We consider stability curves \(p_j(c0)\) for each term \(j\) across a grid of SelectBoost thresholds
c0. The following functionals condense these curves into
scalar confidences:
confidence_functionals() from a
sb_gamlss_c0_grid() result.plot()) and raw
stability trajectories (plot_stability_curves()).c0.library(gamlss)
library(SelectBoost.gamlss)
set.seed(1)
n <- 400
x1 <- rnorm(n); x2 <- rnorm(n); x3 <- rnorm(n)
y <- gamlss.dist::rNO(n, mu = 1 + 1.3*x1 - 1.0*x3, sigma = 1)
dat <- data.frame(y, x1, x2, x3)
g <- sb_gamlss_c0_grid(
y ~ 1, data = dat, family = gamlss.dist::NO(),
mu_scope = ~ x1 + x2 + x3, sigma_scope = ~ x1 + x2,
c0_grid = seq(0.2, 0.8, by = 0.2), B = 40, pi_thr = 0.6, pre_standardize = TRUE, trace = FALSE
)
#> | | | 0% | |================== | 25% | |=================================== | 50%
#> Warning in RS(): Algorithm RS has not yet converged
#> | |==================================================== | 75% | |======================================================================| 100%
cf <- confidence_functionals(
g, pi_thr = 0.6, q = c(0.5, 0.8, 0.9),
weight_fun = NULL, conservative = FALSE, method = "trapezoid"
)
plot(cf, top = 10, label_top = 6)