y(scale_y)

Arguments:
scale_y A positive numeric value for scaling (e.g., variance for "normal" type).

Returns: The ‘iglm.data‘ object itself (‘self‘), invisibly.

Method set_x_attribute(): Sets the ‘x_attribute‘ of the ‘iglm.data‘ object.

Usage:
iglm.data_generator$set_x_attribute(x_attribute)

Arguments:
x_attribute A numeric vector for the first unit-level attribute.

Returns: The ‘iglm.data‘ object itself (‘self‘), invisibly.

Method set_y_attribute(): Sets the ‘y_attribute‘ of the ‘iglm.data‘ object.

Usage:
iglm.data_generator$set_y_attribute(y_attribute)

Arguments:
y_attribute A numeric vector for the first unit-level attribute.

Returns: The ‘iglm.data‘ object itself (‘self‘), invisibly.

Method gather(): Gathers the current state of the ‘iglm.data‘ object into a list. This includes
all attributes, network, and configuration details necessary to reconstruct the object later.

Usage:
iglm.data_generator$gather()

Returns: A list containing the current state of the ‘iglm.data‘ object.

Method save(): Saves the current state of the ‘iglm.data‘ object to a specified file path in RDS
format. This includes all attributes, network, and configuration details necessary to reconstruct
the object later.

iglm.data_generator 13

Usage:
iglm.data_generator$save(file)

Arguments:
file (character) The file where the object state should be saved.

Returns: The ‘iglm.data‘ object itself (‘self‘), invisibly.

Method density_z(): Calculates the density of the ‘z_network‘.

Usage:
iglm.data_generator$density_z()

Returns: A numeric value for the network density.

Method density_x(): Calculates the mean of the ‘x_attribute‘.

Usage:
iglm.data_generator$density_x()

Returns: A numeric value for the mean of ‘x_attribute‘.

Method density_y(): Calculates the mean of the ‘y_attribute‘.

Usage:
iglm.data_generator$density_y()

Returns: A numeric value for the mean of ‘y_attribute‘.

Method edgewise_shared_partner(): Calculates the matrix of edgewise shared partners. This
is a two-path matrix (e.g., $A A^T$ or $A^T A$).

Usage:
iglm.data_generator$edgewise_shared_partner(type = "ALL")

Arguments:
type (character) The type of two-path to calculate for directed networks. Ignored if network is

undirected. Must be one of: ‘"OTP"‘ (Outgoing Two-Path), ‘"ISP"‘ (In-Star), ‘"OSP"‘ (Out-
Star), ‘"ITP"‘ (Incoming Two-Path), ‘"ALL"‘ (Symmetric all-partner). Default is ‘"ALL"‘.

Returns: A sparse matrix (‘dgCMatrix‘) of shared partner counts.

Method set_neighborhood_overlap(): Sets the neighborhood and overlap matrices.

Usage:
iglm.data_generator$set_neighborhood_overlap(neighborhood, overlap)

Arguments:
neighborhood A matrix for a secondary neighborhood. Can be a 2-column edgelist or a square

adjacency matrix.
overlap A matrix for the overlap network. Can be a 2-column edgelist or a square adjacency

matrix.

Returns: None. Updates the internal neighborhood and overlap matrices.

Method dyadwise_shared_partner(): Calculates the matrix of edgewise shared partners. This
is a two-path matrix (e.g., $A A^T$ or $A^T A$).

14 iglm.data_generator

Usage:
iglm.data_generator$dyadwise_shared_partner(type = "ALL")

Arguments:
type (character) The type of two-path to calculate for directed networks. Ignored if network

is undirected. Must be one of: ‘"OTP"‘ (Outgoing Two-Path, z_i,j*z_j,h), ‘"ISP"‘ (In-
Star), ‘"OSP"‘ (Out-Star), ‘"ITP"‘ (Incoming Two-Path), ‘"ALL"‘ (Symmetric all-partner).
Default is ‘"ALL"‘.

Returns: A sparse matrix (‘dgCMatrix‘) of shared partner counts.

Method geodesic_distances_distribution(): Calculates the geodesic distance distribution
of the symmetrized ‘z_network‘.

Usage:
iglm.data_generator$geodesic_distances_distribution(
value_range = NULL,
prob = TRUE,
plot = FALSE

)

Arguments:
value_range (numeric vector) A vector ‘c(min, max)‘ specifying the range of distances to

tabulate. If ‘NULL‘ (default), the range is inferred from the data.
prob (logical) If ‘TRUE‘ (default), returns a probability distribution (proportions). If ‘FALSE‘,

returns raw counts.
plot (logical) If ‘TRUE‘, plots the distribution.

Returns: A named vector (a ‘table‘ object) with the distribution of geodesic distances. Includes
‘Inf‘ for unreachable pairs.

Method geodesic_distances(): Calculates the all-pairs geodesic distance matrix for the sym-
metrized ‘z_network‘ using a matrix-based BFS algorithm.

Usage:
iglm.data_generator$geodesic_distances()

Returns: A sparse matrix (‘dgCMatrix‘) where ‘D[i, j]‘ is the shortest path distance from i to j.
‘Inf‘ indicates no path.

Method edgewise_shared_partner_distribution(): Calculates the distribution of edgewise
shared partners.

Usage:
iglm.data_generator$edgewise_shared_partner_distribution(
type = "ALL",
value_range = NULL,
prob = TRUE,
plot = FALSE

)

Arguments:
type (character) The type of shared partner matrix to use. See ‘edgewise_shared_partner‘ for

details. Default is ‘"ALL"‘.

iglm.data_generator 15

value_range (numeric vector) A vector ‘c(min, max)‘ specifying the range of counts to tabu-
late. If ‘NULL‘ (default), the range is inferred from the data.

prob (logical) If ‘TRUE‘ (default), returns a probability distribution (proportions). If ‘FALSE‘,
returns raw counts.

plot (logical) If ‘TRUE‘, plots the distribution.

Returns: A named vector (a ‘table‘ object) with the distribution of shared partner counts.

Method dyadwise_shared_partner_distribution(): Calculates the distribution of edgewise
shared partners.

Usage:
iglm.data_generator$dyadwise_shared_partner_distribution(
type = "ALL",
value_range = NULL,
prob = TRUE,
plot = FALSE

)

Arguments:

type (character) The type of shared partner matrix to use. See ‘edgewise_shared_partner‘ for
details. Default is ‘"ALL"‘.

value_range (numeric vector) A vector ‘c(min, max)‘ specifying the range of counts to tabu-
late. If ‘NULL‘ (default), the range is inferred from the data.

prob (logical) If ‘TRUE‘ (default), returns a probability distribution (proportions). If ‘FALSE‘,
returns raw counts.

plot (logical) If ‘TRUE‘, plots the distribution.

Returns: A named vector (a ‘table‘ object) with the distribution of shared partner counts.

Method degree_distribution(): Calculates the degree distribution of the ‘z_network‘.

Usage:
iglm.data_generator$degree_distribution(
value_range = NULL,
prob = TRUE,
plot = FALSE

)

Arguments:

value_range (numeric vector) A vector ‘c(min, max)‘ specifying the range of degrees to tabu-
late. If ‘NULL‘ (default), the range is inferred from the data.

prob (logical) If ‘TRUE‘ (default), returns a probability distribution (proportions). If ‘FALSE‘,
returns raw counts.

plot (logical) If ‘TRUE‘, plots the degree distribution.

Returns: If the network is directed, a list containing two ‘table‘ objects: ‘in_degree‘ and
‘out_degree‘. If undirected, a single ‘table‘ object with the degree distribution.

Method degree(): Calculates the degree sequence(s) of the ‘z_network‘.

Usage:

16 iglm.data_generator

iglm.data_generator$degree()

Returns: If the network is directed, a list containing two vectors: ‘in_degree_seq‘ and ‘out_degree_seq‘.
If undirected, a single list containing the vector ‘degree_seq‘.

Method spillover_degree_distribution(): Calculates the spillover degree distribution be-
tween actors with ‘x_attribute == 1‘ and actors with ‘y_attribute == 1‘.

