Package 'dendrometry'

April 24, 2025

Type Package

Date 2025-04-24

Title Forest Estimations and Dendrometric Computations

Version 0.0.3

Description Computation of dendrometric and structural

parameters from forest inventory data. The objective is to provide an user-friendly R package for researchers, ecologists, foresters, statisticians, loggers and others persons who deal with forest inventory data. Useful conversion of angle value from degree to radian, conversion from angle to slope (in percentage) and their reciprocals as well as principal angle determination are also included. Position and dispersion parameters usually found in forest studies are implemented. The package contains Fibonacci series, its extensions and the Golden Number computation. Useful references are Arcadius Y. J. Akossou, Soufianou Arzouma, Eloi Y. Attakpa, Noël H. Fonton and Kouami Kokou (2013) <doi:10.3390/d5010099> and W. Bonou, R. Glele Kakaï, A.E. Assogbadjo, H.N. Fonton, B. Sinsin (2009) <doi:10.1016/j.foreco.2009.05.032>.

License GPL-3

Depends R (>= 3.5.0)

VignetteBuilder knitr

Suggests knitr, rmarkdown

Imports graphics, ForestFit

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Config/usethis/last-upkeep 2025-04-23

NeedsCompilation no

Author Narcisse Yehouenou [aut, cre],

Information and Communication Technology for you ONG (ICT4U-ONG) [fnd]

Maintainer Narcisse Yehouenou <narcisstar211@gmail.com>

Repository CRAN

Date/Publication 2025-04-24 21:20:02 UTC

Contents

adjWeibull	3
angle2slope	4
barkFactor	5
basal	6
basalContribution	6
basal_i	7
blackman	7
dbh	8
decrease	9
decreaseMetric	9
deg	10
densityRegen	11
densityTree	11
diameterMean	12
distanceH	13
factorize	13
fibonacci	14
fiboRate	15
girard	16
green	16
height	17
Logging	18
loreyHeight	19
makedata	19
param_i	20
print.angle	21
print.slope	21
reducecoef	22
rfreq	23
sampleSize	23
shape	24
skewness	25
spNmReduce	25
stacking	
Tree	27
volume	28

adjWeibull

Description

Adjust (fit) three-parameter Weibull distribution

Usage

```
adjWeibull(x, amplitude = 10, shape = 2, plot = TRUE, main = NULL,
title.col = "black", mid = TRUE, line.col = "blue", legendPos = "topright",
lowLim = NULL, ymax = NULL, bg = "aliceblue", method = "mps", cex.axis = 0.6,
cex.lab = 0.8, las = 1, xlab = "Diameter class (cm)",
ylab = "Relative frequency (%)", ...)
```

