arcgisutils

R-CMD-check CRAN status extendr

arcgisutils is the foundational infrastructure package that powers the R-ArcGIS Bridge Data and Location Service ecosystem. It provides sophisticated, production-ready tools for interacting with ArcGIS Online, ArcGIS Enterprise, and ArcGIS Platform via their REST APIs.

Key Capabilities

šŸ” Comprehensive Authentication:

🌐 Portal Integration:

āš™ļø Geoprocessing Services:

šŸ“„ Esri JSON Ecosystem:

šŸ› ļø Developer Utilities:

Installation

{arcgisutils} is part of the {arcgis} metapackage, which provides the complete R-ArcGIS Bridge toolkit. For most users, installing the metapackage is recommended:

install.packages("arcgis")

You can also install {arcgisutils} individually from CRAN:

install.packages("arcgisutils")

To install the development version:

pak::pak("r-arcgis/arcgisutils")

Authentication

Authorization tokens are provided through the functions auth_code(), auth_client(), auth_user(), auth_key(), and auth_binding(). Additional token validation functions are provided via refresh_token() and validate_or_refresh_token().

auth_code() can be used for integrating into Shiny applications, for example, to have individual users log in. We recommend using auth_key() for authenticating in non-interactive environments (for example scheduled scripts or deployments).

Tokens are managed using set_arc_token() and unset_arc_token(). They are fetched using arc_token(). set_arc_token() can set the token globally or set multiple named environments. Here is a minimal example:

library(arcgisutils)
#> 
#> Attaching package: 'arcgisutils'
#> The following object is masked from 'package:base':
#> 
#>     %||%
key <- auth_key()
set_arc_token(key)

Alternatively, tokens can be set based on a key-value pair for multiple environments:

set_arc_token("production" = prod_token, "development" = dev_token)

And fetched based on their name via

arc_token("production")

Portal Integration

Search and discover content across your ArcGIS organization:

# Search for feature services containing "crime" data
crime_items <- search_items(
  query = "crime", 
  item_type = "Feature Service",
  max_pages = 1
)

crime_items
#> # A data frame: 50 Ɨ 46
#>    id      owner created             modified            guid  name  title type 
#>  * <chr>   <chr> <dttm>              <dttm>              <lgl> <chr> <chr> <chr>
#>  1 ea0cfe… Toro… 2023-03-28 15:02:39 2025-01-22 18:27:48 NA    Neig… Neig… Feat…
#>  2 0a239a… Toro… 2023-03-27 18:59:00 2025-08-06 14:01:27 NA    Majo… Majo… Feat…
#>  3 5e055d… JASo… 2023-04-04 17:36:59 2023-09-07 19:05:06 NA    <NA>  Sher… Feat…
#>  4 64691a… Temp… 2024-01-17 20:01:43 2024-01-17 20:04:45 NA    hate… Hate… Feat…
#>  5 7c2b78… JASo… 2023-04-04 17:49:30 2023-06-02 22:27:11 NA    <NA>  Sher… Feat…
#>  6 e0992d… balt… 2023-07-31 20:27:01 2025-01-22 21:21:01 NA    Part… Part… Feat…
#>  7 c749e3… open… 2024-02-23 19:36:34 2025-09-04 17:08:47 NA    <NA>  Crim… Feat…
#>  8 2cb53d… KASU… 2019-12-10 19:06:39 2019-12-10 19:14:27 NA    Viol… Viol… Feat…
#>  9 30644d… MyCi… 2025-03-14 14:55:06 2025-08-20 13:55:24 NA    HPD_… HPD … Feat…
#> 10 5dc4e6… iwat… 2023-06-23 22:07:21 2023-08-09 15:33:46 NA    <NA>  Prop… Feat…
#> # ℹ 40 more rows
#> # ℹ 38 more variables: typeKeywords <list>, description <chr>, tags <list>,
#> #   snippet <chr>, thumbnail <chr>, documentation <lgl>, extent <list>,
#> #   categories <list>, spatialReference <chr>, accessInformation <chr>,
#> #   classification <lgl>, licenseInfo <chr>, culture <chr>, properties <list>,
#> #   advancedSettings <lgl>, url <chr>, proxyFilter <lgl>, access <chr>,
#> #   size <int>, subInfo <int>, appCategories <list>, industries <list>, …
# Get detailed item information for a portal item
arc_item(crime_items$id[1])
#> <PortalItem<Feature Service>>
#> id: ea0cfecdb1de416884e6b0bf08a9e195
#> title: Neighbourhood Crime Rates Open Data
#> owner: TorontoPoliceService

Developer Utilities

Always use arc_base_req() as this will handle setting the user agent and authorization token. The function creates a standardized httr2 request object:

# defaults to arcgis.com
host <- arc_host() 

req <- arc_base_req(host)
req
#> <httr2_request>
#> GET https://www.arcgis.com
#> Body: empty
#> Options:
#> * useragent: "arcgisutils v0.3.3.9000"

To handle paginated services and requests use arc_paginate_req() to automatically handle fetching pages.