Usage:
iglm.data_generator$spillover_degree_distribution(
prob = TRUE,
value_range = NULL,
plot = FALSE

)

Arguments:

prob (logical) If ‘TRUE‘ (default), returns a probability distribution (proportions). If ‘FALSE‘,
returns raw counts.

value_range (numeric vector) A vector ‘c(min, max)‘ specifying the range of degrees to tabu-
late. If ‘NULL‘ (default), the range is inferred from the data.

plot (logical) If ‘TRUE‘, plots the distributions.

Returns: A list containing two ‘table‘ objects: ‘out_spillover_degree‘ (from x_i=1 to y_j=1)
and ‘in_spillover_degree‘ (from y_i=1 to x_j=1).

Method plot(): Plot the network using ‘igraph‘.
Visualizes the ‘z_network‘ using the ‘igraph‘ package. Nodes can be colored by ‘x_attribute‘ and
sized by ‘y_attribute‘. ‘neighborhood‘ edges can be plotted as a background layer.

Usage:
iglm.data_generator$plot(
node_color = "x",
node_size = "y",
show_overlap = TRUE,
layout = igraph::layout_with_fr,
network_edges_col = "grey60",
neighborhood_edges_col = "orange",
main = "",
legend_col_n_levels = NULL,
legend_size_n_levels = NULL,
legend_pos = "right",
alpha_neighborhood = 0.2,
edge.width = 1,
edge.arrow.size = 1,
vertex.frame.width = 0.5,
coords = NULL,
...

)

Arguments:

node_color (character) Attribute to map to node color. One of ‘"x"‘ (default), ‘"y"‘, or ‘"none"‘.

iglm_object_generator 17

node_size (character) Attribute to map to node size. One of ‘"y"‘ (default), ‘"x"‘, or ‘"con-
stant"‘.

show_overlap (logical) If ‘TRUE‘ (default), plot the ‘neighborhood‘ edges as a background
layer.

layout An ‘igraph‘ layout function (e.g., ‘igraph::layout_with_fr‘).
network_edges_col (character) Color for the ‘z_network‘ edges.
neighborhood_edges_col (character) Color for the ‘neighborhood‘ edges.
main (character) The main title for the plot.
legend_col_n_levels (integer) Number of levels for the color legend.
legend_size_n_levels (integer) Number of levels for the size legend.
legend_pos (character) Position of the legend (e.g., ‘"right"‘).
alpha_neighborhood (numeric) Alpha transparency for neighborhood edges.
edge.width (numeric) Width of the network edges.
edge.arrow.size (numeric) Size of the arrowheads for directed edges.
vertex.frame.width (numeric) Width of the vertex frame.
coords (matrix) Optional matrix of x-y coordinates for node layout.
... Additional arguments passed to ‘plot.igraph‘.

Returns: A list containing the ‘igraph‘ object (‘graph‘) and the layout coordinates (‘coords‘),
invisibly.

Method print(): Print a summary of the ‘iglm.data‘ object to the console.

Usage:
iglm.data_generator$print(digits = 3, ...)

Arguments:
digits (integer) Number of digits to round numeric output to.
... Additional arguments (not used).

Returns: The object’s private environment, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
iglm.data_generator$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

iglm_object_generator An R6 class for Network GLM (Generalized Linear Model) Objects

Description

The ‘iglm_object‘ class encapsulates all components required to define, estimate, and simulate from
a network generalized linear model. This includes the model formula, coefficients, the underlying
network and attribute data (via a ‘iglm.data‘ object), sampler controls, estimation controls, and
storage for results.

18 iglm_object_generator

Active bindings

formula (‘formula‘) Read-only. The model formula specifying terms and data object.

coef (‘numeric‘) Read-only. The current vector of non-popularity coefficient estimates or initial
values.

coef_popularity (‘numeric‘ or ‘NULL‘) Read-only. The current vector of popularity coefficient
estimates or initial values, or ‘NULL‘ if not applicable.

results (‘results‘) Read-only. The results R6 object containing all estimation and simulation
outputs.

iglm.data (‘iglm.data‘) Read-only. The associated iglm.data R6 object containing the network
and attribute data.

control (‘control.iglm‘) Read-only. The control.iglm object specifying estimation parameters.

sampler (‘sampler_iglm‘) Read-only. The sampler_iglm object specifying MCMC sampling pa-
rameters.

sufficient_statistics (‘numeric‘) Read-only. A named vector of the observed network statis-
tics corresponding to the model terms, calculated on the current ‘iglm.data‘ data.

Methods

Public methods:
• iglm_object_generator$new()

• iglm_object_generator$model_assessment()

• iglm_object_generator$print()

• iglm_object_generator$plot()

• iglm_object_generator$gather()

• iglm_object_generator$save()

• iglm_object_generator$estimate()

• iglm_object_generator$summary()

• iglm_object_generator$simulate()

• iglm_object_generator$get_samples()

• iglm_object_generator$set_sampler()

• iglm_object_generator$set_target()

• iglm_object_generator$clone()

Method new(): Internal method to calculate the observed count statistics based on the model
formula and the data in the ‘iglm.data‘ object. Populates the ‘private$.sufficient_statistics‘ field.
Internal validation method. Checks the consistency and validity of all components of the ‘iglm_object‘.
Stops with an error if any check fails.
Creates a new ‘iglm_object‘. This involves parsing the formula, linking the data object, initializing
coefficients, setting up sampler and control objects, calculating initial statistics, and validating.

Usage:
iglm_object_generator$new(
formula = NULL,
coef = NULL,

iglm_object_generator 19

coef_popularity = NULL,
sampler = NULL,
control = NULL,
file = NULL

)

Arguments:
formula A model ‘formula‘ object. The left-hand side should be the name of a iglm.data

object available in the calling environment. See model_terms for details on specifying the
right-hand side terms.

coef A numeric vector of initial coefficients for the terms in the formula (excluding popularity).
If ‘NULL‘, coefficients are initialized to zero.

coef_popularity An optional numeric vector of initial popularity coefficients. Should be
‘NULL‘ if the formula does not include popularity terms.

sampler A sampler_iglm object specifying the MCMC sampler settings. If ‘NULL‘, default
settings are used.

control A control.iglm object specifying estimation control parameters. If ‘NULL‘, default
settings are used.

file (character or ‘NULL‘) If provided, loads the sampler state from the specified .rds file
instead of initializing from parameters.

Returns: A new ‘iglm_object‘.

Method model_assessment(): Performs model assessment by calculating specified network
statistics on the observed network and comparing their distribution to the distribution obtained
from simulated networks based on the current model parameters. Requires simulations to have
been run first (via iglm_object$simulate or iglm_object_generator$estimate).

Usage:
iglm_object_generator$model_assessment(formula)

Arguments:
formula A formula specifying the network statistics to assess (e.g., ‘~ degree_distribution()

+ geodesic_distances_distribution()‘). The terms should correspond to methods available
in the iglm.data object that end with ‘distributions‘. If the term mcmc_diagnostics is
included, MCMC diagnostics will also be computed.

Returns: An object of class ‘iglm_model_assessment‘ containing the observed statistics and
the distribution of simulated statistics. The result is also stored internally.

Method print(): Print a summary of the ‘iglm_object‘. If estimation results are available, they
are printed in a standard coefficient table format.

Usage:
iglm_object_generator$print(digits = 4, ...)

Arguments:
digits (integer) Number of digits for rounding numeric output.
... Additional arguments (not used).

Method plot(): Plot the estimation results, including coefficient convergence paths and model
assessment diagnostics if available.

20 iglm_object_generator

Usage:
iglm_object_generator$plot(
stats = FALSE,
trace = FALSE,
model_assessment = FALSE

)

Arguments:
stats (logical) If ‘TRUE‘, plot the observed vs. simulated statistics from model assessment.

Default is ‘FALSE‘.
trace (logical) If ‘TRUE‘, plot the coefficient convergence paths. Default is ‘FALSE‘.
model_assessment (logical) If ‘TRUE‘, plot diagnostics from the model assessment (if already

carried out). Default is ‘FALSE‘.

Method gather(): Gathers all components of the iglm_object into a single list for easy saving
or inspection.