Arguments

amplitudenumeric, amplitude of classes.shapenumeric, optional initial values of shape for starting the iterative procedures such as Newton-Raphson.plotlogical. Should plot?maincharacter, overall title for the plot.title.col, linecolor to be used for the overall title and the plot line plot respectively. Default are "blue" and "black".midlogical. Should the line stop at the first and last classes middle?legendPoscharacter, keyword which is accepted by xy.coords. To be used to position the legend. Default is "topright".lowLim, ymaxnumeric, xlim and ylim lowest values.bgthe color to be used for the background of the legend box.methodused method for estimating the three-parameter Weibull distribution. See fitWeibull for details.cex.axis, cex.l-b, las graphical parameters. See par.xlab, ylabtitle for the x and y axisadditional arguments to pass through plot.	x	numeric, vector of observations.
as Newton-Raphson.plotlogical. Should plot?maincharacter, overall title for the plot.title.col, line.colthe color to be used for the overall title and the plot line plot respectively. Default are "blue" and "black".midlogical. Should the line stop at the first and last classes middle?legendPoscharacter, keyword which is accepted by xy.coords. To be used to position the legend. Default is "topright".lowLim, ymaxnumeric, xlim and ylim lowest values.bgthe color to be used for the background of the legend box.methodused method for estimating the three-parameter Weibull distribution. See fitWeibull for details.cex.axis, cex.lab, las graphical parameters. See par.graphical parameters. See par.xlab, ylabtitle for the x and y axis.	amplitude numeric, amplitude of classes.	
maincharacter, overall title for the plot.title.col, line.colthe color to be used for the overall title and the plot line plot respectively. Default are "blue" and "black".midlogical. Should the line stop at the first and last classes middle?legendPoscharacter, keyword which is accepted by xy.coords. To be used to position the legend. Default is "topright".lowLim, ymaxnumeric, xlim and ylim lowest values.bgthe color to be used for the background of the legend box.methodused method for estimating the three-parameter Weibull distribution. See fitWeibull for details.cex.axis, cex.lab, las graphical parameters. See par.xlab, ylabtitle for the x and y axis.	shape	
title.col, line.colthe color to be used for the overall title and the plot line plot respectively. Default are "blue" and "black".midlogical. Should the line stop at the first and last classes middle?legendPoscharacter, keyword which is accepted by xy.coords. To be used to position the legend. Default is "topright".lowLim, ymaxnumeric, xlim and ylim lowest values.bgthe color to be used for the background of the legend box.methodused method for estimating the three-parameter Weibull distribution. See fitWeibull for details.cex.axis, cex.lab, las graphical parameters. See par.title for the x and y axis.	plot	logical. Should plot?
the color to be used for the overall title and the plot line plot respectively. Default are "blue" and "black".midlogical. Should the line stop at the first and last classes middle?legendPoscharacter, keyword which is accepted by xy.coords. To be used to position the legend. Default is "topright".lowLim, ymaxnumeric, xlim and ylim lowest values.bgthe color to be used for the background of the legend box.methodused method for estimating the three-parameter Weibull distribution. See fit Weibull for details.cex.axis, cex.ls, las graphical parameters. See par.graphical parameters. See par.xlab, ylabtitle for the x and y axis.	main	character, overall title for the plot.
the color to be used for the overall title and the plot line plot respectively. Default are "blue" and "black".midlogical. Should the line stop at the first and last classes middle?legendPoscharacter, keyword which is accepted by xy.coords. To be used to position the legend. Default is "topright".lowLim, ymaxnumeric, xlim and ylim lowest values.bgthe color to be used for the background of the legend box.methodused method for estimating the three-parameter Weibull distribution. See fit Weibull for details.cex.axis, cex.ls, las graphical parameters. See par.graphical parameters. See par.xlab, ylabtitle for the x and y axis.	title.col,line	.col
legendPoscharacter, keyword which is accepted by xy. coords. To be used to position the legend. Default is "topright".lowLim, ymaxnumeric, xlim and ylim lowest values.bgthe color to be used for the background of the legend box.methodused method for estimating the three-parameter Weibull distribution. See fitWeibull for details.cex.axis, cex.lab, las graphical parameters. See par.graphical parameters. See par.xlab, ylabtitle for the x and y axis.		the color to be used for the overall title and the plot line plot respectively. Default
legend. Default is "topright".lowLim, ymaxnumeric, xlim and ylim lowest values.bgthe color to be used for the background of the legend box.methodused method for estimating the three-parameter Weibull distribution. See fitWeibull for details.cex.axis, cex.lab, las graphical parameters. See par.xlab, ylabtitle for the x and y axis.	mid	logical. Should the line stop at the first and last classes middle?
bgthe color to be used for the background of the legend box.methodused method for estimating the three-parameter Weibull distribution. See fitWeibull for details.cex.axis, cex.lab, las graphical parameters. See par.graphical parameters. See par.xlab, ylabtitle for the x and y axis.		
<pre>method used method for estimating the three-parameter Weibull distribution. See fitWeibull for details. cex.axis, cex.lab, las graphical parameters. See par. xlab, ylab title for the x and y axis.</pre>	lowLim,ymax	numeric, xlim and ylim lowest values.
for details. cex.axis, cex.lab, las graphical parameters. See par. xlab, ylab title for the x and y axis.	bg	the color to be used for the background of the legend box.
graphical parameters. See par.xlab, ylabtitle for the x and y axis.	•	
xlab, ylab title for the x and y axis.	cex.axis,cex.l	ab, las
		graphical parameters. See par.
additional arguments to pass through plot.	xlab,ylab	title for the x and y axis.
		additional arguments to pass through plot.

