RLescalation: Optimal Dose Escalation Using Deep Reinforcement Learning
An implementation to compute an optimal dose escalation rule
using deep reinforcement learning in phase I oncology trials
(Matsuura et al. (2023) <doi:10.1080/10543406.2023.2170402>).
The dose escalation rule can directly optimize the percentages of correct
selection (PCS) of the maximum tolerated dose (MTD).
| Version: |
1.0.3 |
| Imports: |
glue, R6, nleqslv, reticulate, stats, utils, zip |
| Suggests: |
knitr, rmarkdown |
| Published: |
2025-10-07 |
| DOI: |
10.32614/CRAN.package.RLescalation |
| Author: |
Kentaro Matsuura
[aut, cre, cph] |
| Maintainer: |
Kentaro Matsuura <matsuurakentaro55 at gmail.com> |
| BugReports: |
https://github.com/MatsuuraKentaro/RLescalation/issues |
| License: |
MIT + file LICENSE |
| URL: |
https://github.com/MatsuuraKentaro/RLescalation |
| NeedsCompilation: |
no |
| Language: |
en-US |
| Materials: |
README, NEWS |
| CRAN checks: |
RLescalation results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=RLescalation
to link to this page.