Usage:
iglm_object_generator$gather()

Returns: A list containing all key components of the iglm_object. This includes the formula,
coefficients, sampler, control settings, preprocessing info, time taken for estimation, count statis-
tics, results, and the underlying iglm.data data object.

Method save(): Save the iglm_object to a file in RDS format.

Usage:
iglm_object_generator$save(file = NULL)

Arguments:
file (character) File path to save the object to.

Returns: Invisibly returns ‘NULL‘.

Method estimate(): Estimate the model parameters using the specified control settings. Stores
the results internally and updates the coefficient fields.

Usage:
iglm_object_generator$estimate()

Returns: If the no preprocessing should be returned (as per control settings), this function re-
turns a list containing detailed estimation results, invisibly. Includes final coefficients, variance-
covariance matrix, convergence path, Fisher information, score vector, log-likelihood, and any
simulations performed during estimation. Else, the function returns a list of the desired prepro-
cessed data (as a data.frame) and needed time.

Method summary(): Provides a summary of the estimation results. Requires the model to have
been estimated first.

Usage:
iglm_object_generator$summary(digits = 3)

Arguments:
digits (integer) Number of digits for rounding numeric output.

iglm_object_generator 21

Returns: Prints the summary to the console and returns ‘NULL‘ invisibly.

Method simulate(): Simulate networks from the fitted model or a specified model. Stores the
simulations and/or summary statistics internally. The simulation is carried out using the internal
MCMC sampler described in simulate_iglm.

Usage:
iglm_object_generator$simulate(
nsim = 1,
only_stats = FALSE,
display_progress = TRUE,
offset_nonoverlap = 0

)

Arguments:

nsim (integer) Number of networks to simulate. Default is 1.
only_stats (logical) If ‘TRUE‘, only calculate and store summary statistics for each simula-

tion, discarding the network object itself. Default is ‘FALSE‘.
display_progress (logical) If ‘TRUE‘ (default), display a progress bar during simulation.
offset_nonoverlap (numeric) Offset to apply for non-overlapping dyads during simulation

(if applicable to the sampler). This option is useful if the sparsity of edges of units with
non-overlapping neighborhoods is known. Default is 0.

Returns: A list containing the simulated networks (‘samples‘, as a ‘iglm.data.list‘ if ‘only_stats
= FALSE‘) and/or their summary statistics (‘stats‘), invisibly.

Method get_samples(): Retrieve the simulated networks stored in the object. Requires simulate
or estimate to have been run first.

Usage:
iglm_object_generator$get_samples()

Returns: A list of iglm.data objects representing the simulated networks, invisibly. Returns
an error if no samples are available.

Method set_sampler(): Replace the internal MCMC sampler with a new one. This is useful
for changing the sampling scheme without redefining the entire model.

Usage:
iglm_object_generator$set_sampler(sampler)

Arguments:

sampler A sampler_iglm object. @return The iglm_object itself, invisibly.

Method set_target(): Replace the internal ‘iglm.data‘ data object with a new one. This is
useful for applying a fitted model to new observed data. Recalculates count statistics and re-
validates the object.

Usage:
iglm_object_generator$set_target(x)

Arguments:

x A iglm.data “ object containing the new observed data.

22 model_terms

Returns: The iglm_object itself, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
iglm_object_generator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Fritz, C., Schweinberger, M. , Bhadra S., and D. R. Hunter (2025). A Regression Framework for
Studying Relationships among Attributes under Network Interference. Journal of the American
Statistical Association, to appear.

Stewart, J. R. and M. Schweinberger (2025). Pseudo-Likelihood-Based M-Estimation of Random
Graphs with Dependent Edges and Parameter Vectors of Increasing Dimension. Annals of Statistics,
to appear.

Schweinberger, M. and M. S. Handcock (2015). Local dependence in random graph models: char-
acterization, properties, and statistical inference. Journal of the Royal Statistical Society, Series B
(Statistical Methodology), 7, 647-676.

model_terms Model specification for a ‘iglm’ object

Description

R package iglm implements generalized linear models (GLMs) for studying relationships among at-
tributes in connected populations, where responses of connected units can be dependent. It extends
GLMs for independent responses to dependent responses and can be used for studying spillover in
connected populations and other network-mediated phenomena. It is based on a joint probability
model for dependent responses (Y) and connections (Z) conditional on predictors (X).

The joint probability density is specified as

fθ(y, z, x) ∝
[N∏
i=1

ay(yi) exp(θ
T
g gi(xi, y

∗
i))

]
×
[∏
i ̸=j

az(zi,j) exp(θ
T
h hi,j(x, y

∗
i , y

∗
j , z))

]
,

which is defined by two distinct sets of user-specified features:

• gi(x, y, z): A vector of unit-level functions (or "g-terms") that describe the relationship be-
tween an individual actor i’s predictors (xi) and their own response (yi).

• hi,j(x, y, z): A vector of pair-level functions (or "h-terms") that specify how the connections
(z) and responses (yi, yj) of a pair of units {i, j} depend on each other and the wider network
structure.

model_terms 23

This separation allows the model to simultaneously capture individual-level behavior (via gi) and
dyadic, network-based dependencies (via hi,j), including local dependence limited to overlapping
neighborhoods. This help page documents the various statistics available in ’iglm’, corresponding
to the gi (attribute-level) and hi,j (pair-level) components of the joint model. In the formula inter-
face, these terms can be specified by adding them in the right-hand side of a model formula, e.g.,
iglm.data ~ attribute_x + edges(mode = "local") + popularity, See the documenta-
tion for iglm for details on model fitting and estimation.

Details

Each term defines a component for the model’s features, which are a sum of unit-level components,∑
i gi(x, y, z), and/or pair-level components,

∑
i ̸=j hi,j(x, y, z). Here, xi and yi are the attributes

for actor i, and zi,j indicates the presence (1) or absence (0) of a tie from actor i to actor j. The
local neighborhood of actor i is denoted Ni, and the indicator for whether actors i and j share a
local neighborhood is given by ci,j = I(Ni ∩ Nj ̸= ∅). The functions below specify the forms
of gi(x, y, z) and hi,j(x, y, z) for each term. Some terms also depend on other covariates, which
are denoted by v = (v1, ..., vN) (unit-level) and w = (wi,j) ∈ RN×N (dyadic). These covariates
must be provided by the user via the data argument. The implemented terms are grouped into three
categories:

1. gi terms for attribute dependence,

2. hi,j terms for network dependence,

3. hi,j Terms for joint attribute/network dependence.

1. gi Terms for Attribute Dependence
attribute_x Attribute (X) [g-term]: Intercept for attribute ’x’. gi(x, y, z) = xi

attribute_y Attribute (Y) [g-term]: Intercept for attribute ’y’. gi(x, y, z) = yi

cov_x Nodal Covariate (X) [g-term]: Effect of a unit-level covariate vi on attribute xi. gi(x, y, z) =
vixi

cov_y(data = v) Nodal Covariate (Y) [g-term]: Effect of a unit-level covariate vi on attribute
yi. gi(x, y, z) = viyi

attribute_xy(mode = "global") Nodal Attribute Interaction (X-Y) [g-term]: Interaction of
attributes xi and yi on the same node. For mode different from "global", we count interactions
of an actor’s attributes with their local neighbors’ attributes.

• global: gi(x, y, z) = xiyi

• local: gi(x, y, z) = xi

∑
j∈Ni

yj + yi
∑

j∈Ni
xj

• alocal: gi(x, y, z) = xi

∑
j /∈Ni

yj + yi
∑

j /∈Ni
xj

2. hi,j Terms for Network Dependence
popularity Popularity [h-term]: Adds fixed effects for all actors in the network. Estimation of

popularity effects is carried out using a MM algorithm. For directed networks, each actors has
a sender and receiver effect (we assume that the out effect of actor N is 0 for identifiability).
For undirected networks, each actor has a single popularity effect.

edges(mode = "global") Edges [h-term]: Counts different types of edges.

• global: hi,j(x, y, z) = zi,j

• local: hi,j(x, y, z) = ci,jzi,j

24 model_terms

• alocal: hi,j(x, y, z) = (1− ci,j)zi,j

mutual(mode = "global") Mutual Reciprocity [h-term]: Counts whether the reciprocal tie be-
tween actors i and j is present. This term should only be used for directed networks.