Examples

```
set.seed(2)
d <- rweibull(85, shape = 1, scale = 30) + 5
res <- adjWeibull(d,
    amplitude = 10, mid = FALSE, shape = 3, ymax = 30,
    main = "Weibull adjustment", line.col = "red", legendPos = "right",
    method = "mps"
)
res
```

angle2slope

Angle - Slope conversion and Principal Measure determination

Description

Conversion of angle to slope values and reciprocally. angle2slope converts angle to slope values. slope2angle converts slope to angle values. principal determines the principal measure of an angle value. Principal measure ranges from -pi to pi for radian unit while it ranges from -180 to 180 for degree unit.

Usage

```
angle2slope(angle, angleUnit = c("deg", "rad"))
slope2angle(slope, angleUnit = c("deg", "rad"))
principal(angle, angleUnit = c("deg", "rad"))
```

Arguments

angle	numeric, vector of angle to be converted to slope.
angleUnit character, unit of angle.	
	For slope2angle, the desired unit for the returned angle value.
	For principal, both the angle input and output unit.
	Either deg or rad. Default is deg.
slope	numeric, vector of slope to be converted to angle.

Value

Object of class angle.

angle2slope returns vector of slope values while slope2angle and principal return vector of angle values in unit specified in angle argument.

Note

Use principal in position computations, not distance computations.

4

barkFactor

See Also

deg and rad.

Examples

```
angle2slope(10)
angle2slope(angle = 45)
angle2slope(angle = pi / 4, angleUnit = "rad")
angle2slope(1.047198, "rad")
angle2slope(seq(0.2, 1.5, .4), angleUnit = "rad") #'
slope2angle(100)
slope2angle(100, "rad")
round(pi / 4, 2)
slope2angle(17.6327)
slope2angle(angle2slope(30))
principal(303)
principal(23 * pi / 8, "rad")
principal(7 * pi / 4, angleUnit = "rad")
deg(principal(7 * pi / 4, angleUnit = "rad"))
principal(7 * 45)
```

r The bark factor (k) is computed for trees in order to assess
ance of the valuable wood in the overall volume of a tree al., 1982):

Description

Bark factor The bark factor (k) is computed for trees in order to assess the importance of the valuable wood in the overall volume of a tree (Husch et al., 1982):

Usage

barkFactor(dbh, thickness)

Arguments

dbh	numeric, diameter over bark of the individual trees.
thickness	numeric, bark thickness measured on individual trees.

References

Husch, B., Miller, C., Beers, T., 1982. Forest mensuration. Ronald Press Company, London, pp. 1 – 410.

basal

Description

The basal area is the cross sectional area of the bole or stem of a tree at breast height.

Usage

basal(dbh, area, k = 100)

Arguments

dbh	numeric, vector of diameter.	
area	numeric, area of a plot (see details for unit).	
k	numeric, used to convert diameter unit. Default is 100 (see details)	

Details

If area is expressed in ha and dbh expressed in cm, the basal area unit is cm100b2/ha when k = 1. In order to convert centimeter (cm) to meter (m) for dbh, set k = 100. Because 1m = 100 cm. Then, basal area unit will be m100b2/ha.

If dbh is in meter (m), and area in in hectare (ha), setting k = 1 returns basal area in m\u00b2/ha.

If dbh is in feet, and area in acre, setting k = 1 returns basal area in ft\u00b2/ac.

If dbh is in inch, and area in acre, setting k = 12 returns basal area in feet\u00b2/acres (ft\u00b2/ac).

Value

A vector of basal area of stands.

basalContribution Basal area contribution

Description

The basal area contribution (in per cent) is defined as the part of a given species trees in the overall basal area of all trees in an area.

Usage

```
basalContribution(basal)
```

Arguments

basal numeric, basal area per species.

basal_i

Description

basal_i computes the basal area of a tree stem (individual), the area of a circle of diameter dbh. basal2dbh computes the dbh (diameter) based on the basal area.