Esri JSON

There are also a number of utility functions for creating and parsing Esri JSON. For example we can create an Esri FeatureSet json string using as_esri_featureset() directly from an sf object.

library(sf)

# load the NC SIDS dataset and extract centroids
# of the first few rows
nc <- system.file("shape/nc.shp", package = "sf") |> 
  st_read(quiet = TRUE) |> 
  st_centroid() 

# convert to json
nc_json <- as_esri_featureset(nc[1:2, 1:3])

jsonify::pretty_json(nc_json)
#> {
#>     "geometryType": "esriGeometryPoint",
#>     "spatialReference": {
#>         "wkid": 4267
#>     },
#>     "features": [
#>         {
#>             "geometry": {
#>                 "x": -81.4982290095261,
#>                 "y": 36.43139560823758
#>             },
#>             "attributes": {
#>                 "AREA": 0.114,
#>                 "CNTY_": 1825.0,
#>                 "PERIMETER": 1.442
#>             }
#>         },
#>         {
#>             "geometry": {
#>                 "x": -81.12512977849917,
#>                 "y": 36.49110847237506
#>             },
#>             "attributes": {
#>                 "AREA": 0.061,
#>                 "CNTY_": 1827.0,
#>                 "PERIMETER": 1.231
#>             }
#>         }
#>     ]
#> }

Feature set json can also be parsed using parse_esri_json().

parse_esri_json(nc_json)
#> Simple feature collection with 2 features and 3 fields
#> Geometry type: POINT
#> Dimension:     XY
#> Bounding box:  xmin: -81.49823 ymin: 36.4314 xmax: -81.12513 ymax: 36.49111
#> Geodetic CRS:  NAD27
#>    AREA CNTY_ PERIMETER                   geometry
#> 1 0.114  1825     1.442  POINT (-81.49823 36.4314)
#> 2 0.061  1827     1.231 POINT (-81.12513 36.49111)

Additionally, sf’s crs object can be converted to a spatialReference JSON object using validate_crs(). Convert these to json with yyjsonr or jsonify.

crs <- validate_crs(27700)
jsonify::pretty_json(crs, unbox = TRUE)
#> {
#>     "spatialReference": {
#>         "wkid": 27700
#>     }
#> }

Geoprocessing Services

The geoprocessing service framework is completely supported in {arcgisutils}. Here we combine the functionality of the geoprocessing job framework with utilities such as as_esri_featureset() to call the Trace DownStream Elevation Service

trace_downstream <- function(
  input_points,
  point_id_field = NULL,
  resolution = NULL,
  generalize = FALSE,
  token = arc_token()
) {

  # create a list of parameters
  params <- compact(list(
    InputPoints = as_esri_featureset(input_points),
    PointIdField = point_id_field,
    DataSourceResolution = resolution,
    Generalize = as.character(generalize),
    f = "json"
  ))

  service_url <- "https://hydro.arcgis.com/arcgis/rest/services/Tools/Hydrology/GPServer/TraceDownstream"
  arc_gp_job$new(
    base_url = service_url,
    params = params,
    result_fn = parse_gp_feature_record_set,
    token
  )
}

This new function can be called to start a new job:

# create input points
input_points <- st_sfc(
  st_point(c(-159.548936, 21.955888)),
  crs = 4326
)

# initialze an empty job
job <- trace_downstream(
  input_points,
  token = auth_user()
)

# start the job
job$start()
#> <arc_gp_job>
#> Job ID: jd9f76de1e62e4d8a877f3e6859fdb7b2
#> Status: not started
#> Resource: /TraceDownstream
#> Params:
#> • InputPoints
#> • Generalize
#> • f

Jobs run asynchronously so we can check the status with job$status

job$status
#> <arcgisutils::arc_job_status>
#>  @ status: chr "esriJobSubmitted"

Then, when the job is complete, we can fetch the results applying the result function which is parse_gp_feature_record_set() in this case.

job$results
#> $param_name
#> [1] "OutputTraceLine"
#> 
#> $data_type
#> [1] "GPFeatureRecordSetLayer"
#> 
#> $geometry
#> Simple feature collection with 1 feature and 6 fields
#> Geometry type: MULTILINESTRING
#> Dimension:     XY
#> Bounding box:  xmin: 438895 ymin: 2422310 xmax: 443325 ymax: 2428045
#> Projected CRS: NAD83 / UTM zone 4N + Unknown VCS
#>   OBJECTID PourPtID               Description DataResolution LengthKm
#> 1        1        1 NED 10m processed by Esri           10.0 9.489823
#>   Shape_Length                       geometry
#> 1     9489.823 MULTILINESTRING ((443325 24...

# store and view the results
res <- job$results
res
#> $param_name
#> [1] "OutputTraceLine"
#> 
#> $data_type
#> [1] "GPFeatureRecordSetLayer"
#> 
#> $geometry
#> Simple feature collection with 1 feature and 6 fields
#> Geometry type: MULTILINESTRING
#> Dimension:     XY
#> Bounding box:  xmin: 438895 ymin: 2422310 xmax: 443325 ymax: 2428045
#> Projected CRS: NAD83 / UTM zone 4N + Unknown VCS
#>   OBJECTID PourPtID               Description DataResolution LengthKm
#> 1        1        1 NED 10m processed by Esri           10.0 9.489823
#>   Shape_Length                       geometry
#> 1     9489.823 MULTILINESTRING ((443325 24...

# plot the resultant geometry
plot(st_geometry(res$geometry))

Learn More

To learn more about the R-ArcGIS Bridge project visit the developer documentation.