• global: hi,j(x, y, z) = zi,jzj,i (for i < j)
• local: hi,j(x, y, z) = ci,jzi,jzj,i (for i < j)
• alocal: hi,j(x, y, z) = (1− ci,j)zi,jzj,i (for i < j)

cov_z(data, mode = "global") Dyadic Covariate [h-term]: The effect of a dyadic covariate
wi,j for directed or undirected networks.

• global: hi,j(x, y, z) = wi,jzi,j

• local: hi,j(x, y, z) = ci,jwi,jzi,j

• alocal: hi,j(x, y, z) = (1− ci,j)wi,jzi,j

isolates Isolates [z-term]: Counts and accounts for the number of non-isolated nodes.

nonisolates Non-Isolates [z-term]: Counts and accounts for the number of non-isolated nodes.
It is the exact negative of the isolates statistic.

gwodegree(decay) Geometrically Weighted Out-Degree [z-term]: The Geometrically Weighted
Out-Degree statistic is implemented as in the ‘ergm‘ package.

gwidegree(decay) Geometrically Weighted In-Degree [z-term]: The Geometrically Weighted
In-Degree (GWIDegree) statistic is implemented as in the ‘ergm‘ package.

gwesp(data, mode = "global", variant = "OTP") Geometrically Weighted Edegewise-Shared
Partners [h-term]: Geometrically weighted edgewise shared partners (GWESP) statistic for
directed networks as implemented in the ‘ergm‘ package. Variants include: OTP (outgoing
two-paths, zi,h zh,j zi,j), ITP (incoming two-paths, zh,i zj,h zi,j), OSP (outgoing shared part-
ners, zi,h zj,h zi,j), ISP (incoming shared partners, zh,i zh,j zi,j).

• global: ESP counts are calculated over all edges in the network.
• local: ESP counts are restricted to local edges only (edges with non-overlapping neigh-

borhoods).

gwdsp(data, mode = "global", variant = "OTP") Geometrically Weighted Dyadwise-Shared
Partners [h-term]: Geometrically weighted dyadwise shared partners (GWDSP) statistic for
directed networks as implemented in the ‘ergm‘ package. Variants include: OTP (outgo-
ing two-paths, zi,h zh,j), ITP (incoming two-paths, zh,i zj,h), OSP (outgoing shared partners,
zi,h zj,h), ISP (incoming shared partners, zh,i zh,j).

• global: ESP counts are calculated over all edges in the network.
• local: ESP counts are restricted to local edges only (edges with non-overlapping neigh-

borhoods).

cov_z_out(data, mode = "global") Covariate Sender [h-term]: The effect of a monadic co-
variate vi on being the sender in a directed network.

• global: hi,j(x, y, z) = vizi,j

• local: hi,j(x, y, z) = ci,jvizi,j

• alocal: hi,j(x, y, z) = (1− ci,j)vizi,j

cov_z_in(data, mode = "global") Covariate Receiver [h-term]: The effect of a monadic co-
variate vi on being the receiver in a directed network.

• global: hi,j(x, y, z) = vjzi,j

model_terms 25

• local: hi,j(x, y, z) = ci,jvjzi,j

• alocal: hi,j(x, y, z) = (1− ci,j)vjzi,j

transitive Transitivity (Local) [Joint]: A statistic checking whether the dyad is a local tran-
sitive edge, meaning that there exists an actor h ̸= i, j such that h ∈ Ni, h ∈ Nj with
zi,j = zi,h = zh,j : hi,j = ci,jzi,jI(

∑
k ci,kcj,kzi,kzk,j > 1)

3. hi,j Terms for Joint Attribute/Network Dependence

outedges_x_global() Attribute Out-Degree (X-Z Global) [h-term]: Models xi’s effect on its
out-degree. Corresponds to hi,j(x, y, z) = xizi,j .

outedges_x(mode = "global") Attribute Out-Degree (X-Z) [Joint h-term]: Models xi’s effect
on its out-degree.

• global: hi,j(x, y, z) = xizi,j

• local: hi,j(x, y, z) = ci,jxizi,j

• alocal: hi,j(x, y, z) = (1− ci,j)xizi,j

inedges_x(mode = "global") Attribute In-Degree (X-Z) [Joint h-term]: Models xj’s effect on
its in-degree.

• global: hi,j(x, y, z) = xjzi,j

• local: hi,j(x, y, z) = ci,jxjzi,j

• alocal: hi,j(x, y, z) = (1− ci,j)xjzi,j

outedges_y(mode = "global") Attribute Out-Degree (Y-Z) [Joint h-term]: Models yi’s effect
on its out-degree.

• global: hi,j(x, y, z) = yizi,j

• local: hi,j(x, y, z) = ci,jyizi,j

• alocal: hi,j(x, y, z) = (1− ci,j)yizi,j

inedges_y(mode = "global") Attribute In-Degree (Y-Z) [Joint h-term]: Models yj’s effect on
its in-degree.

• global: hi,j(x, y, z) = yjzi,j

• local: hi,j(x, y, z) = ci,jyjzi,j

• alocal: hi,j(x, y, z) = (1− ci,j)yjzi,j

spillover_xx Symmetric X-X-Z Outcome Spillover [h-term]: Models x-outcome spillover
within the local neighborhood. Corresponds to hi,j(x, y, z) = ci,jxixjzi,j .

spillover_xx_scaled X-X-Z Outcome Spillover [h-term]: Models x-outcome spillover within
the local neighborhood but weights the influence of xj on xi by the out-degree of actor i with
other actors in its neighborhood, denoted by local_degree(i)(forundirectednetworks, thedegreeisused).
Corresponds to hi,j(x, y, z) = ci,jxixjzi,j/local_degree(i).

spillover_yy Symmetric Y-Y-Z Outcome Spillover [h-term]: Models y-outcome spillover within
the local neighborhood. Corresponds to hi,j(x, y, z) = ci,jyiyjzi,j .

spillover_yy_scaled Y-Y-Z Outcome Spillover [h-term]: Models y-outcome spillover within
the local neighborhood but weights the influence of yj on yi by the degree of actor i with other
actors in its neighborhood, defined above. Corresponds to hi,j(x, y, z) = ci,jyiyjzi,j/local_degree(i).

spillover_xy Directed X-Y-Z Treatment Spillover [h-term]: Models the xi → yj treatment
spillover within the local neighborhood. Corresponds to hi,j(x, y, z) = ci,jxiyjzi,j .

26 results

spillover_xy_scaled X-Y-Z Outcome Spillover [h-term]: Models the xi → yj treatment
spillover within the local neighborhood but weights the influence of yj on xi by the degree of
actor i with other actors in its neighborhood, defined above. Corresponds to hi,j(x, y, z) =
ci,jxiyjzi,j/local_degree(i).

spillover_xy_symm Symmetric X-Y-Z Treatment Spillover [h-term]: Models the xi ↔ yj
treatment spillover within the local neighborhood. Corresponds to hi,j(x, y, z) = ci,j(xiyj +
xjyi)zi,j .

spillover_yx Directed Y-X-Z Treatment Spillover [h-term]: Models the yi → xj treatment
spillover within the local neighborhood. Corresponds to hi,j(x, y, z) = ci,jyixjzi,j .

spillover_yx_scaled Y-X-Z Outcome Spillover [h-term]: Models the yi → xj treatment
spillover within the local neighborhood but weights the influence of xj on yi by the degree of
actor i with other actors in its neighborhood, defined above. Corresponds to hi,j(x, y, z) =
ci,jyixjzi,j/local_degree(i).

spillover_yc Directed Y-C-Z Treatment Spillover [h-term]: Models y-treat spillover to a co-
variate v within the local neighborhood. Corresponds to hi,j(x, y, z) = ci,jyivjzi,j .

spillover_yc_symm(data = v) Symmetric Treatment Spillover [h-term]: Models the vi ↔ yj
treatment spillover . Corresponds to hi,j(x, y, z) = ci,j(viyj + vjyi)zi,j .