Usage

```
basal_i(dbh, circum = NULL)
```

basal2dbh(basal)

Arguments

dbh	numeric, vector of diameter.
circum	numeric, vector of circumference. Is used only when dbh is not given.
basal	numeric, individual basal area.

Details

If circum is given, dbh is not used.

Value

basal_i returns individual basal area while basal2dbh returns DBH.

Examples

```
basal_i(dbh = 10)
basal_i(circum = 31.41)
basal2dbh(78.53982)
```

blackman

Index of Blackman

Description

Index of Blackman

Usage

blackman(density)

Arguments

density numeric, vector of the density.

Value

Index of Blackman.

dbh

Diameter (DBH) and Circumference

Description

DBH computes diameter (at breast height) based on circumference (at breast height). circum computes circumference (at breast height) based on diameter (at breast height). They are based on circle diameter and perimeter formulas.

Usage

dbh(circum)

circum(dbh)

Arguments

circum	numeric, vector of circumference.
dbh	numeric, vector of diameter.

Value

dbh, returns diameter and circum, returns circumference.

See Also

See also height for tree height.

```
perimeter <- seq(30, 60, 1.4)
diameter <- dbh(perimeter)
circum(diameter)</pre>
```

decrease

Description

This coefficient expresses the ratio between the diameter (or circumference) at mid-height of the bole and the diameter (or circumference) measured at breast height.

Usage

```
decrease(middle, breast)
```

Arguments

middle	numeric, the diameter or circumference at middle height.
breast	numeric, the diameter or circumference at breast height.

Details

Both middle and breast arguments should be of the same type (either diameter or circumference). Not mixture.

Value

A vector of decrease coefficients.

Examples

decrease(30, 120)
decrease(middle = 40, breast = 90)

decreaseMetric Metric scrolling or decay

Description

The average metric decay expresses the difference, in centimeters per meter, between the diameter (or circumference) at breast height and its diameter at mid-height of a stem related to the difference between the height at mid-height and that at breast height.

Usage

decreaseMetric(dmh, dbh, mh, bh = 1.3)

Arguments

dmh	numeric, the diameter at middle height in centimeter (cm).	
dbh	numeric, the diameter at breast height in centimeter (cm).	
mh	numeric, the middle (or cut) height in meter (m).	
bh	Either a numeric value standing for the breast height in meter (m) of all trees of a numeric vector standing for the breast height of each tree. Default is 1.3.	

Value

Metric decay

See Also

reducecoef

Examples

decreaseMetric(dmh = 40, dbh = 90, mh = 7)
decreaseMetric(45, 85, 9)

deg

Degree and Radian

Description

deg converts angle values from radians to degrees. rad converts angle values from degrees to radians.

Usage

deg(radian)

rad(degree)

Arguments

radian	numeric, vector of radian values to be converted to degrees.
degree	numeric, vector of degree values to be converted to radians.

Value

deg returns vector of degree values while rad returns vector of radian values.

See Also

principal.

densityRegen

Examples

deg(pi / 2) rad(180)

densityRegen	Density of regeneration	
--------------	-------------------------	--

Description

Computes the density per plot of tree regeneration based on counts in subplots.

Usage

densityRegen(data = NULL, plot = NULL, count, nbSubPlot, area)

Arguments

data	an optional data frame, list, tibble or object coercible by as.data.frame to a data frame containing the variables whose names are given in count and plot.
plot	an optional character, name of the variable containing the plot identities. If data is missing, a vector providing the plot identities.
count	character, name of the variable containing the counts: number of stems (individ- uals). If data is missing, a numeric vector providing the the counts: number of stems (individuals).
nbSubPlot	numeric, number of subplots per plot.
area	numeric, area of each subplot.

```
densityTree
```

Description

Density of trees per plot.

Usage

```
densityTree(number, area, overall = TRUE)
```

Tree density

Arguments

number	numeric, vector of tree count in each plot.
area	numeric, area of a plot.
overall	logical, if TRUE, an overall mean density is computed, otherwise density is com-
	puted for each plot. Default is TRUE.

Details

If every plot have same area, area is a numeric value, otherwise area is a vector of each plot area.

Value

Vector of density.

See Also

densityRegen for regeneration density.

Examples

```
count <- setNames(
    c(87, 104, 83, 132, 107, 84, 110, 115, 112, 94),
    LETTERS[1:10]
)
densityTree(count, 10)
densityTree(count, area = 10, overall = FALSE)
densityTree(count, area = 10:19, overall = FALSE)
```

diameterMean Mean diameter

Description

Mean diameter of a forestry stand.

Usage

diameterMean(dbh)

Arguments

dbh numeric, vector of diameter.

Value

Mean diameter.

See Also

dbh, basal_i

```
set.seed(1)
diameter <- rnorm(10, 100, 20)
diameterMean(dbh = diameter)</pre>
```

distanceH

Description

Horizontal distance calculation for sloping area.

Usage

```
distanceH(
   distance,
   angle,
   type = c("slope", "angle"),
   angleUnit = c("deg", "rad")
)
```

Arguments

distance	numeric, vector of the distance measured on sloping area.
angle	numeric, vector of angle or slope values.
type	character, type of angle argument. Either "angle" or "slope". Default is "slope".
angleUnit	character, unit of angle measures if type = "angle". Either "deg" for degree or "rad" for radian. Default is "deg".

Value

A vector of horizontal distance.

Examples

```
distanceH(20, 30)
distanceH(20, angle = 30, type = "slope")
distanceH(20, angle = 25, type = "angle")
```

factorize

Making factor vectors

Description

Changes character vectors of a data set to factor vectors.

Usage

factorize(data, binary = FALSE)

Arguments

data	data frame or tibble data set.
binary	logical indicating if binary numeric data should be considered as factor. Default is FALSE.

Details

When binary = TRUE, variables stored as numeric and which have exactly two levels are changed to factor.

Value

Data frame with all character vectors changed to factor vectors.

|--|

Description

Generates numbers from Fibonacci series.

Usage

fibonacci(n, PrintFib = FALSE, Uo = 0, U1 = 1)

Arguments

n	integer, the size of the series.
PrintFib	logical, indicating if the series should be printed.
Uo, U1	integer, the first two numbers of the series.

Details

The series equation is $Un = U_{(n-2)}/U_{(n-1)}$.

Value

Either an integer, result of the function or a vector of n first numbers of the series.

Author(s)

Narcisse Yehouenou <narcisstar211@gmail.com>

See Also

fiboRate

fiboRate

Examples

fibonacci(n = 10, PrintFib = TRUE)
fibonacci(n = 10, Uo = 1, U1 = 3, PrintFib = FALSE)

fiboRate

Fibonacci series ratio

Description

Computes rates from Fibonacci series.

Usage

fiboRate(n, PrintSer = FALSE, Uo = 0, U1 = 1)

Arguments

n	integer, the size of the series.
PrintSer	logical, indicating if the series should be printed.
Uo, U1	integer, the first number of the series.

Details

The series equation is $Un = U_{(n-2)} / U_{(n-1)}$. The function returns golden number when Uo = 0, and U1 = 1. Larger n is, more precise the number (result) is.

Value

Either a numeric, result of the rate of nth and (n-1)th numbers in Fibonacci series or all (n-1)th those rates.

Author(s)

Narcisse Yehouenou <narcisstar211@gmail.com>

See Also

fibonacci

```
## Golden number (Le Nombre d'Or)
fiboRate(n = 18, PrintSer = FALSE, Uo = 0, U1 = 1)
## (1+sqrt(5))/2
fiboRate(n = 10, PrintSer = TRUE, Uo = 0, U1 = 1)
```

girard

Description

Girard Form Class Girard Form Class is a form quotient used to estimate taper.

Usage

girard(dbh, dbhIn)

Arguments

dbh	numeric, diameter outside bark at breast height.
dbhIn	numeric, diameter inside bark at the top of the first log

References

Strimbu, B. (2021). Dendrometry Field Manual.

green	Index of Green

Description

Index of Green

Usage

green(density)

Arguments

density numeric, vector of the density.