References

Fritz, C., Schweinberger, M., Bhadra, S., and D.R. Hunter (2025). A Regression Framework for
Studying Relationships among Attributes under Network Interference. Journal of the American
Statistical Association, to appear.

Schweinberger, M. and M.S. Handcock (2015). Local Dependence in Random Graph Models:
Characterization, Properties, and Statistical Inference. Journal of the Royal Statistical Society,
Series B (Statistical Methodology), 7, 647-676.

Schweinberger, M. and J.R. Stewart (2020). Concentration and Consistency Results for Canonical
and Curved Exponential-Family Models of Random Graphs. The Annals of Statistics, 48, 374-396.

Stewart, J.R. and M. Schweinberger (2025). Pseudo-Likelihood-Based M-Estimation of Random
Graphs with Dependent Edges and Parameter Vectors of Increasing Dimension. The Annals of
Statistics, to appear.

results Constructor for the results R6 Object

Description

Creates a new instance of the ‘results‘ R6 class. This class is designed to store various outputs
from ‘iglm‘ model estimation and simulation. Users typically do not need to call this constructor
directly; it is used internally by the ‘iglm_object‘.

Usage

results(size_coef, size_coef_popularity, file = NULL)

results_generator 27

Arguments

size_coef (integer) The number of non-popularity coefficients the object should be initial-
ized to accommodate.

size_coef_popularity

(integer) The number of popularity coefficients the object should be initialized
to accommodate.

file (character or NULL) Optional file path to load a previously saved ‘results‘ ob-
ject. If provided, the object will be initialized by loading from this file.

Value

An object of class ‘results‘ (and ‘R6‘), initialized with empty or NA structures appropriately sized
based on the input dimensions.

results_generator R6 Class for Storing iglm Estimation and Simulation Results

Description

The ‘results‘ class stores estimation (‘$estimate()‘) and simulation (‘$simulate()‘) results.

This class is primarily intended for internal use within the ‘iglm‘ framework but provides structured
access to the results via the active bindings of the main ‘iglm_object‘.

Active bindings

coefficients_path (‘matrix‘ or ‘NULL‘) Read-only. The path of all estimated coefficients across
iterations.

samples (‘list‘ or ‘NULL‘) Read-only. A list of simulated ‘iglm.data‘ objects (class ‘iglm.data.list‘).

stats (‘matrix‘ or ‘NULL‘) Read-only. Matrix of summary statistics for simulated samples, which
are an ‘mcmc‘ obect from ‘coda‘.

var (‘matrix‘ or ‘NULL‘) Read-only. Estimated variance-covariance matrix for non-popularity
coefficients.

fisher_popularity (‘matrix‘ or ‘NULL‘) Read-only. Fisher information matrix for popularity
coefficients.

fisher_nonpopularity (‘matrix‘ or ‘NULL‘) Read-only. Fisher information matrix for non-
popularity coefficients.

score_popularity (‘numeric‘ or ‘NULL‘) Read-only. Score vector for popularity coefficients.

score_nonpopularity (‘numeric‘ or ‘NULL‘) Read-only. Score vector for non-popularity coeffi-
cients.

llh (‘numeric‘ or ‘NULL‘) Read-only. Vector of log-likelihood values recorded during estimation.

model_assessment (‘list‘ or ‘NULL‘) Read-only. Results from model assessment (goodness-of-
fit).

estimated (‘logical‘) Read-only. Flag indicating if estimation has been completed.

28 results_generator

Methods

Public methods:
• results_generator$new()

• results_generator$set_model_assessment()

• results_generator$gather()

• results_generator$save()

• results_generator$resize()

• results_generator$update()

• results_generator$remove_samples()

• results_generator$plot()

• results_generator$print()

• results_generator$clone()

Method new(): Creates a new ‘results‘ object. Initializes internal fields, primarily setting up an
empty matrix for the ‘coefficients_path‘ based on the expected number of coefficients.

Usage:
results_generator$new(size_coef, size_coef_popularity, file)

Arguments:

size_coef (integer) The number of non-popularity (structural) coefficients in the model.
size_coef_popularity (integer) The number of popularity coefficients in the model (0 if

none).
file (character or ‘NULL‘) If provided, loads the sampler state from the specified .rds file

instead of initializing from parameters.

Returns: A new ‘results‘ object, initialized to hold results for a model with the specified di-
mensions.

Method set_model_assessment(): Stores the results object generated by a model assessment
(goodness-of-fit) procedure within this ‘results‘ container.

Usage:
results_generator$set_model_assessment(res)

Arguments:

res An object containing the model assessment results, expected to have the class ‘iglm_model_assessment‘.

Returns: The ‘results‘ object itself (‘self‘), invisibly. Called for its side effect of storing the
assessment results.

Method gather(): Gathers the current state of the ‘results‘ object into a list for saving or
inspection. This includes all internal fields such as coefficient paths, samples, statistics, variance-
covariance matrix, Fisher information, score vectors, log-likelihood values, model assessment
results, and estimation status.

Usage:
results_generator$gather()

Returns: A list containing all the internal fields of the ‘results‘ object.

results_generator 29

Method save(): Saves the current state of the ‘results‘ object to a specified file path in RDS
format. This allows for persisting the results for later retrieval and analysis.

Usage:
results_generator$save(file)

Arguments:

file (character) The file path where the results state should be saved. Must be a valid character
string.

Returns: The ‘results‘ object itself (‘self‘), invisibly.

Method resize(): Resizes the internal storage for the coefficient paths to accommodate a
different number of coefficients. This is useful if the model structure changes and the results
object needs to be reset.

Usage:
results_generator$resize(size_coef, size_coef_popularity)

Arguments:

size_coef (integer) The new number of non-popularity coefficients.
size_coef_popularity (integer) The new number of popularity coefficients. @return The

‘results‘ object itself (‘self‘), invisibly.

Method update(): Updates the internal fields of the ‘results‘ object with new outputs, typically
after an estimation run (‘$estimate()‘) or simulation run (‘$simulate()‘). Allows selectively updat-
ing components. Appends to ‘coefficients_path‘ and ‘llh‘ if called multiple times after estimation.
Replaces ‘samples‘ and ‘stats‘.

Usage:
results_generator$update(
coefficients_path = NULL,
samples = NULL,
var = NULL,
fisher_popularity = NULL,
fisher_nonpopularity = NULL,
score_popularity = NULL,
score_nonpopularity = NULL,
llh = NULL,
stats = NULL,
estimated = FALSE

)

Arguments:

coefficients_path (matrix) A matrix where rows represent iterations and columns represent
all coefficients (non-popularity then popularity), showing their values during estimation. If
provided, appends to any existing path.

samples (list) A list of simulated ‘iglm.data‘ objects (class ‘iglm.data.list‘). If provided, re-
places any existing samples.

var (matrix) The estimated variance-covariance matrix for the non-popularity coefficients. Re-
places existing matrix.

30 results_generator

fisher_popularity (matrix) The Fisher information matrix for popularity coefficients. Re-
places existing matrix.

fisher_nonpopularity (matrix) The Fisher information matrix for non-popularity coefficients.
Replaces existing matrix.

score_popularity (numeric) The score vector for popularity coefficients. Replaces existing
vector.

score_nonpopularity (numeric) The score vector for non-popularity coefficients. Replaces
existing vector.

llh (numeric) Log-likelihood value(s). If provided, appends to the existing vector of log-
likelihoods.

stats (matrix) A matrix of summary statistics from simulations, where rows correspond to
simulations and columns to statistics. Replaces or extends the existing matrix and will be
turned into a mcmc object from the ‘coda‘ package.

estimated (logical) A flag indicating whether these results come from a completed estimation
run. Updates the internal status.

Returns: The ‘results‘ object itself (‘self‘), invisibly. Called for its side effects.

Method remove_samples(): Clears the stored simulation samples (‘.samples‘) and statistics
(‘.stats‘) from the object, resetting it to an empty list. This might be used to save memory or
before running new simulations.

Usage:
results_generator$remove_samples()

Returns: The ‘results‘ object itself (‘self‘), invisibly.