Value

Index of Green.

height

Description

Computes the height of tree, pillar, girder, mast or any vertical object. It allows either slope (in percent) or angle (in degrees or radians). No matter the relative position of the persons who measures the angle or the slope.

Usage

```
height(
   distance,
   top,
   bottom,
   type = c("angle", "slope"),
   angleUnit = c("deg", "rad")
)
```

Arguments

distance	numeric, vector of the horizontal distance between object and the person who measures angle.
top, bottom	numeric vector of top angle and bottom angle respectively (readings from a cli- nometer).
type	the type of top and bottom measures. Either "angle" or "slope". Default is "slope".
angleUnit	the unit of top and bottom measures when type = "angle". Either "deg" for degree or "rad" for radian. Default is "deg".

Value

A vector of heights.

```
height(10, 80, 17)
height(17, top = -18, bottom = -113)
height(distance = 18, top = 42, bottom = -12, type = "angle", angleUnit = "deg")
height(
    distance = 18:21, top = 42:45, bottom = -12:-15, type = "angle",
    angleUnit = "deg"
)
## Below shows warning messages
height(
    distance = 18:21, top = -42:-45, bottom = -12:-15, type = "angle",
    angleUnit = "deg"
)
```

Logging

Description

Data frame of 24 rows and 8 columns containing tree measures.

Usage

data(Logging)

Format

Data frame with twenty five observations and eight variables:

tree Tree name (scientific gender).
hauteur Stem length in meter (m).
diametreMedian Tree median diameter in centimeter (cm).
perimetreMedian Tree median circumference in centimeter (cm).
diametreSection Tree diameter at the end in centimeter (cm).
perimetreBase Tree diameter at the base in centimeter (cm).
perimetreBase Tree circumference at the base in centimeter (cm).

Author(s)

Narcisse Yehouenou <narcisstar211@gmail.com>

Source

Fake data simulated for tutorial purposes.

Examples

demo(volume)

loreyHeight

Description

The average height of the trees in a plot, weighted by their basal area.

Usage

```
loreyHeight(basal, height)
```

Arguments

basal	numeric, vector of trees' individual basal area.
height	numeric, vector of trees' individual height.

Value

Average Lorey height of a stand.

See Also

height, basal_i

Examples

```
set.seed(1)
donnee <- data.frame(
    hauteur = rnorm(10, 12, 3),
    area = basal_i(rnorm(10, 100, 20))
)
loreyHeight(basal = donnee$area, height = donnee$hauteur)</pre>
```

makedata Make stand data

Description

Make data of stands according to defined factor1, factor2, factor3.

Usage

```
makedata(data, factor1 = "", factor2 = "", factor3 = "")
```

Arguments

data data frame containing optional factors factor1, factor2, factor3. factor1, factor2, factor3 optional variables of the data frame that define subsets to consider.

Value

A list of data.

Examples

```
# require(BiodiversityR)
# data(ifri, package = "BiodiversityR")
# a1=makedata(ifri, factor1 = "forest", factor2 = "plotID", factor3 = "species")
# a2=makedata(ifri, factor1 = "species")
# makedata(ifri, factor2 = "")
# identical(makedata(ifri), ifri)
```

```
param_i
```

Structural parameters for stands

Description

param computes structural parameters per stands specified in factor arguments. param_i computes structural parameters for a stand.

Usage

```
param_i(data, plot = "", DBH = "", height = "", crown = "", area = NULL,
k = 100, kCrown = 1)
```

```
param(data, plot = "", DBH = "", height = "", crown = "", area = NULL,
k = 100, kCrown = 1, factor1 = "", factor2 = "", factor3 = "")
```

Arguments

data	a data frame, list, tibble or object coercible by as.data.frame to a data frame containing the variables whose names would be given in DBH, height and crown.	
plot,DBH,heigh	t, crown	
optional characters, names of the variables of data containing respectivel plot's identification or code, the diameter at breast height, the tree total he and the crown diameter of each individual tree.		
area	numeric, area of a plot (see basal section details for unit).	
k,kCrown	numeric, used to convert diameter and crown diameter units respectively. De- fault are k = 100 and kCrown = 1. (see basal)	
factor1, factor2, factor3		
character, optional variables of the data frame that define subsets to consider.		

print.angle

Details

Blackman and Green indices are returned if combinations of specified factor1..3 contain more than one plot. Otherwise, the right are returned as attributes.

Value

A vector, matrix or list of matrices containing of structural parameters.

Examples

```
param_i(
    data = Logging, plot = "tree", DBH = "diametreMedian",
    height = "hauteur", crown = "perimetreBase", area = 0.03, kCrown = 100
)
```

print.angle Print Angle

Description

Method to print angle and returns it invisibly.

Usage

S3 method for class 'angle'
print(x, ...)

Arguments

Х	an angle object.
	further arguments passed to or from other methods.

print.slope

Print Slope

Description

Method to print slope and returns it invisibly.

Usage

S3 method for class 'slope'
print(x, ...)

Arguments

Х	a slope object.
	further arguments passed to or from other methods.

reducecoef

Description

The reduction coefficient is the ratio between the difference in size at breast height and mid-height on the one hand, and the size at breast height on the other. It is thus the complement to 1 of the coefficient of decrease.

Usage

reducecoef(middle, breast)

Arguments

middle	numeric, the diameter or circumference at middle height.
breast	numeric, the diameter or circumference at breast height.

Details

Both middle and breast arguments should be of the same type (either diameter or circumference). Not mixture.

Value

The reduction coefficient.

See Also

decrease

```
reducecoef(30, 120)
reducecoef(middle = 40, breast = 90)
```

rfreq

Sample size

Description

Relative Frequency in percentage.

Usage

rfreq(x)

Arguments

х

numeric vector.

sampleSize

Description

Sample size

Usage

```
sampleSize(
  confLev = 0.95,
  popPro = 0.5,
  errorMargin = 0.05,
  size = NULL,
  method = "",
  cv = NULL
)
```

Arguments

confLev	numeric, the confidence level. Default is 0.05.
popPro	numeric, proportion of population which have considered factor. Default is 0.5 .
errorMargin	numeric, margin error. Default is 0.05.
size	integer, population size when it is known. If not specified, simple random sampling will be used. Allows infinite.
method	optional character string specifying method to use if not simple adjusted is de- sired. Only "cauchran" is implemented now.
CV	variation coefficient.

Value

The sample size.

Note

Population size to be considered as large or infinite heavily depends on error margin. Lower error margin increases population size to be conidered as large or infinite. For errorMargin = .05, size = $152\ 231$ and cauchran $151\ 760$ when confLev = .05

Examples

```
sampleSize(confLev = .95, popPro = 0.4, errorMargin = .05)
sampleSize(confLev = .95, popPro = 0.5, errorMargin = .05, size = 150)
sampleSize(
   confLev = .95, popPro = 0.5, errorMargin = .05, size = 150,
   method = "cauchran"
)
sampleSize()
```

shape

The shape coefficient

Description

The shape coefficient of the tree is the ratio of the actual volume of the tree to the volume of a cylinder having as base the surface of the section at 1.3 m (or a given breast height) and as length, the height (at bole level) of the tree.

Usage

```
shape(volume, height, dbh, basal = NULL)
```

Arguments

volume	numeric, tree real volume.
height	numeric, tree height.
dbh	numeric, diameter at breast height (DBH).
basal	numeric, basal area. Is used when dbh is not specified.

Value

The shape coefficient.

See Also

volume, for tree real volume.

24

skewness

Examples

```
shape(volume = 10000, 11, dbh = 40)
shape(volume = 10000, 11, 40)
shape(volume = 10000, 11, basal = 2256.637)
## Bellow gives warning
shape(volume = 10000, height = 11, dbh = 40, basal = 2256.637)
```

skewness

Skewness coefficient

Description

Skewness coefficient

Usage

skewness(x)

Arguments

x numeric vector.

Value

The skewness coefficient.