Method plot(): Generates diagnostic plots for the estimation results. Currently plots:

• The log-likelihood path across iterations.
• The convergence paths for popularity coefficients (if present).
• The convergence paths for non-popularity coefficients.

Optionally, can also trigger plotting of model assessment results if available.

Usage:
results_generator$plot(trace = FALSE, stats = FALSE, model_assessment = FALSE)

Arguments:

trace (logical) If ‘TRUE‘ (default), plot the trace plots of the estimation (log-likelihood and
coefficient paths). Requires model to be estimated.

stats (logical) If ‘TRUE‘, plots the normalized statistics from simulations.
model_assessment (logical) If ‘TRUE‘, attempts to plot the results stored in the ‘.model_assessment‘

field. Requires model assessment to have been run and a suitable ‘plot‘ method for ‘iglm_model_assessment‘
objects to exist. Default is ‘FALSE‘.

Details: Requires estimation results (‘private$.estimated == TRUE‘) to plot convergence diag-
nostics. Requires model assessment results for the model assessment plots.

Method print(): Prints a concise summary of the contents of the ‘results‘ object, indicating
whether various components (coefficients path, variance matrix, Fisher info, score, samples, stats,
etc.) are available.

rice 31

Usage:
results_generator$print(...)

Arguments:

... Additional arguments (currently ignored).

Returns: The ‘results‘ object itself (‘self‘), invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
results_generator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

rice A network of friendships between students at Rice University.

Description

The data was collected by Facebook and provided as part of Traud et al. (2012)

Format

This data object is a pre-computed ‘iglm.data‘ object. It models the ‘rice‘ friendship network
(‘z_network‘) using two binary covariates: gender (‘x_attribute‘) and whether the graduation year is
2008 (‘y_attribute‘). The "neighborhood" structure (‘neighborhood‘) is defined as students sharing
the same dormitory. data(rice)

References

Traud, Mucha, Porter (2012). Social Structure of Facebook Network. Physica A: Statistical Me-
chanics and its Applications, 391, 4165-4180

sampler.iglm Constructor for a iglm Sampler

Description

Creates an object of class ‘sampler_iglm‘ (and ‘R6‘) which holds all parameters controlling the
MCMC sampling process for ‘iglm‘ models. This includes global settings like the number of sim-
ulations and burn-in, as well as references to specific samplers for the network (‘z‘) and attribute
(‘x‘, ‘y‘) components.

This function provides a convenient way to specify these settings before passing them to the ‘iglm‘
constructor or simulation functions.

32 sampler.iglm

Usage

sampler.iglm(
sampler.x = NULL,
sampler.y = NULL,
sampler.z = NULL,
n_simulation = 100,
n_burn_in = 10,
init_empty = TRUE,
cluster = NULL,
file = NULL

)

Arguments

sampler.x An object of class ‘sampler_net_attr‘ (created by ‘sampler.net_attr()‘) specify-
ing how to sample the ‘x_attribute‘. If ‘NULL‘ (default), default ‘sampler.net_attr()‘
settings are used.

sampler.y An object of class ‘sampler_net_attr‘ specifying how to sample the ‘y_attribute‘.
If ‘NULL‘ (default), default settings are used.

sampler.z An object of class ‘sampler_net_attr‘ specifying how to sample the ‘z_network‘
ties *within* the defined neighborhood/overlap region. If ‘NULL‘ (default),
default settings are used.

n_simulation (integer) The number of independent samples (networks/attributes) to generate
after the burn-in period. Default: 100. Must be non-negative.

n_burn_in (integer) The number of MCMC iterations to perform and discard at the begin-
ning of the chain to allow it to reach approximate stationarity. Default: 10. Must
be non-negative.

init_empty (logical) If ‘TRUE‘ (default), initialize the MCMC chain from an empty state
(e.g., empty network, attributes at zero or mean). If ‘FALSE‘, the starting state
might depend on the specific implementation.

cluster A parallel cluster object (e.g., created with ‘parallel::makeCluster()‘) to enable
parallel execution of simulations. If ‘NULL‘ (default), simulations are run se-
quentially. Note: Cluster management (creation/stopping) is the user’s respon-
sibility.

file (character or ‘NULL‘) If provided, loads the sampler state from the specified
.rds file instead of initializing from parameters.

Value

An object of class ‘sampler_iglm‘ (and ‘R6‘).

See Also

‘sampler.net_attr‘, ‘iglm‘, ‘control.iglm‘

sampler.net_attr 33

Examples

n_actors <- 50
sampler_new <- sampler.iglm(n_burn_in = 100, n_simulation = 10,

sampler.x = sampler.net_attr(n_proposals = n_actors * 10, seed = 13),
sampler.y = sampler.net_attr(n_proposals = n_actors * 10, seed = 32),
sampler.z = sampler.net_attr(n_proposals = n_actors^2, seed = 134),

init_empty = FALSE)
sampler_new
Change some values of the sampler
sampler_new$n_simulation
sampler_new$set_n_simulation(100)
sampler_new$n_simulation

sampler.net_attr Constructor for Single Component Sampler Settings

Description

Creates an object of class ‘sampler_net_attr‘ (and ‘R6‘). This object specifies the MCMC sampling
parameters for a single component (like an attribute vector or a network structure) within the larger
‘iglm‘ simulation framework. It is typically used as input when creating a ‘sampler_iglm‘ object.

Usage

sampler.net_attr(n_proposals = 10000, seed = NA, file = NULL)

Arguments

n_proposals (integer) The number of MCMC proposals (iterations) to perform for this spe-
cific component during each sampling update. Default: 10000.

seed (integer or ‘NA‘) An integer seed for the random number generator to ensure
reproducibility for this component’s sampling process. If ‘NA‘ (default), a ran-
dom seed will be generated automatically.

file (character or ‘NULL‘) If provided, loads the sampler state from ’ the specified
.rds file instead of initializing from parameters.

Value

An object of class ‘sampler_net_attr‘ (and ‘R6‘).

See Also

‘sampler.iglm‘

34 sampler_iglm_generator

Examples

Default settings
sampler_comp_default <- sampler.net_attr()
sampler_comp_default

Custom settings
sampler_comp_custom <- sampler.net_attr(n_proposals = 50000, seed = 123)
sampler_comp_custom

sampler_iglm_generator

R6 Class for iglm Sampler Settings

Description

The ‘sampler_iglm‘ class is an R6 container for specifying and storing the parameters that control
the MCMC (Markov Chain Monte Carlo) sampling process used in iglm simulations and potentially
during estimation. It includes settings for the number of simulations, burn-in period, initialization,
and parallelization options. It also holds references to component samplers (sampler.net_attr
objects) responsible for sampling individual parts (attributes x, y, network z).

Active bindings

sampler.x (‘sampler_net_attr‘) Read-only. The sampler configuration object for the x attribute.

sampler.y (‘sampler_net_attr‘) Read-only. The sampler configuration object for the y attribute.

sampler.z (‘sampler_net_attr‘) Read-only. The sampler configuration object for the z network
(overlap region).

n_simulation (‘integer‘) Read-only. The number of simulations to generate after burn-in.

n_burn_in (‘integer‘) Read-only. The number of burn-in iterations.

init_empty (‘logical‘) Read-only. Flag indicating whether simulations start from an empty state.

cluster (‘cluster‘ object or ‘NULL‘) Read-only. The parallel cluster object being used, or ‘NULL‘.

Methods

Public methods:
• sampler_iglm_generator$new()

• sampler_iglm_generator$set_cluster()

• sampler_iglm_generator$deactive_cluster()

• sampler_iglm_generator$set_n_simulation()

• sampler_iglm_generator$set_n_burn_in()

• sampler_iglm_generator$set_init_empty()

• sampler_iglm_generator$set_x_sampler()

• sampler_iglm_generator$set_y_sampler()

• sampler_iglm_generator$set_z_sampler()

sampler_iglm_generator 35

• sampler_iglm_generator$print()

• sampler_iglm_generator$gather()

• sampler_iglm_generator$save()

• sampler_iglm_generator$clone()

Method new(): Create a new ‘sampler_iglm‘ object. Initializes all sampler settings, using
defaults for component samplers (‘sampler.net_attr‘) if not provided, and validates inputs.

Usage:
sampler_iglm_generator$new(
sampler.x = NULL,
sampler.y = NULL,
sampler.z = NULL,
n_simulation = 100,
n_burn_in = 10,
init_empty = TRUE,
cluster = NULL,
file = NULL

)

Arguments:
sampler.x An object of class ‘sampler_net_attr‘ controlling sampling for the x attribute. If

‘NULL‘, defaults from ‘sampler.net_attr()‘ are used.
sampler.y An object of class ‘sampler_net_attr‘ controlling sampling for the y attribute. If

‘NULL‘, defaults from ‘sampler.net_attr()‘ are used.
sampler.z An object of class ‘sampler_net_attr‘ controlling sampling for the z network (within

the defined neighborhood/overlap). If ‘NULL‘, defaults from ‘sampler.net_attr()‘ are used.
n_simulation (integer) The number of network/attribute configurations to simulate and store

after the burn-in period. Default is 100. Must be non-negative.
n_burn_in (integer) The number of initial MCMC iterations to discard (burn-in) before starting

to collect simulations. Default is 10. Must be non-negative.
init_empty (logical) If ‘TRUE‘ (default), the MCMC chain is initialized from an empty state

(e.g., empty network, attributes at mean). If ‘FALSE‘, initialization might depend on the
specific sampler implementation (e.g., starting from observed data).

cluster A parallel cluster object (e.g., from the ‘parallel‘ package) to use for running simula-
tions in parallel. If ‘NULL‘ (default), simulations are run sequentially.

file (character or ‘NULL‘) If provided, loads the sampler state from the specified .rds file
instead of initializing from parameters.

Returns: A new ‘sampler_iglm‘ object.

Method set_cluster(): Sets the parallel cluster object to be used for simulations.

Usage:
sampler_iglm_generator$set_cluster(cluster)

Arguments:
cluster A parallel cluster object from the ‘parallel‘ package.

Method deactive_cluster(): Deactivates parallel processing for this sampler instance by
setting the internal cluster object reference to ‘NULL‘.

36 sampler_iglm_generator

Usage:
sampler_iglm_generator$deactive_cluster()

Returns: The ‘sampler_iglm‘ object itself (‘self‘), invisibly.

Method set_n_simulation(): Sets the number of simulations to generate after burn-in.

Usage:
sampler_iglm_generator$set_n_simulation(n_simulation)

Arguments:

n_simulation (integer) The number of simulations to set.

Returns: None.

Method set_n_burn_in(): Sets the number of burn-in iterations.

Usage:
sampler_iglm_generator$set_n_burn_in(n_burn_in)

Arguments:

n_burn_in (integer) The number of burn-in iterations to set.

Returns: None.

Method set_init_empty(): Sets whether to initialize simulations from an empty state.

Usage:
sampler_iglm_generator$set_init_empty(init_empty)

Arguments:

init_empty (logical) ‘TRUE‘ to initialize from empty, ‘FALSE‘ otherwise.

Returns: None.

Method set_x_sampler(): Sets the sampler configuration for the x attribute.

Usage:
sampler_iglm_generator$set_x_sampler(sampler.x)

Arguments:

sampler.x An object of class ‘sampler_net_attr‘.

Returns: None.

Method set_y_sampler(): Sets the sampler configuration for the y attribute.

Usage:
sampler_iglm_generator$set_y_sampler(sampler.y)

Arguments:

sampler.y An object of class ‘sampler_net_attr‘.

Returns: None.

Method set_z_sampler(): Sets the sampler configuration for the z attribute.

Usage:

sampler_iglm_generator 37

sampler_iglm_generator$set_z_sampler(sampler.z)

Arguments:

sampler.z An object of class ‘sampler_net_attr‘.

Returns: None.

Method print(): Prints a formatted summary of the sampler configuration to the console.
Includes core parameters (simulation count, burn-in, etc.) and calls the ‘print‘ method for each
component sampler (‘sampler.x‘, ‘sampler.y‘, etc.).

Usage:

sampler_iglm_generator$print(digits = 3, ...)

Arguments:

digits (integer) Number of digits for formatting numeric values (like ‘prob_nb‘). Default: 3.

... Additional arguments (currently ignored).

Returns: The ‘sampler_iglm‘ object itself (‘self‘), invisibly.

Method gather(): Gathers all data from private fields into a list.

Usage:

sampler_iglm_generator$gather()

Returns: A list containing all information of the sampler.

Method save(): Save the object’s complete state to a directory. This will save the main sam-
pler’s settings to a file named ’sampler_iglm_state.rds’ within the specified directory, and will also
call the ‘save()‘ method for each nested sampler (.x, .y, .z), saving them into the same directory.

Usage:

sampler_iglm_generator$save(file)

Arguments:

file (character) The file to a directory where the state files will be saved. The directory will be
created if it does not exist.

Returns: The object itself, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:

sampler_iglm_generator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

38 sampler_net_attr_generator

sampler_net_attr_generator

R6 Class for Single Component Sampler Settings

Description

The ‘sampler_net_attr‘ class is a simple R6 container used within the ‘sampler_iglm‘ class. It holds
the MCMC sampling parameters for a single component of the ‘iglm‘ model, such as one attribute
(e.g., ‘x_attribute‘) or a part of the network (e.g., ‘z_network‘ within the overlap). It primarily
stores the number of proposals and a random seed.

Active bindings

n_proposals (‘integer‘) Read-only. The number of MCMC proposals per sampling step.

seed (‘integer‘) Read-only. The random seed used for this component’s sampler.

Methods

Public methods:
• sampler_net_attr_generator$new()

• sampler_net_attr_generator$print()

• sampler_net_attr_generator$gather()

• sampler_net_attr_generator$set_n_proposals()

• sampler_net_attr_generator$set_seed()

• sampler_net_attr_generator$save()

• sampler_net_attr_generator$clone()

Method new(): Create a new ‘sampler_net_attr‘ object. Validates inputs and sets a random seed
if none is provided.

Usage:
sampler_net_attr_generator$new(n_proposals = 10000, seed = NA, file = NULL)

Arguments:

n_proposals (integer) The number of MCMC proposals (iterations) to perform for this specific
component during each sampling step. Default is 10000. Must be a non-negative integer.

seed (integer or ‘NA‘) An integer seed for the random number generator to ensure reproducibil-
ity for this component’s sampling. If ‘NA‘ (default), a random seed is generated automati-
cally.

file (character or ‘NULL‘) If provided, loads the sampler state from the specified .rds file
instead of initializing from parameters.

Returns: A new ‘sampler_net_attr‘ object.

Method print(): Print a summary of the sampler settings for this component.

Usage:

sampler_net_attr_generator 39

sampler_net_attr_generator$print(indent = " ")

Arguments:

indent (character) A string used for indentation (e.g., spaces) when printing, useful for nested
structures. Default is " ".

Returns: The object itself, invisibly. Called for side effect.

Method gather(): Gathers all data from private fields into a list.

Usage:
sampler_net_attr_generator$gather()

Returns: A list containing all information of the sampler.

Method set_n_proposals(): Sets the number of MCMC proposals for this component.

Usage:
sampler_net_attr_generator$set_n_proposals(n_proposals)

Arguments:

n_proposals (integer) The number of proposals to set.

Returns: None.

Method set_seed(): Sets the random seed for this component’s sampler.

Usage:
sampler_net_attr_generator$set_seed(seed)

Arguments:

seed (integer) The random seed to set.

Returns: None.

Method save(): Save the object’s state to an .rds file.

Usage:
sampler_net_attr_generator$save(file)

Arguments:

file (character) The file file where the state will be saved.

Returns: The object itself, invisibly.

Method clone(): The objects of this class are cloneable with this method.

Usage:
sampler_net_attr_generator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

40 simulate_iglm

simulate_iglm Simulate responses and connections

Description

Simulate responses and connections.