Examples

```
data("Logging")
skewness(Logging$hauteur)
hist(Logging$hauteur, 3)
```

spNmReduce

Abbreviates a Botanical or Zoological Latin Name into an Eightcharacter from 'Gender epithet' to 'G. epithet'

Description

To abbreviate species name from 'Gender epithet' to 'G. epithet'. Useful in plots with species names.

Usage

spNmReduce(name, sep = " ")

stacking

Arguments

name	a factor coercible vector of species name in forms 'Gender epithet'.
sep	character string which separates Gender and epithet. Default is space " ".

Details

Returned reduced names are made unique.

Value

A factor vector of species reduced names in forms 'G. epithet'.

See Also

make.cepnames in vegan package.

stacking

Stack all vectors of a data frame or list

Description

Stacking all columns of a data frame or vectors of a list into a single vector.

Usage

stacking(data)

Arguments

data data frame, tibble or list.

Value

A vector of all element of the argument data.

Tree

Description

Data frame of 10 rows and 5 columns containing tree measures.

Usage

data(Tree)

Format

Data frame with ten observations and five variables:

circum Tree circumference in centimeter (cm).

dist Horizontal distance between the person measuring angles and the tree (m).

up Angle measured for the top part of the tree in degree (\u00b0). It is used to calculate the total tree height.

down Angle measured for the bottom part of the tree in degree (\u00b0).

fut Bole angle measure in degree (\u00b0); Bole is where the first branch occurs on the trunk. It is used to calculate the merchantable tree height.

Author(s)

Narcisse Yehouenou <narcisstar211@gmail.com>

Source

Fake data simulated for tutorial purposes.

Examples

demo(dendro)

Description

Determining the volume of the log or of the tree.

Usage

Arguments

height	numeric, stem (whole bole) length. When successive is "TRUE", it stands for log length.
do, dm, ds	numeric, respectively base, median and end diameter.
circumo, circum	, circums
	numeric, respectively base, median and end circumference.
method	character string, the method of volume computation. Can be one of "huber", "smalian", "cone", or "newton". Default is "huber".
successive	logical. If TRUE, Successive method is applied. is applied. Default is FALSE.
log	a vector indicating tree to which belongs each log. Is used only when $successive$ is "TRUE".

Details

Using method = cone refers to truncated cone method.

Value

A numeric vector of logs or trees volume.

See Also

shape, for shape coefficient.

```
## huber method
volume(height = 10, dm = 35)
volume(height = 10, circum = 100)
## smalian method
volume(height = 10, do = 45, ds = 15, method = "smalian")
volume(height = 10, circumo = 200, circums = 110, method = "smalian")
```

volume

```
## cone method
volume(height = 10, do = 45, ds = 15, method = "cone")
volume(height = 10, circumo = 200, circums = 110, method = "cone")
## newton method
volume(height = 10, dm = 35, do = 45, ds = 15, method = "newton")
volume(
    height = 10, circum = 100, circumo = 200, circums = 110,
    method = "newton"
)
```

Index

* datasets Logging, 18 Tree, 27 adjWeibull, 3 angle2slope, 4 as.data.frame, 11, 20 barkFactor, 5 basal, 6, 20 basal2dbh(basal_i), 7 basal_i, 7, 12, 19 basalContribution, 6 blackman, 7 circum(dbh), 8 dbh, 8, 12 decrease, 9 decreaseMetric, 9 deg, 5, 10 degree (deg), 10 densityRegen, 11, 12 densityTree, 11 diameterMean, 12 distanceH, 13 factorise (factorize), 13 factorize, 13 fibonacci, 14, 15 fiboRate, *14*, 15 fitWeibull, 3 girard, 16 green, 16 height, 8, 17, 19 Logging, 18 loreyHeight, 19 make.cepnames, 26

makedata, 19 par, 3param (param_i), 20 param_i, 20 plot, 3 principal, 10 principal (angle2slope), 4 print.angle, 21 print.slope, 21 rad, 5 rad(deg), 10radian (deg), 10 reducecoef, 22rfreq, 23 sampleSize, 23 shape, 24, 28 skewness, 25 slope2angle (angle2slope), 4 spNmReduce, 25 stacking, 26 Tree, 27 volume, 24, 28 xy.coords, 3