Usage

simulate_iglm(
formula,
coef,
coef_popularity = NULL,
sampler = NULL,
only_stats = TRUE,
display_progress = FALSE,
offset_nonoverlap = 0,
cluster = NULL,
fix_x = FALSE

)

Arguments

formula A model ‘formula‘ object. The left-hand side should be the name of a ‘iglm.data‘
object available in the calling environment. See model_terms for details on
specifying the right-hand side terms.

coef Numeric vector containing the coefficient values for the structural (non-popularity)
terms defined in the ‘formula‘.

coef_popularity

Numeric vector specifying the popularity coefficient values (expansiveness/attractiveness).
This is required only if the ‘formula‘ includes popularity terms. Its length must
be ‘n_actor‘ (for undirected networks) or ‘2 * n_actor‘ (for directed networks),
where ‘n_actor‘ is determined from the ‘iglm.data‘ object in the formula.

sampler An object of class ‘sampler_iglm‘ (created by ‘sampler.iglm()‘) specifying the
MCMC sampling parameters. This includes the number of simulations (‘n_simulation‘),
burn-in iterations (‘n_burn_in‘), initialization settings (‘init_empty‘), and com-
ponent sampler settings (‘sampler.x‘, ‘sampler.y‘, etc.). If ‘NULL‘ (default),
default settings from ‘sampler.iglm()‘ are used.

only_stats (logical). If TRUE (default, consistent with the usage signature), the function
returns only the matrix of features calculated for each simulation. The full sim-
ulated iglm.data objects are discarded to minimize memory usage. If FALSE,
the complete simulated iglm.data objects are created and returned within the
samples component of the output list.

display_progress

Logical. If ‘TRUE‘, progress messages or a progress bar (depending on the
backend implementation) are displayed during simulation. Default is ‘FALSE‘.

simulate_iglm 41

offset_nonoverlap

Numeric scalar value passed to the C++ simulator. This value is typically added
to the linear predictor for dyads that are not part of the ’overlap’ set defined in
the ‘iglm.data‘ object, potentially modifying tie probabilities outside the primary
neighborhood. Default is ‘0‘.

cluster Optional parallel cluster object created, for example, by “parallel::makeCluster“.
If provided and valid, the function performs a single burn-in simulation on the
main R process, then distributes the remaining ‘n_simulation‘ tasks across the
cluster workers using “parallel::parLapply“. Seeds for component samplers are
offset for each worker to ensure different random streams. If ‘NULL‘ (default),
all simulations are run sequentially in the main R process.

fix_x Logical. If ‘TRUE‘, the simulation holds the ‘x_attribute‘ fixed at its initial state
(from the iglm.data object) and only simulates the ‘y_attribute‘ and ‘z_network‘.
If ‘FALSE‘ (default), all components (x, y, z) are simulated according to the
model and sampler settings.

Details

Parallel Execution: When a ‘cluster‘ object is provided, the simulation process is adapted:

1. A single simulation run (including burn-in specified by ‘sampler$n_burn_in‘) is performed on
the master node to obtain a starting state for the parallel chains.

2. The total number of requested simulations (‘sampler$n_simulation‘) is divided among the
cluster workers.

3. “parallel::parLapply“ is used to run simulations on each worker. Each worker starts from
the state obtained after the initial burn-in, performs zero additional burn-in (‘n_burn_in = 0‘
passed to workers), and generates its assigned share of the simulations. Component sam-
pler seeds are offset based on the worker ID to ensure pseudo-independent random number
streams.

4. Results (simulated objects or statistics) from all workers are collected and combined.

This approach ensures that the initial burn-in phase happens only once, saving time.

Value

A list containing two components:

‘samples‘ If ‘only_stats = FALSE‘, this is a list of length ‘sampler$n_simulation‘ where each
element is a ‘iglm.data‘ object representing one simulated draw from the model. The list
has the S3 class ‘"iglm.data.list"‘. If ‘only_stats = TRUE‘, this is typically an empty list.

‘stats‘ A numeric matrix with ‘sampler$n_simulation‘ rows and ‘length(coef)‘ columns. Each
row contains the features (corresponding to the model terms in ‘formula‘) calculated for one
simulation draw. Column names are set to match the term names.

Errors

The function stops with an error if:

• The length of ‘coef‘ does not match the number of terms derived from ‘formula‘.

42 state_twitter

• ‘formula_preprocess‘ fails.

• The ‘sampler‘ object is not of class ‘sampler.iglm‘.

• The C++ backend ‘xyz_simulate_cpp‘ encounters an error.

• Helper functions like ‘XYZ_to_R‘ or ‘is_cluster_active‘ are not found.

Warnings may be issued if default sampler settings are used.

See Also

iglm for creating the model object, sampler.iglm for creating the sampler object, iglm.data for
the data object structure.

state_twitter Twitter (X) data list for U.S. state legislators (10-state subset)

Description

This data object is data derived from the Twitter (X) interactions between U.S. state legislators,
which is a subset of the data analyzed in Fritz et al. (2025).’ The data is filtered to include only
legislators from 10 states (NY, CA, TX, FL, IL, PA, OH, GA, NC, MI) and is further subset to the
largest connected component based on mention or retweet activity.

This object contains the main iglm.data object and 5 pre-computed dyadic covariates.

Usage

data(state_twitter)

Format

A list object containing 6 components. Let N be the number of legislators in the filtered 10-state
subset.

iglm.data A iglm.data object (which is also a list) parameterized as follows:

• x_attribute: A binary numeric vector of length N. Value is 1 if the legislator’s party is
’Republican’, 0 otherwise.

• y_attribute: A Poisson numeric vector of length N. Represents the count of hatespeech
incidents (actors_data$number_hatespeech) for each legislator.

• z_network: A directed edgelist (2-column matrix) of size n_edges x 2. A tie (i, j)
exists if legislator i either mentioned or retweeted legislator j.

• neighborhood: A directed edgelist (2-column matrix). Represents the follower network,
where a tie (i, j) exists if legislator i follows legislator j. Self-loops (diagonal) are
included.

match_gender An N x N matrix. matrix[i, j] = 1 if legislator i and legislator j have the same
gender, 0 otherwise.

match_race An N x N matrix. matrix[i, j] = 1 if legislator i and legislator j have the same
race, 0 otherwise.

state_twitter 43

match_state An N x N matrix. matrix[i, j] = 1 if legislator i and legislator j are from the same
state, 0 otherwise.

white_attribute A 1 x N matrix (a row vector). matrix[1, i] = 1 if legislator i is ’White’, 0
otherwise.

gender_attribute A 1 x N matrix (a row vector). matrix[1, i] = 1 if legislator i is ’female’, 0
otherwise.

References

Gopal, Kim, Nakka, Boehmke, Harden, Desmarais. The National Network of U.S. State Legislators
on Twitter. Political Science Research & Methods, Forthcoming.

Kim, Nakka, Gopal, Desmarais,Mancinelli, Harden, Ko, and Boehmke (2022). Attention to the
COVID-19 pandemic on Twitter: Partisan differences among U.S. state legislators. Legislative
Studies Quarterly 47, 1023–1041.

Fritz, C., Schweinberger, M. , Bhadra S., and D. R. Hunter (2025). A Regression Framework for
Studying Relationships among Attributes under Network Interference. Journal of the American
Statistical Association, to appear.

Index

∗ data
rice, 31
state_twitter, 42

control.iglm, 2, 6, 18, 19
count_statistics, 4

iglm, 5, 23, 34
iglm.data, 4, 5, 7, 18–21, 41, 42
iglm.data_generator, 9
iglm_object, 5, 6, 20–22
iglm_object (iglm), 5
iglm_object_generator, 17

model_terms, 4, 6, 19, 22, 40

results, 18, 26
results_generator, 27
rice, 31

sampler.iglm, 31
sampler.net_attr, 33, 34
sampler_iglm, 6, 18, 19, 21
sampler_iglm (sampler_iglm_generator),

34
sampler_iglm_generator, 34
sampler_net_attr_generator, 38
simulate_iglm, 21, 40
state_twitter, 42

terms (model_terms), 22

44

	control.iglm
	count_statistics
	iglm
	iglm.data
	iglm.data_generator
	iglm_object_generator
	model_terms
	results
	results_generator
	rice
	sampler.iglm
	sampler.net_attr
	sampler_iglm_generator
	sampler_net_attr_generator
	simulate_iglm
	state_twitter
	Index

